The Voter Participation indicator presents voter turnout in Champaign County as a percentage, calculated using two different methods.
In the first method, the voter turnout percentage is calculated using the number of ballots cast compared to the total population in the county that is eligible to vote. In the second method, the voter turnout percentage is calculated using the number of ballots cast compared to the number of registered voters in the county.
Since both methods are in use by other agencies, and since there are real differences in the figures that both methods return, we have provided the voter participation rate for Champaign County using each method.
Voter participation is a solid illustration of a community’s engagement in the political process at the federal and state levels. One can infer a high level of political engagement from high voter participation rates.
The voter participation rate calculated using the total eligible population is consistently lower than the voter participation rate calculated using the number of registered voters, since the number of registered voters is smaller than the total eligible population.
There are consistent trends in both sets of data: the voter participation rate, no matter how it is calculated, shows large spikes in presidential election years (e.g., 2008, 2012, 2016, 2020) and smaller spikes in intermediary even years (e.g., 2010, 2014, 2018, 2022). The lowest levels of voter participation can be seen in odd years (e.g., 2015, 2017, 2019, 2021, 2023).
This data primarily comes from the election results resources on the Champaign County Clerk website. Election results resources from Champaign County include the number of ballots cast and the number of registered voters. The results are published frequently, following each election.
Data on the total eligible population for Champaign County was sourced from the U.S. Census Bureau, using American Community Survey (ACS) 1-Year Estimates for each year starting in 2005, when the American Community Survey was created. The estimates are released annually by the Census Bureau.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because this data is not available for Champaign County, the eligible voting population for 2020 is not included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes datasets on Population by Sex and Population Under 18 Years by Age.
Sources: Champaign County Clerk Historical Election Data; U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (10 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (5 October 2023).; Champaign County Clerk Historical Election Data; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (7 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (8 June 2021).; Champaign County Clerk Election History; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (13 May 2019).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (13 May 2019).; U.S. Census Bureau; American Community Survey, American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (6 March 2017).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey 2012 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).
Voter turn-out is a measure of civic engagement. Consistent civic engagement can have a significant, positive impact on health outcomes and community health.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set consists of all Fulton County Election results from April 2012 to present. Included with each record is the race, candidate, precinct, number of election day votes, number of absentee by mail votes, number of advance in person votes, number of provisional votes, total number of votes, name of election, and date of election. This data set is updated after each election.
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
2020 Detailed Voter Registration and Turnout Data
Terms of Access: By downloading the data, you agree to use the data only for academic research, agree not to share the data with outside parties, and agree not to attempt to re-identify individuals in the data set. We require this in order to protect the privacy of individuals in the data set and to comply with agreements made with TargetSmart. Abstract: We present the results of a large, $8.9 million campaign-wide field experiment, conducted among 2 million moderate and low-information “persuadable” voters in five battleground states during the 2020 US Presidential election. Treatment group subjects were exposed to an eight-month-long advertising program delivered via social media, designed to persuade people to vote against Donald Trump and for Joe Biden. We found no evidence the program increased or decreased turnout on average. We find evidence of differential turnout effects by modeled level of Trump support: the campaign increased voting among Biden leaners by 0.4 percentage points (SE: 0.2pp) and decreased voting among Trump leaners by 0.3 percentage points (SE: 0.3pp), for a difference-in-CATES of 0.7 points that is just distinguishable from zero (t(1035571) = −2.09, p = 0.036, DIC = 0.7 points, 95% CI = [−0.014, −0.00]). An important but exploratory finding is that the strongest differential effects appear in early voting data, which may inform future work on early campaigning in a post-COVID electoral environment. Our results indicate that differential mobilization effects of even large digital advertising campaigns in presidential elections are likely to be modest.
This repository contains the replication materials for the forthcoming article in Election Law Journal: “The Impact of Vote-By-Mail Policy on Turnout and Vote Share in the 2020 Election." It includes the data and R code necessary to replicate the tables and figures in the article.
This dataset was used to conduct the NYC Campaign Finance Board's voter participation research, published in the 2019-2020 Voter Analysis Report. Each row contains information about an active voter in 2018 and their voting history dating back to 2008, along with geographical information from their place of residence for each year they were registered voters. Because this dataset contains only active voters in the year 2018, this dataset cannot be used to calculate election turnout.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Electoral registrations for parliamentary and local government elections as recorded in electoral registers for England, Wales, Scotland and Northern Ireland.
This is partial replication data for a paper analyzing voting irregularities in Bolivia's 2019 election. This dataset includes municipal-level data for the following presidential elections: 2002, 2005, 2009, 2014, 2019, and 2020. The data includes voter turnout, MAS vote share, the share of the largest opposition party, effective number of parties, and select socioeconomic and demographic indicators.
Voter turnout for the 2020 Second Primary Election
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repo contains the data introduced in
Immer, A.*, Kristof, V.*, Grossglauser, M., Thiran, P., Sub-Matrix Factorization for Real-Time Vote Prediction, KDD 2020
These data have been collected from OpenData.Swiss every two minutes on two different referendum vote days: May 19, 2019, and February 9, 2020. We use these data to make real-time predictions of the referenda outcome on www.predikon.ch. We publish here the raw data, as retrieved in JSON format from the API. We also provide a python script to help scraping the JSON files.
After unzipping the datasets, you can scrape the data by referendum vote day by doing:
from scraper import scrape_referenda
data_dir = 'path/to/2020-02-09' data = scrape_referenda(data_dir)
The data variable will be a list of datum dictionaries of the following structure:
{ "vote": 6290, "municipality": 1, "timestamp": "2020-02-09T15:23:10", "num_yes": 222, "num_no": 482, "num_valid": 704, "num_total": 709, "num_eligible": 1407, "yes_percent": 0.3153409090909091, "turnout": 0.503909026297086 }
The datum is as follows:
vote: vote ID as defined by OpenData.Swiss
municipality: municipality ID as defined by OpenData.Swiss
timestamp: date and time at which the JSON files has been published on OpenData.Swiss
num_yes: number of "yes" in the municipality
num_no: number of "no" in the municipality
num_valid: number of valid ballots (the ones counting for the results)
numb_total: total number of ballots (including invalid ones)
num_eligible: number of registered voters
yes_percent: percentage of "yes" (computed as num_yes / num_valid
)
turnout: turnout to the vote (computed as num_total / num_eligible
)
Don't hesitate to reach out to us if you have any questions!
To cite this dataset:
@inproceedings{immer2020submatrix, author = {Immer, Alexander and Kristof, Victor and Grossglauser, Matthias and Thiran, Patrick}, title = {Sub-Matrix Factorization for Real-Time Vote Prediction}, year = {2020}, booktitle={Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining}, }
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
constitutional referendum 20/21 September 2020 - voter turnout data
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset lists the total population 18 years and older by census block in Connecticut before and after population adjustments were made pursuant to Public Act 21-13. PA 21-13 creates a process to adjust the U.S. Census Bureau population data to allow for most individuals who are incarcerated to be counted at their address before incarceration. Prior to enactment of the act, these inmates were counted at their correctional facility address.
The act requires the CT Office of Policy and Management (OPM) to prepare and publish the adjusted and unadjusted data by July 1 in the year after the U.S. census is taken or 30 days after the U.S. Census Bureau’s publication of the state’s data.
A report documenting the population adjustment process was prepared by a team at OPM composed of the Criminal Justice Policy and Planning Division (OPM CJPPD) and the Data and Policy Analytics (DAPA) unit. The report is available here: https://portal.ct.gov/-/media/OPM/CJPPD/CjAbout/SAC-Documents-from-2021-2022/PA21-13_OPM_Summary_Report_20210921.pdf
Note: On September 21, 2021, following the initial publication of the report, OPM and DOC revised the count of juveniles, reallocating 65 eighteen-year-old individuals who were incorrectly designated as being under age 18. After the DOC released the updated data to OPM, the report and this dataset were updated to reflect the revision.
Total population, population density, migration, and voting age population by year. Includes population estimates and projections prepared by the NC State Demographer.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We present the Global Dataset on Turnout, GD-Turnout. The files included are the original database, the codebook and the article appeared in Electoral Studies
The inventory catalogues available sources of official information on turnout and electoral registration amongst mobile EU citizens for the two most European Parliament elections, prior to 1 January 2019 (2009 and 2014, except for Croatia in 2013) and the most recent municipal elections to which Directive 94/80/EC applied, prior to 1 January 2019. This inventory was funded by the European Union’s Rights, Equality and Citizenship Programme (2014-2020). The content of this inventory represents the views of the authors only and is their sole responsibility. The European Commission does not accept any responsibility for use that may be made of the information it contains. Database based on primary sources. The dataset was originally published in DiVA and moved to SND in 2024. Se engelsk beskrivning för information. Datasetet har ursprungligen publicerats i DiVA och flyttades över till SND 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
constitutional referendum 20/21 September 2020 - data on voter turnout per seat - survey Sunday at 23:00
The General Social Surveys (GSS) have been conducted by the "https://www.norc.org/Pages/default.aspx" Target="_blank">National Opinion Research Center (NORC) annually since 1972, except for the years 1979, 1981, and 1992 (a supplement was added in 1992), and biennially beginning in 1994. The GSS are designed to be part of a program of social indicator research, replicating questionnaire items and wording in order to facilitate time-trend studies. The 2016-2020 GSS consisted of re-interviews of respondents from the 2016 and 2018 Cross-Sectional GSS rounds. All respondents from 2018 were fielded, but a random subsample of the respondents from 2016 were released for the 2020 panel. Cross-sectional responses from 2016 and 2018 are labelled Waves 1A and 1B, respectively, while responses from the 2020 re-interviews are labelled Wave 2.
The 2016-2020 GSS Wave 2 Panel also includes a collaboration between the General Social Survey (GSS) and the "https://electionstudies.org/" Target="_blank">American National Election Studies (ANES). The 2016-2020 GSS Panel Wave 2 contained a module of items proposed by the ANES team, including attitudinal questions, feelings thermometers for presidential candidates, and plans for voting in the 2020 presidential election. These respondents appear in both the ANES post-election study and the 2016-2020 GSS panel, with their 2020 GSS responses serving as their equivalent pre-election data. Researchers can link the relevant GSS Panel Wave 2 data with ANES post-election data using either ANESID (in the GSS Panel Wave 2 datafile) or V200001 in the ANES 2020 post-election datafile.
The inventory catalogues sources of official information on turnout and electoral registration for the most recent elections to which EU Directive 94/80/EC applies, prior to 1 January 2019. This inventory was funded by the European Union’s Rights, Equality and Citizenship Programme (2014-2020). The content of this inventory represents the views of the authors only and is their sole responsibility. The European Commission does not accept any responsibility for use that may be made of the information it contains. The dataset was originally published in DiVA and moved to SND in 2024. Se engelsk beskrivning för information. Datasetet har ursprungligen publicerats i DiVA och flyttades över till SND 2024.
This repository builds a compute environment, and executes code against data in support of the publication Email Mobilization Messages Suppress Turnout Among Black and Latino Voters: Experimental Evidence From the 2016 General Election. The paper was published in the Journal of Experimental Political Science in 2020.
The Voter Participation indicator presents voter turnout in Champaign County as a percentage, calculated using two different methods.
In the first method, the voter turnout percentage is calculated using the number of ballots cast compared to the total population in the county that is eligible to vote. In the second method, the voter turnout percentage is calculated using the number of ballots cast compared to the number of registered voters in the county.
Since both methods are in use by other agencies, and since there are real differences in the figures that both methods return, we have provided the voter participation rate for Champaign County using each method.
Voter participation is a solid illustration of a community’s engagement in the political process at the federal and state levels. One can infer a high level of political engagement from high voter participation rates.
The voter participation rate calculated using the total eligible population is consistently lower than the voter participation rate calculated using the number of registered voters, since the number of registered voters is smaller than the total eligible population.
There are consistent trends in both sets of data: the voter participation rate, no matter how it is calculated, shows large spikes in presidential election years (e.g., 2008, 2012, 2016, 2020) and smaller spikes in intermediary even years (e.g., 2010, 2014, 2018, 2022). The lowest levels of voter participation can be seen in odd years (e.g., 2015, 2017, 2019, 2021, 2023).
This data primarily comes from the election results resources on the Champaign County Clerk website. Election results resources from Champaign County include the number of ballots cast and the number of registered voters. The results are published frequently, following each election.
Data on the total eligible population for Champaign County was sourced from the U.S. Census Bureau, using American Community Survey (ACS) 1-Year Estimates for each year starting in 2005, when the American Community Survey was created. The estimates are released annually by the Census Bureau.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because this data is not available for Champaign County, the eligible voting population for 2020 is not included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes datasets on Population by Sex and Population Under 18 Years by Age.
Sources: Champaign County Clerk Historical Election Data; U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (10 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (5 October 2023).; Champaign County Clerk Historical Election Data; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (7 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (8 June 2021).; Champaign County Clerk Election History; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (13 May 2019).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (13 May 2019).; U.S. Census Bureau; American Community Survey, American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (6 March 2017).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey 2012 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).