Our dataset provides detailed and precise insights into the business, commercial, and industrial aspects of any given area in the USA (Including Point of Interest (POI) Data and Foot Traffic. The dataset is divided into 150x150 sqm areas (geohash 7) and has over 50 variables. - Use it for different applications: Our combined dataset, which includes POI and foot traffic data, can be employed for various purposes. Different data teams use it to guide retailers and FMCG brands in site selection, fuel marketing intelligence, analyze trade areas, and assess company risk. Our dataset has also proven to be useful for real estate investment.- Get reliable data: Our datasets have been processed, enriched, and tested so your data team can use them more quickly and accurately.- Ideal for trainning ML models. The high quality of our geographic information layers results from more than seven years of work dedicated to the deep understanding and modeling of geospatial Big Data. Among the features that distinguished this dataset is the use of anonymized and user-compliant mobile device GPS location, enriched with other alternative and public data.- Easy to use: Our dataset is user-friendly and can be easily integrated to your current models. Also, we can deliver your data in different formats, like .csv, according to your analysis requirements. - Get personalized guidance: In addition to providing reliable datasets, we advise your analysts on their correct implementation.Our data scientists can guide your internal team on the optimal algorithms and models to get the most out of the information we provide (without compromising the security of your internal data).Answer questions like: - What places does my target user visit in a particular area? Which are the best areas to place a new POS?- What is the average yearly income of users in a particular area?- What is the influx of visits that my competition receives?- What is the volume of traffic surrounding my current POS?This dataset is useful for getting insights from industries like:- Retail & FMCG- Banking, Finance, and Investment- Car Dealerships- Real Estate- Convenience Stores- Pharma and medical laboratories- Restaurant chains and franchises- Clothing chains and franchisesOur dataset includes more than 50 variables, such as:- Number of pedestrians seen in the area.- Number of vehicles seen in the area.- Average speed of movement of the vehicles seen in the area.- Point of Interest (POIs) (in number and type) seen in the area (supermarkets, pharmacies, recreational locations, restaurants, offices, hotels, parking lots, wholesalers, financial services, pet services, shopping malls, among others). - Average yearly income range (anonymized and aggregated) of the devices seen in the area.Notes to better understand this dataset:- POI confidence means the average confidence of POIs in the area. In this case, POIs are any kind of location, such as a restaurant, a hotel, or a library. - Category confidences, for example"food_drinks_tobacco_retail_confidence" indicates how confident we are in the existence of food/drink/tobacco retail locations in the area. - We added predictions for The Home Depot and Lowe's Home Improvement stores in the dataset sample. These predictions were the result of a machine-learning model that was trained with the data. Knowing where the current stores are, we can find the most similar areas for new stores to open.How efficient is a Geohash?Geohash is a faster, cost-effective geofencing option that reduces input data load and provides actionable information. Its benefits include faster querying, reduced cost, minimal configuration, and ease of use.Geohash ranges from 1 to 12 characters. The dataset can be split into variable-size geohashes, with the default being geohash7 (150m x 150m).
This EnviroAtlas dataset categorizes land cover into structural elements (e.g. core, edge, connector, etc.). It depicts core areas of natural land cover, core fragmentation, and patterns of connectivity among core patches. Water is treated as missing in this dataset; waterbodies are masked out and not included in the analysis with the development and natural land cover classes. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Techsalerator’s News Event Data in Latin America offers a detailed and extensive dataset designed to provide businesses, analysts, journalists, and researchers with an in-depth view of significant news events across the Latin American region. This dataset captures and categorizes key events reported from a wide array of news sources, including press releases, industry news sites, blogs, and PR platforms, offering valuable insights into regional developments, economic changes, political shifts, and cultural events.
Key Features of the Dataset: Comprehensive Coverage:
The dataset aggregates news events from numerous sources such as company press releases, industry news outlets, blogs, PR sites, and traditional news media. This broad coverage ensures a wide range of information from multiple reporting channels. Categorization of Events:
News events are categorized into various types including business and economic updates, political developments, technological advancements, legal and regulatory changes, and cultural events. This categorization helps users quickly locate and analyze information relevant to their interests or sectors. Real-Time Updates:
The dataset is updated regularly to include the most recent events, ensuring users have access to the latest news and can stay informed about current developments. Geographic Segmentation:
Events are tagged with their respective countries and regions within Latin America. This geographic segmentation allows users to filter and analyze news events based on specific locations, facilitating targeted research and analysis. Event Details:
Each event entry includes comprehensive details such as the date of occurrence, source of the news, a description of the event, and relevant keywords. This thorough detailing helps in understanding the context and significance of each event. Historical Data:
The dataset includes historical news event data, enabling users to track trends and perform comparative analysis over time. This feature supports longitudinal studies and provides insights into how news events evolve. Advanced Search and Filter Options:
Users can search and filter news events based on criteria such as date range, event type, location, and keywords. This functionality allows for precise and efficient retrieval of relevant information. Latin American Countries Covered: South America: Argentina Bolivia Brazil Chile Colombia Ecuador Guyana Paraguay Peru Suriname Uruguay Venezuela Central America: Belize Costa Rica El Salvador Guatemala Honduras Nicaragua Panama Caribbean: Cuba Dominican Republic Haiti (Note: Primarily French-speaking but included due to geographic and cultural ties) Jamaica Trinidad and Tobago Benefits of the Dataset: Strategic Insights: Businesses and analysts can use the dataset to gain insights into significant regional developments, economic conditions, and political changes, aiding in strategic decision-making and market analysis. Market and Industry Trends: The dataset provides valuable information on industry-specific trends and events, helping users understand market dynamics and emerging opportunities. Media and PR Monitoring: Journalists and PR professionals can track relevant news across Latin America, enabling them to monitor media coverage, identify emerging stories, and manage public relations efforts effectively. Academic and Research Use: Researchers can utilize the dataset for longitudinal studies, trend analysis, and academic research on various topics related to Latin American news and events. Techsalerator’s News Event Data in Latin America is a crucial resource for accessing and analyzing significant news events across the region. By providing detailed, categorized, and up-to-date information, it supports effective decision-making, research, and media monitoring across diverse sectors.
These data are a compilation of fishway structures collected by the Atlantic States Marine Fisheries Commission state representatives at the request of the U.S. Geological Survey. The variables included within this dataset range from locality information and structure metadata (eg. latitude/longitude and year of construction) to metrics specifically about the fishway structure (eg. fishway width). The dataset ranges in dates of construction from 1882 to 2020 and includes fishways from all states on the eastern coast of the United States.
OBIS-USA provides aggregated, interoperable biogeographic data collected primarily from U.S. waters and oceanic regions--the Arctic, the Atlantic and Pacific oceans, the Caribbean Sea, Gulf of Mexico and the Great Lakes. It provides access to datasets from state and federal agencies as well as educational and research institutions. OBIS-USA handles both specimen-based data and survey results. Survey data come from recovered archives and current research activities. The datasets document where and when species were observed or collected, bringing together marine biogeographic data that are spatially, taxonomically, and temporally comprehensive. The public OBIS-USA site (http://www.usgs.gov/obis-usa) provides actual data contents as well as summary data about what is contained in each dataset to assist users in evaluating suitability for use. Current functionality allows the user to locate, view, and aggregate the datasets and FGDC compliant metadata as well as to view and search the taxonomic, geographic, and temporal extent. To promote data interoperability, the data are available in accordance with the marine-focused implementation of the Darwin Core data standard. In addition to basic download functions (tab-delimited), OBIS-USA offers web services for query flexibility and a wide range of output formats, such as kml, NetCDF, MATLAB, json, and graph or map output, to enable diverse types of scientific and geospatial data use and analysis platforms and products. OBIS-USA's two web services (ERDDAP and GeoServer) enable integration of OBIS-USA biogeographic data with other data types, such as seafloor geology, physical oceanography, water chemistry, and climate data. The NOAA Environmental Research Division Data Access Program(ERRDDAP) enables users to query scientific data by flexible parameters and obtain output in many formats. Access can be found at http://www1.usgs.gov/erddap/tabledap/AllMBG.html . OBIS-USA uses the tabledap component of ERDDAP to access Darwin-Core-type tabular spatial data; tabledap is a superset of the OPeNDAP DAP constraint protocol. OBIS-USA offers an ESRI REST Service with access to Darwin-Core-type point data at http://gis1.usgs.gov/arcgis/rest/services/OBISUSA/OBIS_USA_All_Marine_Biogeographic_Records/MapServer/ and an OGC compliant Web Mapping Service (wms) http://gis1.usgs.gov/arcgis/services/OBISUSA/OBIS_USA_All_Marine_Biogeographic_Records/MapServer/WMSServer?request=GetCapabilities&service=WMS. OBIS-USA and collaborators are further deploying the Darwin Core standard to capture richer information, such as absence and abundance, observations on effort, individual tracking, and more advanced biogeography capabilities. Data are accepted into OBIS-USA from the data originator or holder, minimizing the burden on the participant. OBIS-USA works with data providers to understand the best process to transfer the data, review the data prior to their release, gather comprehensive metadata, and then allow public access to this information. Becoming part of the OBIS-USA network is intended to have tangible benefits for participants, for example, freeing the participant from responding to requests for data and alleviating security concerns since users do not directly access the participant's computers.
Access B2B Contact Data for North American Small Business Owners with Success.ai—your go-to provider for verified, high-quality business datasets. This dataset is tailored for businesses, agencies, and professionals seeking direct access to decision-makers within the small business ecosystem across North America. With over 170 million professional profiles, it’s an unparalleled resource for powering your marketing, sales, and lead generation efforts.
Key Features of the Dataset:
Verified Contact Details
Includes accurate and up-to-date email addresses and phone numbers to ensure you reach your targets reliably.
AI-validated for 99% accuracy, eliminating errors and reducing wasted efforts.
Detailed Professional Insights
Comprehensive data points include job titles, skills, work experience, and education to enable precise segmentation and targeting.
Enriched with insights into decision-making roles, helping you connect directly with small business owners, CEOs, and other key stakeholders.
Business-Specific Information
Covers essential details such as industry, company size, location, and more, enabling you to tailor your campaigns effectively. Ideal for profiling and understanding the unique needs of small businesses.
Continuously Updated Data
Our dataset is maintained and updated regularly to ensure relevance and accuracy in fast-changing market conditions. New business contacts are added frequently, helping you stay ahead of the competition.
Why Choose Success.ai?
At Success.ai, we understand the critical importance of high-quality data for your business success. Here’s why our dataset stands out:
Tailored for Small Business Engagement Focused specifically on North American small business owners, this dataset is an invaluable resource for building relationships with SMEs (Small and Medium Enterprises). Whether you’re targeting startups, local businesses, or established small enterprises, our dataset has you covered.
Comprehensive Coverage Across North America Spanning the United States, Canada, and Mexico, our dataset ensures wide-reaching access to verified small business contacts in the region.
Categories Tailored to Your Needs Includes highly relevant categories such as Small Business Contact Data, CEO Contact Data, B2B Contact Data, and Email Address Data to match your marketing and sales strategies.
Customizable and Flexible Choose from a wide range of filtering options to create datasets that meet your exact specifications, including filtering by industry, company size, geographic location, and more.
Best Price Guaranteed We pride ourselves on offering the most competitive rates without compromising on quality. When you partner with Success.ai, you receive superior data at the best value.
Seamless Integration Delivered in formats that integrate effortlessly with your CRM, marketing automation, or sales platforms, so you can start acting on the data immediately.
Use Cases: This dataset empowers you to:
Drive Sales Growth: Build and refine your sales pipeline by connecting directly with decision-makers in small businesses. Optimize Marketing Campaigns: Launch highly targeted email and phone outreach campaigns with verified contact data. Expand Your Network: Leverage the dataset to build relationships with small business owners and other key figures within the B2B landscape. Improve Data Accuracy: Enhance your existing databases with verified, enriched contact information, reducing bounce rates and increasing ROI. Industries Served: Whether you're in B2B SaaS, digital marketing, consulting, or any field requiring accurate and targeted contact data, this dataset serves industries of all kinds. It is especially useful for professionals focused on:
Lead Generation Business Development Market Research Sales Outreach Customer Acquisition What’s Included in the Dataset: Each profile provides:
Full Name Verified Email Address Phone Number (where available) Job Title Company Name Industry Company Size Location Skills and Professional Experience Education Background With over 170 million profiles, you can tap into a wealth of opportunities to expand your reach and grow your business.
Why High-Quality Contact Data Matters: Accurate, verified contact data is the foundation of any successful B2B strategy. Reaching small business owners and decision-makers directly ensures your message lands where it matters most, reducing costs and improving the effectiveness of your campaigns. By choosing Success.ai, you ensure that every contact in your pipeline is a genuine opportunity.
Partner with Success.ai for Better Data, Better Results: Success.ai is committed to delivering premium-quality B2B data solutions at scale. With our small business owner dataset, you can unlock the potential of North America's dynamic small business market.
Get Started Today Request a sample or customize your dataset to fit your unique...
Roads and highways are a prominent part of modern transportation systems. Roads impact the quality of our environment in both positive and negative ways. Roads represent proximity to human activity on the landscape, the farther away a place is from roads, the lower the likelihood that it is disturbed by human activity. Roads may act as a barrier to wildlife migration and are also vectors for the movement of invasive species. Roads also open up recreational opportunities to people and provide access for management and commerce.Dataset SummaryThis layer provides access to a 1 km resolution raster of road density calculated as kilometer of road per 1 km raster cell. The raster was created from the U.S. Census Bureau's 2014 TIGER database using data for roads, highways, bike trails, and foot paths. This layer covers the continental U.S., Alaska, Hawaii, Puerto Rico, the Northern Marianas Islands, Guam, American Samoa, and the U.S. Virgin Islands.Link to source metadataWhat can you do with this layer?The layer is restricted to an 24,000 x 24,000 pixel limit for these services, which represents an area roughly the size of North America. The source data for this layer is available here. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.
Locations of known and historic fish ponds on the island of Hawaii (Big Island). For some fish ponds, data includes their condition, ownership, and references used to map them.
This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 30 meter cell size. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data. The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria. The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).
This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
Timeseries data from 'Big Creek, California, USA (BIG001)' (saic_big001)
SLIDO-4.5 is an Esri ArcGIS version 10.7 file geodatabase which can be downloaded here: https://www.oregon.gov/dogami/slido/Pages/data.aspx The geodatabase contains two feature datasets (a group of datasets within the geodatabase) containing six feature classes total, as well as two raster data sets, one individual table, and two individual feature classes. The original studies vary widely in scale, scope and focus which is reflected in the wide range of accuracy, detail, and completeness with which landslides are mapped. In the future, we propose a continuous update of SLIDO. These updates should take place: 1) each time DOGAMI publishes a new GIS dataset that contains landslide inventory or susceptibility data or 2) at the end of each winter season, a common time for landslide occurrences in Oregon, which will include recent historic landslide point data. In order to keep track of the updates, we will use a primary release number such as Release 4.0 along with a decimal number identifying the update such as 4.5.
This metadata record describes moored seawater temperature data collected at Big Creek, California, USA, by PISCO. Measurements were collected using a StowAway Tidbit Temperature Logger (Onset Computer Corp. TBI32-05+37) beginning 2007-11-27. The instrument depth was 025 meters, in an overall water depth of 26 meters (both relative to Mean Sea Level, MSL). The sampling interval was 2.0 minutes.
Holocene climate reconstructions are useful for understanding the diverse features and spatial heterogeneity of past and future climate change. Here we present a database of western North American Holocene paleoclimate records. The database gathers paleoclimate time series from 184 terrestrial and marine sites, including 381 individual proxy records. The records span at least 4000 of the last 12 000 years (median duration of 10 725 years) and have been screened for resolution, chronologic control, and climate sensitivity. Records were included that reflect temperature, hydroclimate, or circulation features. The database is shared in the machine readable Linked Paleo Data (LiPD) format and includes geochronologic data for generating site-level time-uncertain ensembles. This publicly accessible and curated collection of proxy paleoclimate records will have wide research applications, including, for example, investigations of the primary features of ocean–atmospheric circulation along the eastern margin of the North Pacific and the latitudinal response of climate to orbital changes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
USHAP (USHighAirPollutants) is one of the series of long-term, full-coverage, high-resolution, and high-quality datasets of ground-level air pollutants for the United States. It is generated from the big data (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence by considering the spatiotemporal heterogeneity of air pollution. This is the big data-derived seamless (spatial coverage = 100%) daily, monthly, and yearly 1 km (i.e., D1K, M1K, and Y1K) ground-level Black Carbon (BC) dataset in the United States from 2000 to 2020. Our daily BC estimates agree well with ground measurements with an average cross-validation coefficient of determination (CV-R2) of 0.80 and normalized root-mean-square error (NRMSE) of 0.60, respectively. All the data will be made public online once our paper is accepted, and if you want to use the USHighBC dataset for related scientific research, please contact us (Email: weijing_rs@163.com; weijing@umd.edu).
Wei, J., Wang, J., Li, Z., Kondragunta, S., Anenberg, S., Wang, Y., Zhang, H., Diner, D., Hand, J., Lyapustin, A., Kahn, R., Colarco, P., da Silva, A., and Ichoku, C. Long-term mortality burden trends attributed to black carbon and PM2.5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study. The Lancet Planetary Health, 2023, 7, e963–e975. https://doi.org/10.1016/S2542-5196(23)00235-8 More air quality datasets of different air pollutants can be found at: https://weijing-rs.github.io/product.html
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.
National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.
The specific raster datasets in this publication include:
Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.
Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.
Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.
Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.
Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.
Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.
Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.
Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.The geospatial data products described and distributed here are part of the Wildfire Risk to Communities project. This project was directed by Congress in the 2018 Consolidated Appropriations Act (i.e., 2018 Omnibus Act, H.R. 1625, Section 210: Wildfire Hazard Severity Mapping) to help U.S. communities understand components of their relative wildfire risk profile, the nature and effects of wildfire risk, and actions communities can take to mitigate risk. The first edition of these data represented the first time wildfire risk to communities had been mapped nationally with consistent methodology. They provided foundational information for comparing the relative wildfire risk among populated communities in the United States. In this version, the 2nd edition, we use improved modeling and mapping methodology and updated input data to generate the current suite of products.See the Wildfire Risk to Communities website at https://www.wildfirerisk.org for complete project information and an interactive web application for exploring some of the datasets published here. We deliver the data here as zip files by U.S. state (including AK and HI), and for the full extent of the continental U.S.
This data publication is a second edition and represents an update to any previous versions of Wildfire Risk to Communities risk datasets published by the USDA Forest Service. There are two companion data publications that are part of the WRC 2.0 data update: one that includes datasets of wildfire hazard and risk for populated areas of the nation, where housing units are currently present (Jaffe et al. 2024, https://doi.org/10.2737/RDS-2020-0060-2), and one that delineates wildfire risk reduction zones and provides tabular summaries of wildfire hazard and risk raster datasets (Dillon et al. 2024, https://doi.org/10.2737/RDS-2024-0030).
Software Model simulations were conducted using WRF version 3.8.1 (available at https://github.com/NCAR/WRFV3) and CMAQ version 5.2.1 (available at https://github.com/USEPA/CMAQ). The meteorological and concentration fields created using these models are too large to archive on ScienceHub, approximately 1 TB, and are archived on EPA’s high performance computing archival system (ASM) at /asm/MOD3APP/pcc/02.NOAH.v.CLM.v.PX/. Figures Figures 1 – 6 and Figure 8: Created using the NCAR Command Language (NCL) scripts (https://www.ncl.ucar.edu/get_started.shtml). NCLD code can be downloaded from the NCAR website (https://www.ncl.ucar.edu/Download/) at no cost. The data used for these figures are archived on EPA’s ASM system and are available upon request. Figures 7, 8b-c, 8e-f, 8h-i, and 9 were created using the AMET utility developed by U.S. EPA/ORD. AMET can be freely downloaded and used at https://github.com/USEPA/AMET. The modeled data paired in space and time provided in this archive can be used to recreate these figures. The data contained in the compressed zip files are organized in comma delimited files with descriptive headers or space delimited files that match tabular data in the manuscript. The data dictionary provides additional information about the files and their contents. This dataset is associated with the following publication: Campbell, P., J. Bash, and T. Spero. Updates to the Noah Land Surface Model in WRF‐CMAQ to Improve Simulated Meteorology, Air Quality, and Deposition. Journal of Advances in Modeling Earth Systems. John Wiley & Sons, Inc., Hoboken, NJ, USA, 11(1): 231-256, (2019).
This metadata record describes moored seawater temperature data collected at Big Creek, California, USA, by PISCO. Measurements were collected using a StowAway Tidbit Temperature Logger (Onset Computer Corp. TBI32-05+37) beginning 2007-07-20. The instrument depth was 015 meters, in an overall water depth of 26 meters (both relative to Mean Sea Level, MSL). The sampling interval was 2.0 minutes.
https://www.spotzi.com/en/about/terms-of-service/https://www.spotzi.com/en/about/terms-of-service/
Our Demographics package in the USA offers data pertaining to the households of residents of the United States of America at Census Block Level. Each data variable is available as a sum, or as a percentage of the total population within each selected area.
At the Census Block level, this dataset includes some of the following key features:
This demographic data is typically available at the census block level. These blocks are smaller, more detailed units designed for statistical purposes, enabling a more precise analysis of population, housing, and demographic data. Census blocks may vary in size and shape but are generally more localized compared to ZIP codes.
Still looking for demographic data at the postal code level? Contact sales.
There are numerous other census data datasets available for the United States, covering a wide range of demographics. These include information on:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset Webometrics with the analysis of the websites of Latin American universities
Our dataset provides detailed and precise insights into the business, commercial, and industrial aspects of any given area in the USA (Including Point of Interest (POI) Data and Foot Traffic. The dataset is divided into 150x150 sqm areas (geohash 7) and has over 50 variables. - Use it for different applications: Our combined dataset, which includes POI and foot traffic data, can be employed for various purposes. Different data teams use it to guide retailers and FMCG brands in site selection, fuel marketing intelligence, analyze trade areas, and assess company risk. Our dataset has also proven to be useful for real estate investment.- Get reliable data: Our datasets have been processed, enriched, and tested so your data team can use them more quickly and accurately.- Ideal for trainning ML models. The high quality of our geographic information layers results from more than seven years of work dedicated to the deep understanding and modeling of geospatial Big Data. Among the features that distinguished this dataset is the use of anonymized and user-compliant mobile device GPS location, enriched with other alternative and public data.- Easy to use: Our dataset is user-friendly and can be easily integrated to your current models. Also, we can deliver your data in different formats, like .csv, according to your analysis requirements. - Get personalized guidance: In addition to providing reliable datasets, we advise your analysts on their correct implementation.Our data scientists can guide your internal team on the optimal algorithms and models to get the most out of the information we provide (without compromising the security of your internal data).Answer questions like: - What places does my target user visit in a particular area? Which are the best areas to place a new POS?- What is the average yearly income of users in a particular area?- What is the influx of visits that my competition receives?- What is the volume of traffic surrounding my current POS?This dataset is useful for getting insights from industries like:- Retail & FMCG- Banking, Finance, and Investment- Car Dealerships- Real Estate- Convenience Stores- Pharma and medical laboratories- Restaurant chains and franchises- Clothing chains and franchisesOur dataset includes more than 50 variables, such as:- Number of pedestrians seen in the area.- Number of vehicles seen in the area.- Average speed of movement of the vehicles seen in the area.- Point of Interest (POIs) (in number and type) seen in the area (supermarkets, pharmacies, recreational locations, restaurants, offices, hotels, parking lots, wholesalers, financial services, pet services, shopping malls, among others). - Average yearly income range (anonymized and aggregated) of the devices seen in the area.Notes to better understand this dataset:- POI confidence means the average confidence of POIs in the area. In this case, POIs are any kind of location, such as a restaurant, a hotel, or a library. - Category confidences, for example"food_drinks_tobacco_retail_confidence" indicates how confident we are in the existence of food/drink/tobacco retail locations in the area. - We added predictions for The Home Depot and Lowe's Home Improvement stores in the dataset sample. These predictions were the result of a machine-learning model that was trained with the data. Knowing where the current stores are, we can find the most similar areas for new stores to open.How efficient is a Geohash?Geohash is a faster, cost-effective geofencing option that reduces input data load and provides actionable information. Its benefits include faster querying, reduced cost, minimal configuration, and ease of use.Geohash ranges from 1 to 12 characters. The dataset can be split into variable-size geohashes, with the default being geohash7 (150m x 150m).