This resource contains a shapefile of HUC-8 (eight digit Hydrologic Unit Codes) for the Continental United States (CONUS).
The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" “Standard” (http://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit (6th level) for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications.
The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" “Standard” (http://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit (6th level) for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
This data set is a complete digital hydrologic unit boundary layer to the Subbasin (8-digit) 8th level for the State of New Mexico. This data set consists of geo-referenced digital data and associated attributes created in accordance with the "FGDC Proposal, Version 1.0 - Federal Standards For Delineation of Hydrologic Unit Boundaries 3/01/02"(http://www.ftw.nrcs.usda.gov/huc_data.html). Polygons are attributed with hydrologic unit codes for 4th level sub-basins, 5th level watersheds, 6th level subwatersheds, name, size, downstream hydrologic unit, type of watershed, non-contributing areas and flow modification. Arcs are attributed with the highest hydrologic unit code for each watershed, linesource and a metadata reference file.
The latest 8 and 10 digit HUC boundaries, along with the calculated US Census population within each subbasin and watershed for 2020, 2010, and 2000.
HUC boundaries are from the USGS National Hydrography Watershed Boundary Dataset. US Census 2020, 2010, and 2000 Block Data was acquired through NC OneMap.
Subbasin and watershed population estimates were derived from the 2020, 2010, and 2000 Block population data from the US Census. The ArcGIS Tool "Summarize Within" was used to calculate the total population within each subbasin and watershed for each census period. As census blocks and HUC boundaries do not always coincide, the calculated population is only an estimate and is not to be used as an exact figure.
This subset of the USGS Water Boundary Dataset contains the polygons of the 50 8-digit Hydrologic Units that comprise the greater Central Valley study site. The Watershed Boundary Dataset is a comprehensive set of digital spatial data that represents the surface drainages areas of the United States. The information included with the features includes a feature date, a unique common identifier, name, the feature length or area, and other characteristics. Names and their identifiers are assigned from the Geographic Names Information System. The data also contains relations that encode metadata. The names and definitions of all these feature attributes are in the Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD). The document is available online at https://pubs.usgs.gov/tm/11/a3/
Rasters of positive openness for the 53 hydrologic unit code (HUC) 8 watersheds in the state of North Carolina. Positive openness uses a line-of-sight approach to measure the surrounding eight zenith angles viewed above the landscape surface out to a specified distance. The central cells gets and average of the eight angles. An angle of 90 degrees would indicate a flat surface, while angles less than 90 degrees indicate a concave surface. Positive openness was calculated with the Relief Visualization Toolbox (https://iaps.zrc-sazu.si/en/rvt#v, Kokalji et al., 2011; Zakšek et al., 2011) using light detection and ranging (lidar) derived digital elevation models (DEM) with a resolution of 10 ft. (~3m). A length scale of 60 ft.(6 pixels) was used to search surrounding terrain elevations in the eight cardinal directions.
This dataset is a representation of Hydrologic Unit Code (HUC) boundaries at the HUC8 level compiled from U.S. Geological Survey (USGS) National Hydrography Dataset (NHD) and U.S. Department of Agricultural (USDA) National Resources Conservation Services (NRCS) Watershed Boundary Dataset (WBD) sources.The Watershed and Subwatershed hydrologic unit boundaries (WSB)provide a uniquely identified and uniform method of subdividing large drainage areas. The smaller sized 6th level sub-watersheds (up to 250,000 acres) are useful for numerous application programs supported by a variety of local, State, and Federal Agencies.
The Watershed Boundary Dataset (WBD) is a seamless, national hydrologic unit dataset. Simply put, hydrologic units represent the area of the landscape that drains to a portion of the stream network. More specifically, a hydrologic unit defines the areal extent of surface water drainage to an outlet point on a dendritic stream network or to multiple outlet points where the stream network is not dendritic. A hydrologic unit may represent all or only part of the total drainage area to an outlet point so that multiple hydrologic units may be required to define the entire drainage area at a given outlet. Hydrologic unit boundaries in the WBD are determined based on topographic, hydrologic, and other relevant landscape characteristics without regard for administrative, political, or jurisdictional boundaries. The WBD seamlessly represents hydrologic units at six required and two optional hierarchical levels.The hydrologic units (HU) in the WBD form a standardized system for organizing, collecting, managing, and reporting hydrologic information for the nation. The HU in the WBD are arranged in a nested, hierarchical system with each HU in the system identified using a unique code. Hydrologic unit codes (HUC) are developed using a progressive two-digit system where each successively smaller areal unit is identified by adding two digits to the identifying code the smaller unit is nested within. WBD contains eight levels of progressive hydrologic units identified by unique 2- to 16-digit codes. The dataset is complete for the United States to the 12-digit hydrologic unit. The 14- and 16-digit hydrologic units are optional and are not complete for the nation. Efforts are ongoing to complete 10- and 12-digit unit delineations within 8-digit hydrologic units extending across the U.S. – Canada border. Additional information about this effort and access to data is linked on the “resources” section on this page. A similar effort is complete for the 10- and 12-digit units extending across the U.S. – Mexico border.More information can be found here: https://www.usgs.gov/core-science-systems/ngp/national-hydrography/watershed-boundary-dataset?qt-science_support_page_related_con=4#qt-science_support_page_related_con
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all. This dataset represents NHD as published by USGS on 4/27/2019.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
This hosted feature layer has been published in RI State Plane Feet NAD 83.Changes to the Watershed Boundary Dataset (WBD) occurred in 2021 as a result of prep work being done by the National WBD team for the development of the NHDPlus HR. It was determined that the 0109005-Pawcatuck-Wood River HUC included water flowing into two different water bodies, Long Island Sound, and the Atlantic Ocean. After discussing with state hydro-stewards and USGS hydro leads, it was determined best to separate out the area flowing into Long Island Sound from the areas flowing into the Atlantic. For additional details, please review theJuly 9, 2021 WBD update.The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" “Standard” (https://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit (6th level) for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications.
This dataset is the digital hydrologic unit boundary layer for the 8-digit subwatershed boundaries for the conterminous United States. This dataset is intended to be used with the following two tabular dBase files: https://water.usgs.gov/lookup/getspatial?ds573_tillage_lu92e and https://water.usgs.gov/lookup/getspatial?ds573_tillage_lu01. The two tabular datasets contain the Tillage Practices in the Conterminous United States, 1989-2004---Datasets Aggregated by Watershed. This dataset and the two tabular datasets can be linked using the common attribute HUC8_N. Information about how the tabular data and geospatial data can be related are given in the data series report: https://pubs.usgs.gov/ds/ds573/ .The original dataset is the 12-digit Subwatershed boundaries (WBD_archive_17nov2009_9.2_file). The 12-digit boundaries were dissolved to 8-digit boundaries to be used with the two tabular .dbase data files containing the tillage practice data for the United States.
ORIGINAL METADATA: This data set is a complete digital hydrologic unit boundary layer to the Subwatershed (12-digit) 6th level for the entire United States. This data set consists of geo-referenced digital data and associated attributes created in accordance with the "Federal Guidelines, Requirements, and Procedures for the National Watershed Boundary Dataset; Chapter 3 of Section A, Federal Standards, Book 11, Collection and Delineation of Spatial Data; Techniques and Methods 11-A3" (04/01/2009). http://www.ncgc.nrcs.usda.gov/products/datasets/watershed/index.html . Polygons are attributed with hydrologic unit codes for 4th level sub-basins, 5th level watersheds, 6th level subwatersheds, name, size, downstream hydrologic unit, type of watershed, non-contributing areas and flow modification.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
🇺🇸 미국 English The Watershed Boundary Dataset (WBD) is a seamless, national hydrologic unit dataset. Hydrologic units represent the area of the landscape that drains to a portion of the stream network. (https://www.usgs.gov/national-hydrography/watershed-boundary-dataset) It is maintained by the U.S. Geological Survey (USGS) in partnership with the states. The Department of Water Resources is the steward for the California portion of this dataset.The hydrologic units (HU) in the WBD form a standardized system for organizing, collecting, managing, and reporting hydrologic information for the nation. The HUs in the WBD are arranged in a nested, hierarchical system with each HU in the system identified using a unique code. Hydrologic unit codes (HUC) are developed using a progressive two-digit system where each successively smaller areal unit is identified by adding two digits to the identifying code the smaller unit is nested within. WBD contains eight levels of progressive hydrologic units identified by unique 2- to 16-digit codes. The dataset is complete for the United States to the 12-digit hydrologic unit. The 8-digit level unit is often referred to as HUC8 and is a commonly used reference framework for planning and environmental assessment. This particular version of the dataset was created by downloading the CA State extract of the National Hydrography Dataset from the USGS website https://www.usgs.gov/national-hydrography/access-national-hydrography-products and then performing a geoprocessing operation in ArcGIS Pro software to clip the HUC8s at the state of California political boundary. (https://data.cnra.ca.gov/dataset/california-county-boundaries2). A web map service was created with this dataset, but at it's original digitized resolution it can take a long time to render in a web map application. This dataset is a simplified version, created by use of the ArcGIS Simplify Polygon tool with the Douglas-Peucker Line simplification algorithm, reducing the vertex count from 1,095,449 to 9108. This dataset was reprojected from the original NAD 83 Geographic Coordinate System to WGS 1984 Web Mercator auxiliary sphere for use in web map applications. Any questions about this dataset may be sent to jane.schafer-kramer@water.ca.gov
Polygon feature class outlining the major river basin watershed areas within Virginia.
The intent of defining Hydrologic Units (HU) within the Watershed Boundary Dataset is to establish a base-line drainage boundary framework, accounting for all land and surface areas. Hydrologic units are intended to be used as a tool for water-resource management and planning activities particularly for site-specific and localized studies requiring a level of detail provided by large-scale map information. The WBD complements the National Hydrography Dataset (NHD) and supports numerous programmatic missions and activities including: watershed management, rehabilitation and enhancement, aquatic species conservation strategies, flood plain management and flood prevention, water-quality initiatives and programs, dam safety programs, fire assessment and management, resource inventory and assessment, water data analysis and water census. This file contains Hydrologic Unit (HU) polygon boundaries for the United States, Puerto Rico, and the U.S. Virgin Islands. The data is a seamless National representation of HU boundaries from 2 to 14 digits compiled from U.S. Geological Survey (USGS) National Hydrography Dataset (NHD) and U.S. Department of Agriculture (USDA) National Resources Conservation Service (NRCS) Watershed Boundary Dataset (WBD) sources. Purpose: This data is intended primarily for geographic display and analysis of regional and national data, and can also be used for illustration purposes at intermediate or small scales (1:250,000 to 1:2,000,000).View Dataset on the Gateway
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
In order to better understand the combined impacts of climate change and spatially identify where changes are anticipated to be most extreme, we developed a climate change vulnerability map for the Midwest Region. The vulnerability map is watershed-based (Hydrologic Unit Code-8) and combines fifteen climate change indicators evenly divided into three categories: temperature, precipitation, and hydrology that were selected by resource managers working in Region 3 of the United States Fish and Wildlife Service. The projected change in each of these indicators from the baseline period (1986-2005) to the future period (2040-2059) was aggregated into a composite score for each watershed. Landscape-scale metrics reflective of a watershed’s adaptive capacity were combined with the climate change impact indicators to produce a vulnerability score. We found sub-regional variation in vulnerability to climate change with the greatest vulnerability in Iowa, central Illinois, and northwest Oh ...
This data set is a complete digital hydrologic unit boundary layer of the Subbasin (8-digit) 4th level for the entire United States. This data set consists of geo-referenced digital data and associated attributes created in accordance with the "Federal Guidelines, Requirements, and Procedures for the National Watershed Boundary Dataset; Chapter 3 of Section A, Federal Standards, Book 11, Collection and Delineation of Spatial Data; Techniques and Methods 11-A3" (04/01/2009). http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/watershed... . Polygons are attributed with hydrologic unit codes for 4th level sub-basins, 5th level watersheds, 6th level subwatersheds, name, size, downstream hydrologic unit, type of watershed, non-contributing areas and flow modification. The data is currently updated through the USGS National Hydrography Dataset (NHD) Program and replicated to NRCS twice per year.
This polygon file depicts USGS Hydrologic Unit Code 8 (HUC8) boundaries intersecting Kansas. See https://www.usgs.gov/national-hydrography/national-hydrography-dataset and https://www.usgs.gov/national-hydrography/watershed-boundary-dataset for more information.The only modification to the data by KBS was the addition of a new attribute column containing a numerically formatted HUC identification number.Shapefile download: https://ku.maps.arcgis.com/home/item.html?id=a5f861d4cfce43d0a73bb5f3b00dce5dSource data acquisition date: January 22, 2023Source data download directory: https://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Hydrography/NHD/State/GDB/Source data download file: NHD_H_Kansas_state_GDB.zip
This USGS data release documents coarse ranges for 257 fish species in the conterminous United States for level 8 hydrologic units from the Watershed Boundary Dataset (WBD). These range maps were derived by combining known fish occurrence information from four data sources: point occurrences from the Aquatic Gap Analysis Project (AGAP) fish database, stream segment (i.e., NHDPlusV2.1 COMID) occurrences from the IchthyMaps dataset, point occurrences from the Global Biodiversity Information Facility (GBIF), and HUC-8 level range maps developed by NatureServe. Data can be linked to geospatial units of the WBD using the HUC8 field. Data are provided in comma separated value (CSV) and zipped Parquet file formats. Parquet file format is provided to help facilitate faster download and read capabilities when using compatible packages in coding languages such as R and Python. Source data from GBIF are also included in range_source_data_gbif.csv and are further documented at https://doi.org/10.15468/dd.qctv4s.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This file contains five metrics that were selected to collectively represent the adaptive capacity of each of the 360 HUC-8 watersheds in US Fish and Wildlife Service Region 3 (Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin). The metrics were: percent cultivated, density of dams, projected increase in developed land cover, landscape diversity and local connectedness. Percent cultivated land cover was obtained from the National Agricultural Statistics Services 2018 Cultivated layer and was calculated by dividing the number of cultivated grid cells by the total number of grid cells in each watershed. Density of dams was calculated as the number of dams per area of the watershed using the 2018 National Inventory of Dams from The Army Corps of Engineers. Projected increase in develop land cover was estimated using projections of future land cover developed using the USGS’s FORE-SCE model for the conterminous United States by taking the total number of gri ...
This resource contains a shapefile of HUC-8 (eight digit Hydrologic Unit Codes) for the Continental United States (CONUS).
The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" “Standard” (http://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit (6th level) for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications.