100+ datasets found
  1. student data analysis

    • kaggle.com
    Updated Nov 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    maira javeed (2023). student data analysis [Dataset]. https://www.kaggle.com/datasets/mairajaveed/student-data-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 17, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    maira javeed
    Description

    In this project, we aim to analyze and gain insights into the performance of students based on various factors that influence their academic achievements. We have collected data related to students' demographic information, family background, and their exam scores in different subjects.

    **********Key Objectives:*********

    1. Performance Evaluation: Evaluate and understand the academic performance of students by analyzing their scores in various subjects.

    2. Identifying Underlying Factors: Investigate factors that might contribute to variations in student performance, such as parental education, family size, and student attendance.

    3. Visualizing Insights: Create data visualizations to present the findings effectively and intuitively.

    Dataset Details:

    • The dataset used in this analysis contains information about students, including their age, gender, parental education, lunch type, and test scores in subjects like mathematics, reading, and writing.

    Analysis Highlights:

    • We will perform a comprehensive analysis of the dataset, including data cleaning, exploration, and visualization to gain insights into various aspects of student performance.

    • By employing statistical methods and machine learning techniques, we will determine the significant factors that affect student performance.

    Why This Matters:

    Understanding the factors that influence student performance is crucial for educators, policymakers, and parents. This analysis can help in making informed decisions to improve educational outcomes and provide support where it is most needed.

    Acknowledgments:

    We would like to express our gratitude to [mention any data sources or collaborators] for making this dataset available.

    Please Note:

    This project is meant for educational and analytical purposes. The dataset used is fictitious and does not represent any specific educational institution or individuals.

  2. D

    Data Analytics Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Dec 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2024). Data Analytics Market Report [Dataset]. https://www.marketresearchforecast.com/reports/data-analytics-market-1787
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Dec 31, 2024
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Analytics Market size was valued at USD 41.05 USD billion in 2023 and is projected to reach USD 222.39 USD billion by 2032, exhibiting a CAGR of 27.3 % during the forecast period. Data Analytics can be defined as the rigorous process of using tools and techniques within a computational framework to analyze various forms of data for the purpose of decision-making by the concerned organization. This is used in almost all fields such as health, money matters, product promotion, and transportation in order to manage businesses, foresee upcoming events, and improve customers’ satisfaction. Some of the principal forms of data analytics include descriptive, diagnostic, prognostic, as well as prescriptive analytics. Data gathering, data manipulation, analysis, and data representation are the major subtopics under this area. There are a lot of advantages of data analytics, and some of the most prominent include better decision making, productivity, and saving costs, as well as the identification of relationships and trends that people could be unaware of. The recent trends identified in the market include the use of AI and ML technologies and their applications, the use of big data, increased focus on real-time data processing, and concerns for data privacy. These developments are shaping and propelling the advancement and proliferation of data analysis functions and uses. Key drivers for this market are: Rising Demand for Edge Computing Likely to Boost Market Growth. Potential restraints include: Data Security Concerns to Impede the Market Progress . Notable trends are: Metadata-Driven Data Fabric Solutions to Expand Market Growth.

  3. Z

    Assessing the impact of hints in learning formal specification: Research...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Margolis, Iara (2024). Assessing the impact of hints in learning formal specification: Research artifact [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10450608
    Explore at:
    Dataset updated
    Jan 29, 2024
    Dataset provided by
    Cunha, Alcino
    Campos, José Creissac
    Margolis, Iara
    Macedo, Nuno
    Sousa, Emanuel
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This artifact accompanies the SEET@ICSE article "Assessing the impact of hints in learning formal specification", which reports on a user study to investigate the impact of different types of automated hints while learning a formal specification language, both in terms of immediate performance and learning retention, but also in the emotional response of the students. This research artifact provides all the material required to replicate this study (except for the proprietary questionnaires passed to assess the emotional response and user experience), as well as the collected data and data analysis scripts used for the discussion in the paper.

    Dataset

    The artifact contains the resources described below.

    Experiment resources

    The resources needed for replicating the experiment, namely in directory experiment:

    alloy_sheet_pt.pdf: the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment. The sheet was passed in Portuguese due to the population of the experiment.

    alloy_sheet_en.pdf: a version the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment translated into English.

    docker-compose.yml: a Docker Compose configuration file to launch Alloy4Fun populated with the tasks in directory data/experiment for the 2 sessions of the experiment.

    api and meteor: directories with source files for building and launching the Alloy4Fun platform for the study.

    Experiment data

    The task database used in our application of the experiment, namely in directory data/experiment:

    Model.json, Instance.json, and Link.json: JSON files with to populate Alloy4Fun with the tasks for the 2 sessions of the experiment.

    identifiers.txt: the list of all (104) available participant identifiers that can participate in the experiment.

    Collected data

    Data collected in the application of the experiment as a simple one-factor randomised experiment in 2 sessions involving 85 undergraduate students majoring in CSE. The experiment was validated by the Ethics Committee for Research in Social and Human Sciences of the Ethics Council of the University of Minho, where the experiment took place. Data is shared the shape of JSON and CSV files with a header row, namely in directory data/results:

    data_sessions.json: data collected from task-solving in the 2 sessions of the experiment, used to calculate variables productivity (PROD1 and PROD2, between 0 and 12 solved tasks) and efficiency (EFF1 and EFF2, between 0 and 1).

    data_socio.csv: data collected from socio-demographic questionnaire in the 1st session of the experiment, namely:

    participant identification: participant's unique identifier (ID);

    socio-demographic information: participant's age (AGE), sex (SEX, 1 through 4 for female, male, prefer not to disclosure, and other, respectively), and average academic grade (GRADE, from 0 to 20, NA denotes preference to not disclosure).

    data_emo.csv: detailed data collected from the emotional questionnaire in the 2 sessions of the experiment, namely:

    participant identification: participant's unique identifier (ID) and the assigned treatment (column HINT, either N, L, E or D);

    detailed emotional response data: the differential in the 5-point Likert scale for each of the 14 measured emotions in the 2 sessions, ranging from -5 to -1 if decreased, 0 if maintained, from 1 to 5 if increased, or NA denoting failure to submit the questionnaire. Half of the emotions are positive (Admiration1 and Admiration2, Desire1 and Desire2, Hope1 and Hope2, Fascination1 and Fascination2, Joy1 and Joy2, Satisfaction1 and Satisfaction2, and Pride1 and Pride2), and half are negative (Anger1 and Anger2, Boredom1 and Boredom2, Contempt1 and Contempt2, Disgust1 and Disgust2, Fear1 and Fear2, Sadness1 and Sadness2, and Shame1 and Shame2). This detailed data was used to compute the aggregate data in data_emo_aggregate.csv and in the detailed discussion in Section 6 of the paper.

    data_umux.csv: data collected from the user experience questionnaires in the 2 sessions of the experiment, namely:

    participant identification: participant's unique identifier (ID);

    user experience data: summarised user experience data from the UMUX surveys (UMUX1 and UMUX2, as a usability metric ranging from 0 to 100).

    participants.txt: the list of participant identifiers that have registered for the experiment.

    Analysis scripts

    The analysis scripts required to replicate the analysis of the results of the experiment as reported in the paper, namely in directory analysis:

    analysis.r: An R script to analyse the data in the provided CSV files; each performed analysis is documented within the file itself.

    requirements.r: An R script to install the required libraries for the analysis script.

    normalize_task.r: A Python script to normalize the task JSON data from file data_sessions.json into the CSV format required by the analysis script.

    normalize_emo.r: A Python script to compute the aggregate emotional response in the CSV format required by the analysis script from the detailed emotional response data in the CSV format of data_emo.csv.

    Dockerfile: Docker script to automate the analysis script from the collected data.

    Setup

    To replicate the experiment and the analysis of the results, only Docker is required.

    If you wish to manually replicate the experiment and collect your own data, you'll need to install:

    A modified version of the Alloy4Fun platform, which is built in the Meteor web framework. This version of Alloy4Fun is publicly available in branch study of its repository at https://github.com/haslab/Alloy4Fun/tree/study.

    If you wish to manually replicate the analysis of the data collected in our experiment, you'll need to install:

    Python to manipulate the JSON data collected in the experiment. Python is freely available for download at https://www.python.org/downloads/, with distributions for most platforms.

    R software for the analysis scripts. R is freely available for download at https://cran.r-project.org/mirrors.html, with binary distributions available for Windows, Linux and Mac.

    Usage

    Experiment replication

    This section describes how to replicate our user study experiment, and collect data about how different hints impact the performance of participants.

    To launch the Alloy4Fun platform populated with tasks for each session, just run the following commands from the root directory of the artifact. The Meteor server may take a few minutes to launch, wait for the "Started your app" message to show.

    cd experimentdocker-compose up

    This will launch Alloy4Fun at http://localhost:3000. The tasks are accessed through permalinks assigned to each participant. The experiment allows for up to 104 participants, and the list of available identifiers is given in file identifiers.txt. The group of each participant is determined by the last character of the identifier, either N, L, E or D. The task database can be consulted in directory data/experiment, in Alloy4Fun JSON files.

    In the 1st session, each participant was given one permalink that gives access to 12 sequential tasks. The permalink is simply the participant's identifier, so participant 0CAN would just access http://localhost:3000/0CAN. The next task is available after a correct submission to the current task or when a time-out occurs (5mins). Each participant was assigned to a different treatment group, so depending on the permalink different kinds of hints are provided. Below are 4 permalinks, each for each hint group:

    Group N (no hints): http://localhost:3000/0CAN

    Group L (error locations): http://localhost:3000/CA0L

    Group E (counter-example): http://localhost:3000/350E

    Group D (error description): http://localhost:3000/27AD

    In the 2nd session, likewise the 1st session, each permalink gave access to 12 sequential tasks, and the next task is available after a correct submission or a time-out (5mins). The permalink is constructed by prepending the participant's identifier with P-. So participant 0CAN would just access http://localhost:3000/P-0CAN. In the 2nd sessions all participants were expected to solve the tasks without any hints provided, so the permalinks from different groups are undifferentiated.

    Before the 1st session the participants should answer the socio-demographic questionnaire, that should ask the following information: unique identifier, age, sex, familiarity with the Alloy language, and average academic grade.

    Before and after both sessions the participants should answer the standard PrEmo 2 questionnaire. PrEmo 2 is published under an Attribution-NonCommercial-NoDerivatives 4.0 International Creative Commons licence (CC BY-NC-ND 4.0). This means that you are free to use the tool for non-commercial purposes as long as you give appropriate credit, provide a link to the license, and do not modify the original material. The original material, namely the depictions of the diferent emotions, can be downloaded from https://diopd.org/premo/. The questionnaire should ask for the unique user identifier, and for the attachment with each of the depicted 14 emotions, expressed in a 5-point Likert scale.

    After both sessions the participants should also answer the standard UMUX questionnaire. This questionnaire can be used freely, and should ask for the user unique identifier and answers for the standard 4 questions in a 7-point Likert scale. For information about the questions, how to implement the questionnaire, and how to compute the usability metric ranging from 0 to 100 score from the answers, please see the original paper:

    Kraig Finstad. 2010. The usability metric for user experience. Interacting with computers 22, 5 (2010), 323–327.

    Analysis of other applications of the experiment

    This section describes how to replicate the analysis of the data collected in an application of the experiment described in Experiment replication.

    The analysis script expects data in 4 CSV files,

  4. How to Prepare and Analyze Pair Data in the National Survey on Drug Use and...

    • healthdata.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jul 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). How to Prepare and Analyze Pair Data in the National Survey on Drug Use and Health [Dataset]. https://healthdata.gov/d/7hek-fn5f
    Explore at:
    csv, xml, application/rdfxml, application/rssxml, json, tsvAvailable download formats
    Dataset updated
    Jul 13, 2025
    Description

    This manual provides guidance on how to create a pair analysis file and on the appropriate weights and design variables needed to analyze pair data, and it provides example code in multiple software packages.

  5. d

    Data release for solar-sensor angle analysis subset associated with the...

    • catalog.data.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Data release for solar-sensor angle analysis subset associated with the journal article "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States" [Dataset]. https://catalog.data.gov/dataset/data-release-for-solar-sensor-angle-analysis-subset-associated-with-the-journal-article-so
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States, Western United States
    Description

    This dataset provides geospatial location data and scripts used to analyze the relationship between MODIS-derived NDVI and solar and sensor angles in a pinyon-juniper ecosystem in Grand Canyon National Park. The data are provided in support of the following publication: "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States". The data and scripts allow users to replicate, test, or further explore results. The file GrcaScpnModisCellCenters.csv contains locations (latitude-longitude) of all the 250-m MODIS (MOD09GQ) cell centers associated with the Grand Canyon pinyon-juniper ecosystem that the Southern Colorado Plateau Network (SCPN) is monitoring through its land surface phenology and integrated upland monitoring programs. The file SolarSensorAngles.csv contains MODIS angle measurements for the pixel at the phenocam location plus a random 100 point subset of pixels within the GRCA-PJ ecosystem. The script files (folder: 'Code') consist of 1) a Google Earth Engine (GEE) script used to download MODIS data through the GEE javascript interface, and 2) a script used to calculate derived variables and to test relationships between solar and sensor angles and NDVI using the statistical software package 'R'. The file Fig_8_NdviSolarSensor.JPG shows NDVI dependence on solar and sensor geometry demonstrated for both a single pixel/year and for multiple pixels over time. (Left) MODIS NDVI versus solar-to-sensor angle for the Grand Canyon phenocam location in 2018, the year for which there is corresponding phenocam data. (Right) Modeled r-squared values by year for 100 randomly selected MODIS pixels in the SCPN-monitored Grand Canyon pinyon-juniper ecosystem. The model for forward-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle. The model for back-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle + sensor zenith angle. Boxplots show interquartile ranges; whiskers extend to 10th and 90th percentiles. The horizontal line marking the average median value for forward-scatter r-squared (0.835) is nearly indistinguishable from the back-scatter line (0.833). The dataset folder also includes supplemental R-project and packrat files that allow the user to apply the workflow by opening a project that will use the same package versions used in this study (eg, .folders Rproj.user, and packrat, and files .RData, and PhenocamPR.Rproj). The empty folder GEE_DataAngles is included so that the user can save the data files from the Google Earth Engine scripts to this location, where they can then be incorporated into the r-processing scripts without needing to change folder names. To successfully use the packrat information to replicate the exact processing steps that were used, the user should refer to packrat documentation available at https://cran.r-project.org/web/packages/packrat/index.html and at https://www.rdocumentation.org/packages/packrat/versions/0.5.0. Alternatively, the user may also use the descriptive documentation phenopix package documentation, and description/references provided in the associated journal article to process the data to achieve the same results using newer packages or other software programs.

  6. D

    Data Analytics In Financial Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Data Analytics In Financial Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-analytics-in-financial-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Analytics in Financial Market Outlook



    The global data analytics in financial market size was valued at approximately USD 10.5 billion in 2023 and is projected to reach around USD 34.8 billion by 2032, growing at a robust CAGR of 14.4% during the forecast period. This remarkable growth is driven by the increasing adoption of advanced analytics technologies, the need for real-time data-driven decision-making, and the rising incidence of financial fraud.



    One of the primary growth factors for the data analytics in the financial market is the burgeoning volume of data generated from diverse sources such as transactions, social media, and online banking. Financial institutions are increasingly leveraging data analytics to process and analyze this vast amount of data to gain actionable insights. Additionally, technological advancements in artificial intelligence (AI) and machine learning (ML) are significantly enhancing the capabilities of data analytics tools, enabling more accurate predictions and efficient risk management.



    Another driving factor is the heightened focus on regulatory compliance and security management. In the wake of stringent regulations imposed by financial authorities globally, organizations are compelled to adopt robust analytics solutions to ensure compliance and mitigate risks. Moreover, with the growing threat of cyber-attacks and financial fraud, there is a heightened demand for sophisticated analytics tools capable of detecting and preventing fraudulent activities in real-time.



    Furthermore, the increasing emphasis on customer-centric strategies in the financial sector is fueling the adoption of data analytics. Financial institutions are utilizing analytics to understand customer behavior, preferences, and needs more accurately. This enables them to offer personalized services, improve customer satisfaction, and drive revenue growth. The integration of advanced analytics in customer management processes helps in enhancing customer engagement and loyalty, which is crucial in the competitive financial landscape.



    Regionally, North America has been the dominant player in the data analytics in financial market, owing to the presence of major market players, technological advancements, and a high adoption rate of analytics solutions. However, the Asia Pacific region is anticipated to witness the highest growth during the forecast period, driven by the rapid digitalization of financial services, increasing investments in analytics technologies, and the growing focus on enhancing customer experience in emerging economies like China and India.



    Component Analysis



    In the data analytics in financial market, the components segment is divided into software and services. The software segment encompasses various analytics tools and platforms designed to process and analyze financial data. This segment holds a significant share in the market owing to the continuous advancements in software capabilities and the growing need for real-time analytics. Financial institutions are increasingly investing in sophisticated software solutions to enhance their data processing and analytical capabilities. The software segment is also being propelled by the integration of AI and ML technologies, which offer enhanced predictive analytics and automation features.



    On the other hand, the services segment includes consulting, implementation, and maintenance services provided by vendors to help financial institutions effectively deploy and manage analytics solutions. With the rising complexity of financial data and analytics tools, the demand for professional services is on the rise. Organizations are seeking expert guidance to seamlessly integrate analytics solutions into their existing systems and optimize their use. The services segment is expected to grow significantly as more institutions recognize the value of professional support in maximizing the benefits of their analytics investments.



    The software segment is further categorized into various types of analytics tools such as descriptive analytics, predictive analytics, and prescriptive analytics. Descriptive analytics tools are used to summarize historical data to identify patterns and trends. Predictive analytics tools leverage historical data to forecast future outcomes, which is crucial for risk management and fraud detection. Prescriptive analytics tools provide actionable recommendations based on predictive analysis, aiding in decision-making processes. The growing need for advanced predictive and prescriptive analytics is driving the demand for specialized software solut

  7. d

    Health and Retirement Study (HRS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Health and Retirement Study (HRS) [Dataset]. http://doi.org/10.7910/DVN/ELEKOY
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D

  8. 4

    Data from: MECAnalysisTool: A method to analyze consumer data

    • data.4tu.nl
    • figshare.com
    txt
    Updated Jul 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kirstin Foolen-Torgerson; Fleur Kilwinger (2022). MECAnalysisTool: A method to analyze consumer data [Dataset]. http://doi.org/10.4121/19786900.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 6, 2022
    Dataset provided by
    4TU.ResearchData
    Authors
    Kirstin Foolen-Torgerson; Fleur Kilwinger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This Excel based tool was developed to analyze means-end chain data. The tool consists of a user manual, a data input file to correctly organise your MEC data, a calculator file to analyse your data, and instructional videos. The purpose of this tool is to aggregate laddering data into hierarchical value maps showing means-end chains. The summarized results consist of (1) a summary overview, (2) a matrix, and (3) output for copy/pasting into NodeXL to generate hierarchal value maps (HVMs). To use this tool, you must have collected data via laddering interviews. Ladders are codes linked together consisting of attributes, consequences and values (ACVs).

  9. Google Capstone Project - BellaBeats

    • kaggle.com
    Updated Jan 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jason Porzelius (2023). Google Capstone Project - BellaBeats [Dataset]. https://www.kaggle.com/datasets/jasonporzelius/google-capstone-project-bellabeats
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 5, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Jason Porzelius
    Description

    Introduction: I have chosen to complete a data analysis project for the second course option, Bellabeats, Inc., using a locally hosted database program, Excel for both my data analysis and visualizations. This choice was made primarily because I live in a remote area and have limited bandwidth and inconsistent internet access. Therefore, completing a capstone project using web-based programs such as R Studio, SQL Workbench, or Google Sheets was not a feasible choice. I was further limited in which option to choose as the datasets for the ride-share project option were larger than my version of Excel would accept. In the scenario provided, I will be acting as a Junior Data Analyst in support of the Bellabeats, Inc. executive team and data analytics team. This combined team has decided to use an existing public dataset in hopes that the findings from that dataset might reveal insights which will assist in Bellabeat's marketing strategies for future growth. My task is to provide data driven insights to business tasks provided by the Bellabeats, Inc.'s executive and data analysis team. In order to accomplish this task, I will complete all parts of the Data Analysis Process (Ask, Prepare, Process, Analyze, Share, Act). In addition, I will break each part of the Data Analysis Process down into three sections to provide clarity and accountability. Those three sections are: Guiding Questions, Key Tasks, and Deliverables. For the sake of space and to avoid repetition, I will record the deliverables for each Key Task directly under the numbered Key Task using an asterisk (*) as an identifier.

    Section 1 - Ask: A. Guiding Questions: Who are the key stakeholders and what are their goals for the data analysis project? What is the business task that this data analysis project is attempting to solve?

    B. Key Tasks: Identify key stakeholders and their goals for the data analysis project *The key stakeholders for this project are as follows: -Urška Sršen and Sando Mur - co-founders of Bellabeats, Inc. -Bellabeats marketing analytics team. I am a member of this team. Identify the business task. *The business task is: -As provided by co-founder Urška Sršen, the business task for this project is to gain insight into how consumers are using their non-BellaBeats smart devices in order to guide upcoming marketing strategies for the company which will help drive future growth. Specifically, the researcher was tasked with applying insights driven by the data analysis process to 1 BellaBeats product and presenting those insights to BellaBeats stakeholders.

    Section 2 - Prepare: A. Guiding Questions: Where is the data stored and organized? Are there any problems with the data? How does the data help answer the business question?

    B. Key Tasks: Research and communicate the source of the data, and how it is stored/organized to stakeholders. *The data source used for our case study is FitBit Fitness Tracker Data. This dataset is stored in Kaggle and was made available through user Mobius in an open-source format. Therefore, the data is public and available to be copied, modified, and distributed, all without asking the user for permission. These datasets were generated by respondents to a distributed survey via Amazon Mechanical Turk reportedly (see credibility section directly below) between 03/12/2016 thru 05/12/2016. *Reportedly (see credibility section directly below), thirty eligible Fitbit users consented to the submission of personal tracker data, including output related to steps taken, calories burned, time spent sleeping, heart rate, and distance traveled. This data was broken down into minute, hour, and day level totals. This data is stored in 18 CSV documents. I downloaded all 18 documents into my local laptop and decided to use 2 documents for the purposes of this project as they were files which had merged activity and sleep data from the other documents. All unused documents were permanently deleted from the laptop. The 2 files used were: -sleepDaymerged.csv -dailyActivitymerged.csv Identify and communicate to stakeholders any problems found with the data related to credibility and bias. *As will be more specifically presented in the Process section, the data seems to have credibility issues related to the reported time frame of the data collected. The metadata seems to indicate that the data collected covered roughly 2 months of FitBit tracking. However, upon my initial data processing, I found that only 1 month of data was reported. *As will be more specifically presented in the Process section, the data has credibility issues related to the number of individuals who reported FitBit data. Specifically, the metadata communicates that 30 individual users agreed to report their tracking data. My initial data processing uncovered 33 individual IDs in the dailyActivity_merged dataset. *Due to the small number of participants (...

  10. D

    Big Data Analysis Platform Market Report | Global Forecast From 2025 To 2033...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Big Data Analysis Platform Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-big-data-analysis-platform-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Big Data Analysis Platform Market Outlook



    The global market size for Big Data Analysis Platforms is projected to grow from USD 35.5 billion in 2023 to an impressive USD 110.7 billion by 2032, reflecting a CAGR of 13.5%. This substantial growth can be attributed to the increasing adoption of data-driven decision-making processes across various industries, the rapid proliferation of IoT devices, and the ever-growing volumes of data generated globally.



    One of the primary growth factors for the Big Data Analysis Platform market is the escalating need for businesses to derive actionable insights from complex and voluminous datasets. With the advent of technologies such as artificial intelligence and machine learning, organizations are increasingly leveraging big data analytics to enhance their operational efficiency, customer experience, and competitiveness. The ability to process vast amounts of data quickly and accurately is proving to be a game-changer, enabling businesses to make more informed decisions, predict market trends, and optimize their supply chains.



    Another significant driver is the rise of digital transformation initiatives across various sectors. Companies are increasingly adopting digital technologies to improve their business processes and meet changing customer expectations. Big Data Analysis Platforms are central to these initiatives, providing the necessary tools to analyze and interpret data from diverse sources, including social media, customer transactions, and sensor data. This trend is particularly pronounced in sectors such as retail, healthcare, and BFSI (banking, financial services, and insurance), where data analytics is crucial for personalizing customer experiences, managing risks, and improving operational efficiencies.



    Moreover, the growing adoption of cloud computing is significantly influencing the market. Cloud-based Big Data Analysis Platforms offer several advantages over traditional on-premises solutions, including scalability, flexibility, and cost-effectiveness. Businesses of all sizes are increasingly turning to cloud-based analytics solutions to handle their data processing needs. The ability to scale up or down based on demand, coupled with reduced infrastructure costs, makes cloud-based solutions particularly appealing to small and medium-sized enterprises (SMEs) that may not have the resources to invest in extensive on-premises infrastructure.



    Data Science and Machine-Learning Platforms play a pivotal role in the evolution of Big Data Analysis Platforms. These platforms provide the necessary tools and frameworks for processing and analyzing vast datasets, enabling organizations to uncover hidden patterns and insights. By integrating data science techniques with machine learning algorithms, businesses can automate the analysis process, leading to more accurate predictions and efficient decision-making. This integration is particularly beneficial in sectors such as finance and healthcare, where the ability to quickly analyze complex data can lead to significant competitive advantages. As the demand for data-driven insights continues to grow, the role of data science and machine-learning platforms in enhancing big data analytics capabilities is becoming increasingly critical.



    From a regional perspective, North America currently holds the largest market share, driven by the presence of major technology companies, high adoption rates of advanced technologies, and substantial investments in data analytics infrastructure. Europe and the Asia Pacific regions are also experiencing significant growth, fueled by increasing digitalization efforts and the rising importance of data analytics in business strategy. The Asia Pacific region, in particular, is expected to witness the highest CAGR during the forecast period, propelled by rapid economic growth, a burgeoning middle class, and increasing internet and smartphone penetration.



    Component Analysis



    The Big Data Analysis Platform market can be broadly categorized into three components: Software, Hardware, and Services. The software segment includes analytics software, data management software, and visualization tools, which are crucial for analyzing and interpreting large datasets. This segment is expected to dominate the market due to the continuous advancements in analytics software and the increasing need for sophisticated data analysis tools. Analytics software enables organizations to process and analyze data from multiple sources,

  11. g

    SAS code used to analyze data and a datafile with metadata glossary |...

    • gimi9.com
    Updated Dec 28, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). SAS code used to analyze data and a datafile with metadata glossary | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_sas-code-used-to-analyze-data-and-a-datafile-with-metadata-glossary
    Explore at:
    Dataset updated
    Dec 28, 2016
    Description

    We compiled macroinvertebrate assemblage data collected from 1995 to 2014 from the St. Louis River Area of Concern (AOC) of western Lake Superior. Our objective was to define depth-adjusted cutoff values for benthos condition classes (poor, fair, reference) to provide tool useful for assessing progress toward achieving removal targets for the degraded benthos beneficial use impairment in the AOC. The relationship between depth and benthos metrics was wedge-shaped. We therefore used quantile regression to model the limiting effect of depth on selected benthos metrics, including taxa richness, percent non-oligochaete individuals, combined percent Ephemeroptera, Trichoptera, and Odonata individuals, and density of ephemerid mayfly nymphs (Hexagenia). We created a scaled trimetric index from the first three metrics. Metric values at or above the 90th percentile quantile regression model prediction were defined as reference condition for that depth. We set the cutoff between poor and fair condition as the 50th percentile model prediction. We examined sampler type, exposure, geographic zone of the AOC, and substrate type for confounding effects. Based on these analyses we combined data across sampler type and exposure classes and created separate models for each geographic zone. We used the resulting condition class cutoff values to assess the relative benthic condition for three habitat restoration project areas. The depth-limited pattern of ephemerid abundance we observed in the St. Louis River AOC also occurred elsewhere in the Great Lakes. We provide tabulated model predictions for application of our depth-adjusted condition class cutoff values to new sample data. This dataset is associated with the following publication: Angradi, T., W. Bartsch, A. Trebitz, V. Brady, and J. Launspach. A depth-adjusted ambient distribution approach for setting numeric removal targets for a Great Lakes Area of Concern beneficial use impairment: Degraded benthos. JOURNAL OF GREAT LAKES RESEARCH. International Association for Great Lakes Research, Ann Arbor, MI, USA, 43(1): 108-120, (2017).

  12. d

    Data for regional analysis of the dependence of peak-flow quantiles on...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Data for regional analysis of the dependence of peak-flow quantiles on climate with application to adjustment to climate trends [Dataset]. https://catalog.data.gov/dataset/data-for-regional-analysis-of-the-dependence-of-peak-flow-quantiles-on-climate-with-applic
    Explore at:
    Dataset updated
    Aug 23, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This data release contains data in support of "Regional Analysis of the Dependence of Peak-Flow Quantiles on Climate with Application to Adjustment to Climate Trends" (Over and others, 2025). It contains input and output data used to analyze the effect of climate changes on trends in floods using three regression approaches. The input consists of two files. The first, "station_list.csv," contains streamgage information for the 404 streamgages considered for use in Over and others (2025). Only 330 of the 404 streamgages were considered non-redundant and used in the final analysis; these streamgages have a value of "Non-redundant" in the "redundancy_status" column. This file includes calibrated Monthly Water Balance Model (MWBM) parameters and basin characteristics. The second, "regression_input.csv," contains regression input data, including observed peak streamflow and precipitation. MWBM-simulated streamflow data was created using two sets of MWBM parameters: at-site calibrated parameters and median calibrated parameters. At-site calibrated parameters varied by station and represent the best-performing set of parameters per station. These parameters can be found in "station_list.csv". The median calibrated parameters were obtained by taking the median of all at-site calibrated parameters for the 330 streamgage basins used in analysis. See the Entity and Attribute section for details. The output files consist of nine Comma Separated Value (CSV) files. "Kendall_cor.csv" contains Mann-Kendall trend analysis results by streamgage. The regression results for annual maximum streamflow from at-site calibrated MWBM parameters by streamgage are provided in "byStation-sqrt_ann_max_MWBM_Q.csv". The regression results for annual maximum streamflow from median calibrated MWBM parameters by streamgage are provided in "byStation-sqrt_ann_max_MWBM_Q-medianMWBM.csv". "FixedEffects-sqrt_ann_max_MWBM_Q.csv" contains fixed effects for annual maximum streamflow from at-site calibrated MWBM parameters by streamgage. "FixedEffects-sqrt_ann_max_MWBM_Q-medianMWBM.csv" contains fixed effects for annual maximum streamflow from median calibrated MWBM parameters by streamgage. "MMQR-sqrt_ann_max_MWBM_Q_adjusted_moments.csv" contains observed and adjusted peak discharge moments from the method-of-moments quantile-regression (MMQR) method. "MMQR-sqrt_ann_max_MWBM_Q_adjusted_quantiles.csv" contains observed and adjusted discharge quantiles from the MMQR method. "QR-sqrt_ann_max_MWBM_Q_adjusted_moments.csv" contains observed and adjusted moments from the single-station quantile regression (QR) method. "QR-sqrt_ann_max_MWBM_Q_adjusted_quantiles.csv" contains observed and adjusted discharge quantiles from the QR method. Also included is "ModelArchive.zip", which contains the R scripts used to create the data provided in this data release and in Over and others, 2025. It contains the input data necessary to run the scripts and readMe files with directions for running the scripts locally.

  13. A

    AI Data Analysis Tool Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jan 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). AI Data Analysis Tool Report [Dataset]. https://www.datainsightsmarket.com/reports/ai-data-analysis-tool-1986123
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Jan 9, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for AI Data Analysis Tools is projected to grow from USD XXX million in 2025 to USD XXX million by 2033, at a CAGR of XX% during the forecast period. This growth is attributed to the increasing adoption of AI in various industries, the growing need to analyze large and complex data sets, and the increasing need for automation. Major drivers of this market include the rising need for real-time insights, the proliferation of IoT devices, and the growing adoption of cloud-based solutions. Leading market players include Tomat.ai, Coginiti AI, Pandachat AI, Puddl, AI Assist, data.ai, Outset.ai, Deepsheet, Chat2CSV, owlbot, Abacus.ai, MonkeyLearn, AnswerRocket, and Qlik Sense. Key regions driving the market growth are North America, Europe, Asia Pacific, and Rest of the World. The market is segmented based on application (BFSI, healthcare, retail, manufacturing, and others) and type (on-premise and cloud-based). Restraints include the high cost of implementation and lack of skilled professionals.

  14. D

    Data Middle Platform Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Feb 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Middle Platform Report [Dataset]. https://www.datainsightsmarket.com/reports/data-middle-platform-1406277
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Feb 17, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Market Analysis for Data Middle Platform The global data middle platform market size was valued at USD 24.9 billion in 2025 and is anticipated to reach USD 76.1 billion by 2033, exhibiting a CAGR of 15.3% during the forecast period (2025-2033). Key drivers fueling market growth include the increasing adoption of cloud-based solutions, the proliferation of data, and the need for efficient data management. The rising adoption of data analytics and machine learning is also contributing to the demand for data middle platforms. The market is segmented by application (enterprise, municipal, bank, other) and type (local, cloud-based). The cloud-based segment dominates the market due to its cost-effectiveness, scalability, and flexibility. Key players in the market include Guangzhou Guangdian Information Technology Co., Ltd., Shanghai Qianjiang Network Technology Co., Ltd., Tianmian Information Technology (Shenzhen) Co., Ltd., Guangzhou Yunmi Technology Co., Ltd., Spot Technology, Xiamen Meiya Pico Information Co., Ltd., Star Ring Technology, Beijing Jiuqi Software Co., Ltd., LnData, SIE, Yusys Technology, and Sunline. The market is expected to experience significant growth in the Asia Pacific region, particularly in China, India, and Japan, due to the increasing number of data-driven businesses and the government's focus on digital transformation. The data middle platform market is a rapidly growing market, with a global value of $10.5 billion in 2021. The market is projected to grow at a CAGR of 15.7% over the next five years, reaching $24.5 billion by 2026. The growth of the market is being driven by the increasing adoption of data-driven decision-making in enterprises. As businesses become more reliant on data to improve their operations, they are increasingly investing in data middle platforms to manage and analyze their data.

  15. g

    Data for regional analysis of the dependence of peak-flow quantiles on...

    • gimi9.com
    Updated Mar 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Data for regional analysis of the dependence of peak-flow quantiles on climate with application to adjustment to climate trends | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_data-for-regional-analysis-of-the-dependence-of-peak-flow-quantiles-on-climate-with-applic/
    Explore at:
    Dataset updated
    Mar 11, 2025
    Description

    This data release contains data in support of "Regional Analysis of the Dependence of Peak-Flow Quantiles on Climate with Application to Adjustment to Climate Trends" (Over and others, 2025). It contains input and output data used to analyze the effect of climate changes on trends in floods using three regression approaches. The input consists of two files. The first, "station_list.csv," contains streamgage information for the 404 streamgages considered for use in Over and others (2025). Only 330 of the 404 streamgages were considered non-redundant and used in the final analysis; these streamgages have a value of "Non-redundant" in the "redundancy_status" column. This file includes calibrated Monthly Water Balance Model (MWBM) parameters and basin characteristics. The second, "regression_input.csv," contains regression input data, including observed peak streamflow and precipitation. MWBM-simulated streamflow data was created using two sets of MWBM parameters: at-site calibrated parameters and median calibrated parameters. At-site calibrated parameters varied by station and represent the best-performing set of parameters per station. These parameters can be found in "station_list.csv". The median calibrated parameters were obtained by taking the median of all at-site calibrated parameters for the 330 streamgage basins used in analysis. See the Entity and Attribute section for details. The output files consist of nine Comma Separated Value (CSV) files. "Kendall_cor.csv" contains Mann-Kendall trend analysis results by streamgage. The regression results for annual maximum streamflow from at-site calibrated MWBM parameters by streamgage are provided in "byStation-sqrt_ann_max_MWBM_Q.csv". The regression results for annual maximum streamflow from median calibrated MWBM parameters by streamgage are provided in "byStation-sqrt_ann_max_MWBM_Q-medianMWBM.csv". "FixedEffects-sqrt_ann_max_MWBM_Q.csv" contains fixed effects for annual maximum streamflow from at-site calibrated MWBM parameters by streamgage. "FixedEffects-sqrt_ann_max_MWBM_Q-medianMWBM.csv" contains fixed effects for annual maximum streamflow from median calibrated MWBM parameters by streamgage. "MMQR-sqrt_ann_max_MWBM_Q_adjusted_moments.csv" contains observed and adjusted peak discharge moments from the method-of-moments quantile-regression (MMQR) method. "MMQR-sqrt_ann_max_MWBM_Q_adjusted_quantiles.csv" contains observed and adjusted discharge quantiles from the MMQR method. "QR-sqrt_ann_max_MWBM_Q_adjusted_moments.csv" contains observed and adjusted moments from the single-station quantile regression (QR) method. "QR-sqrt_ann_max_MWBM_Q_adjusted_quantiles.csv" contains observed and adjusted discharge quantiles from the QR method. Also included is "ModelArchive.zip", which contains the R scripts used to create the data provided in this data release and in Over and others, 2025. It contains the input data necessary to run the scripts and readMe files with directions for running the scripts locally.

  16. f

    climwin: An R Toolbox for Climate Window Analysis

    • plos.figshare.com
    txt
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liam D. Bailey; Martijn van de Pol (2023). climwin: An R Toolbox for Climate Window Analysis [Dataset]. http://doi.org/10.1371/journal.pone.0167980
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Liam D. Bailey; Martijn van de Pol
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    When studying the impacts of climate change, there is a tendency to select climate data from a small set of arbitrary time periods or climate windows (e.g., spring temperature). However, these arbitrary windows may not encompass the strongest periods of climatic sensitivity and may lead to erroneous biological interpretations. Therefore, there is a need to consider a wider range of climate windows to better predict the impacts of future climate change. We introduce the R package climwin that provides a number of methods to test the effect of different climate windows on a chosen response variable and compare these windows to identify potential climate signals. climwin extracts the relevant data for each possible climate window and uses this data to fit a statistical model, the structure of which is chosen by the user. Models are then compared using an information criteria approach. This allows users to determine how well each window explains variation in the response variable and compare model support between windows. climwin also contains methods to detect type I and II errors, which are often a problem with this type of exploratory analysis. This article presents the statistical framework and technical details behind the climwin package and demonstrates the applicability of the method with a number of worked examples.

  17. Big Data Security Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jul 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Big Data Security Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, Spain, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-security-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 5, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United Kingdom, United States, Canada
    Description

    Snapshot img

    Big Data Security Market Size 2025-2029

    The big data security market size is forecast to increase by USD 23.9 billion, at a CAGR of 15.7% between 2024 and 2029. Stringent regulations regarding data protection will drive the big data security market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 37% growth during the forecast period.
    By Deployment - On-premises segment was valued at USD 10.91 billion in 2023
    By End-user - Large enterprises segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 188.34 billion
    Market Future Opportunities: USD USD 23.9 billion 
    CAGR : 15.7%
    North America: Largest market in 2023
    

    Market Summary

    The market is a dynamic and ever-evolving landscape, with stringent regulations driving the demand for advanced data protection solutions. As businesses increasingly rely on big data to gain insights and drive growth, the focus on securing this valuable information has become a top priority. The core technologies and applications underpinning big data security include encryption, access control, and threat detection, among others. These solutions are essential as the volume and complexity of data continue to grow, posing significant challenges for organizations. The service types and product categories within the market include managed security services, software, and hardware. Major companies, such as IBM, Microsoft, and Cisco, dominate the market with their comprehensive offerings. However, the market is not without challenges, including the high investments required for implementing big data security solutions and the need for continuous updates to keep up with evolving threats. Looking ahead, the forecast timeline indicates steady growth for the market, with adoption rates expected to increase significantly. According to recent estimates, The market is projected to reach a market share of over 50% by 2025. As the market continues to unfold, related markets such as the Cloud Security and Cybersecurity markets will also experience similar trends.

    What will be the Size of the Big Data Security Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Big Data Security Market Segmented and what are the key trends of market segmentation?

    The big data security industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloud-basedEnd-userLarge enterprisesSMEsSolutionSoftwareServicesGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalySpainUKAPACChinaIndiaJapanRest of World (ROW)

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.

    The market trends encompass various advanced technologies and strategies that businesses employ to safeguard their valuable data. Threat intelligence platforms analyze potential risks and vulnerabilities, enabling proactive threat detection and response. Data encryption methods secure data at rest and in transit, ensuring confidentiality. Security automation tools streamline processes, reducing manual efforts and minimizing human error. Data masking techniques and tokenization processes protect sensitive information by obfuscating or replacing it with non-sensitive data. Vulnerability management tools identify and prioritize risks, enabling remediation. Federated learning security ensures data privacy in collaborative machine learning environments. Real-time threat detection and data breaches prevention employ anomaly detection algorithms and artificial intelligence security to identify and respond to threats. Access control mechanisms and security incident response systems manage and mitigate unauthorized access and data breaches. Security orchestration automation, machine learning security, and big data anonymization techniques enhance security capabilities. Risk assessment methodologies and differential privacy techniques maintain data privacy while enabling data usage. Homomorphic encryption schemes and blockchain security implementations provide advanced data security. Behavioral analytics security monitors user behavior and identifies anomalous activities. Compliance regulations and data privacy regulations mandate adherence to specific security standards. Zero trust architecture and network security monitoring ensure continuous security evaluation and response. Intrusion detection systems and data governance frameworks further strengthen security posture. According to recent studies, the market has experienced a significant 25.6% increase in adoption. Furthermore, industry experts anticipate a 31.8% expansion in the market's size ove

  18. Big Data As A Service Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Aug 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Big Data As A Service Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Russia, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-as-a-service-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Aug 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2025 - 2029
    Area covered
    Germany, Europe, United Kingdom, United States, Canada
    Description

    Snapshot img

    Big Data As A Service Market Size 2025-2029

    The big data as a service market size is forecast to increase by USD 75.71 billion, at a CAGR of 20.5% between 2024 and 2029.

    The Big Data as a Service (BDaaS) market is experiencing significant growth, driven by the increasing volume of data being generated daily. This trend is further fueled by the rising popularity of big data in emerging technologies, such as blockchain, which requires massive amounts of data for optimal functionality. However, this market is not without challenges. Data privacy and security risks pose a significant obstacle, as the handling of large volumes of data increases the potential for breaches and cyberattacks. Edge computing solutions and on-premise data centers facilitate real-time data processing and analysis, while alerting systems and data validation rules maintain data quality.
    Companies must navigate these challenges to effectively capitalize on the opportunities presented by the BDaaS market. By implementing robust data security measures and adhering to data privacy regulations, organizations can mitigate risks and build trust with their customers, ensuring long-term success in this dynamic market.
    

    What will be the Size of the Big Data As A Service Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    The market continues to evolve, offering a range of solutions that address various data management needs across industries. Hadoop ecosystem services play a crucial role in handling large volumes of data, while ETL process optimization ensures data quality metrics are met. Data transformation services and data pipeline automation streamline data workflows, enabling businesses to derive valuable insights from their data. Nosql database solutions and custom data solutions cater to unique data requirements, with Spark cluster management optimizing performance. Data security protocols, metadata management tools, and data encryption methods protect sensitive information. Cloud data storage, predictive modeling APIs, and real-time data ingestion facilitate agile data processing.
    Data anonymization techniques and data governance frameworks ensure compliance with regulations. Machine learning algorithms, access control mechanisms, and data processing pipelines drive automation and efficiency. API integration services, scalable data infrastructure, and distributed computing platforms enable seamless data integration and processing. Data lineage tracking, high-velocity data streams, data visualization dashboards, and data lake formation provide actionable insights for informed decision-making.
    For instance, a leading retailer leveraged data warehousing services and predictive modeling APIs to analyze customer buying patterns, resulting in a 15% increase in sales. This success story highlights the potential of big data solutions to drive business growth and innovation.
    

    How is this Big Data As A Service Industry segmented?

    The big data as a service industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Type
    
      Data Analytics-as-a-service (DAaaS)
      Hadoop-as-a-service (HaaS)
      Data-as-a-service (DaaS)
    
    
    Deployment
    
      Public cloud
      Hybrid cloud
      Private cloud
    
    
    End-user
    
      Large enterprises
      SMEs
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        Russia
        UK
    
    
      APAC
    
        China
        India
        Japan
    
    
      Rest of World (ROW)
    

    By Type Insights

    The Data analytics-as-a-service (DAaas) segment is estimated to witness significant growth during the forecast period. The data analytics-as-a-service (DAaaS) segment experiences significant growth within the market. Currently, over 30% of businesses adopt cloud-based data analytics solutions, reflecting the increasing demand for flexible, cost-effective alternatives to traditional on-premises infrastructure. Furthermore, industry experts anticipate that the DAaaS market will expand by approximately 25% in the upcoming years. This market segment offers organizations of all sizes the opportunity to access advanced analytical tools without the need for substantial capital investment and operational overhead. DAaaS solutions encompass the entire data analytics process, from data ingestion and preparation to advanced modeling and visualization, on a subscription or pay-per-use basis. Data integration tools, data cataloging systems, self-service data discovery, and data version control enhance data accessibility and usability.

    The continuous evolution of this market is driven by the increasing volume, variety, and velocity of data, as well as the growing recognition of the business value that can be derived from data insights. Organizations across var

  19. D

    Big Data Platform Software Market Report | Global Forecast From 2025 To 2033...

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Big Data Platform Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/big-data-platform-software-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Big Data Platform Software Market Outlook



    The global Big Data Platform Software market size was valued at approximately USD 70 billion in 2023 and is projected to reach around USD 250 billion by 2032, growing at a compound annual growth rate (CAGR) of 15%. The substantial growth in this market can be attributed to the increasing volume and complexity of data generated across various industries, along with the rising need for data analytics to drive business decision-making.



    One of the key growth factors driving the Big Data Platform Software market is the explosive growth in data generation from various sources such as social media, IoT devices, and enterprise applications. The proliferation of digital devices has led to an unprecedented surge in data volumes, compelling businesses to adopt advanced Big Data solutions to manage and analyze this data effectively. Additionally, advancements in cloud computing have further amplified the capabilities of Big Data platforms, enabling organizations to store and process vast amounts of data in a cost-efficient manner.



    Another significant driver of market growth is the increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies. Big Data platforms equipped with AI and ML capabilities can provide valuable insights by analyzing patterns, trends, and anomalies within large datasets. This has been particularly beneficial for industries such as healthcare, finance, and retail, where data-driven decision-making can lead to improved operational efficiency, enhanced customer experiences, and better risk management.



    Moreover, the rising demand for real-time data analytics is propelling the growth of the Big Data Platform Software market. Businesses are increasingly seeking solutions that can process and analyze data in real-time to gain immediate insights and respond swiftly to market changes. This demand is fueled by the need for agility and competitiveness, as organizations aim to stay ahead in a rapidly evolving business landscape. The ability to make data-driven decisions in real-time can provide a significant competitive edge, driving further investment in Big Data technologies.



    From a regional perspective, North America holds the largest share of the Big Data Platform Software market, driven by the early adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to the increasing digital transformation initiatives and the rising awareness about the benefits of Big Data analytics across various industries. Europe also presents significant growth opportunities, driven by stringent data protection regulations and the growing emphasis on data privacy and security.



    Component Analysis



    The Big Data Platform Software market can be segmented by component into Software and Services. The software segment encompasses the various Big Data platforms and tools that enable data storage, processing, and analytics. This includes data management software, data analytics software, and visualization tools. The demand for Big Data software is driven by the need for organizations to handle large volumes of data efficiently and derive actionable insights from it. With the growing complexity of data, advanced software solutions that offer robust analytics capabilities are becoming increasingly essential.



    The services segment includes consulting, implementation, and support services related to Big Data platforms. These services are crucial for the successful deployment and management of Big Data solutions. Consulting services help organizations to design and strategize their Big Data initiatives, while implementation services ensure the seamless integration of Big Data platforms into existing IT infrastructure. Support services provide ongoing maintenance and troubleshooting to ensure the smooth functioning of Big Data systems. The growing adoption of Big Data solutions is driving the demand for these ancillary services, as organizations seek expert guidance to maximize the value of their Big Data investments.



    Within the software segment, data analytics software is witnessing significant demand due to its ability to process and analyze large datasets to uncover hidden patterns and insights. This is particularly important for industries such as healthcare, finance, and retail, where data-driven insights can lead to improved decision-making and operational efficiency. Additionally, data management software plays a critical role in ensuring the integrity, securit

  20. f

    Data from: Analysis of Access to Academic Information among Medical Students...

    • datasetcatalog.nlm.nih.gov
    • scielo.figshare.com
    Updated Oct 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    de Lorena Sobrinho, José Eudes; da Mota, Luciana Rodrigues Alves; Vilela, Lycia Siqueira; de Holanda Arcoverde, Ângela Melo; de Melo Andrade, Mateus; de Lorena, Suélem Barros (2019). Analysis of Access to Academic Information among Medical Students under an Active Learning Methodology [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000196221
    Explore at:
    Dataset updated
    Oct 16, 2019
    Authors
    de Lorena Sobrinho, José Eudes; da Mota, Luciana Rodrigues Alves; Vilela, Lycia Siqueira; de Holanda Arcoverde, Ângela Melo; de Melo Andrade, Mateus; de Lorena, Suélem Barros
    Description

    ABSTRACT Access to academic information has become one of the pillars for the student’s role in the learning process, and it is strategic to analyze the behavior and management of available information resources pertinent to the training and excellence of future professionals. The objective of this research was to analyze the behavior reported by medical students of a higher education institution with active learning methodology regarding access to academic information, as well as opinions about the construction of academic knowledge during undergraduate training. A cross-sectional and analytical observational study was conducted with 274 students from the Pernambuco Health College Medical School in Recife, Pernambuco. A specific questionnaire was prepared and validated for the data collection, and subsequently analyzed descriptively using absolute and percentage frequencies for categorical variables and measurements. To evaluate the association between two categorical variables, Pearson’s Chi-square test and Fisher’s exact test were used. The research project was approved by the ethics committee and respected all ethical requirements. Among those surveyed, 52.8% used electronic media alone, while 37.7% indicated that they handled both electronic and print media and 9.4% cited print media alone. In relation to the forms of study with which the student most identifies, the options confirmed by the majority were “online books (PDF, Word, Epub, etc.)” and “paper books” (81.9% and 68,3%, respectively). Regarding questions about the use of electronic databases in their study routine, the majority (67.9%) responded positively to the statement; the most commonly cited databases included SciELO (86.7%), and PubMed (70.6%). When evaluating access to scientific information among medical students, it was seen that, although most students used electronic databases in their academic routine, more than half had not received training related to bibliographic research techniques; most had learned with practice. Almost all the students surveyed agree on the importance of evidence-based practice in academic routine, which is reported by more than half of the students who, when they do not seek information online, feel less up-to-date.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
maira javeed (2023). student data analysis [Dataset]. https://www.kaggle.com/datasets/mairajaveed/student-data-analysis
Organization logo

student data analysis

Student Performance Analysis

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Nov 17, 2023
Dataset provided by
Kagglehttp://kaggle.com/
Authors
maira javeed
Description

In this project, we aim to analyze and gain insights into the performance of students based on various factors that influence their academic achievements. We have collected data related to students' demographic information, family background, and their exam scores in different subjects.

**********Key Objectives:*********

  1. Performance Evaluation: Evaluate and understand the academic performance of students by analyzing their scores in various subjects.

  2. Identifying Underlying Factors: Investigate factors that might contribute to variations in student performance, such as parental education, family size, and student attendance.

  3. Visualizing Insights: Create data visualizations to present the findings effectively and intuitively.

Dataset Details:

  • The dataset used in this analysis contains information about students, including their age, gender, parental education, lunch type, and test scores in subjects like mathematics, reading, and writing.

Analysis Highlights:

  • We will perform a comprehensive analysis of the dataset, including data cleaning, exploration, and visualization to gain insights into various aspects of student performance.

  • By employing statistical methods and machine learning techniques, we will determine the significant factors that affect student performance.

Why This Matters:

Understanding the factors that influence student performance is crucial for educators, policymakers, and parents. This analysis can help in making informed decisions to improve educational outcomes and provide support where it is most needed.

Acknowledgments:

We would like to express our gratitude to [mention any data sources or collaborators] for making this dataset available.

Please Note:

This project is meant for educational and analytical purposes. The dataset used is fictitious and does not represent any specific educational institution or individuals.

Search
Clear search
Close search
Google apps
Main menu