CPD Maps includes data on the locations of existing CDBG, HOME, public housing and other HUD-funded community assets, so that users can view past investments geographically when considering various strategies for future funding. CPD Maps offers a large amount of data in a way that is easy to access. The website allows grantees and the general public to easily search, query, and display information to identify trends and analyze the needs of their community.
The Community Development Block Grant (CDBG) program requires that each CDBG funded activity must either principally benefit low- and moderate-income persons, aid in the prevention or elimination of slums or blight, or meet a community development need having a particular urgency because existing conditions pose a serious and immediate threat to the health or welfare of the community and other financial resources are not available to meet that need. With respect to activities that principally benefit low- and moderate-income persons, at least 51 percent of the activity's beneficiaries must be low and moderate income. For CDBG, a person is considered to be of low income only if he or she is a member of a household whose income would qualify as "very low income" under the Section 8 Housing Assistance Payments program. Generally, these Section 8 limits are based on 50% of area median. Similarly, CDBG moderate income relies on Section 8 "lower income" limits, which are generally tied to 80% of area median. These data are from the 2011-2015 American Community Survey (ACS). To learn more about the Low to Moderate Income Populations visit: https://www.hudexchange.info/programs/acs-low-mod-summary-data/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Low to Moderate Income Populations by Block GroupDate of Coverage: ACS 2020-2016
The Community Development Block Grant (CDBG) program requires that each CDBG funded activity must either principally benefit low- and moderate-income persons, aid in the prevention or elimination of slums or blight, or meet a community development need having a particular urgency because existing conditions pose a serious and immediate threat to the health or welfare of the community and other financial resources are not available to meet that need. With respect to activities that principally benefit low- and moderate-income persons, at least 51 percent of the activity's beneficiaries must be low and moderate income. For CDBG, a person is considered to be of low income only if he or she is a member of a household whose income would qualify as "very low income" under the Section 8 Housing Assistance Payments program. Generally, these Section 8 limits are based on 50% of area median. Similarly, CDBG moderate income relies on Section 8 "lower income" limits, which are generally tied to 80% of area median. These data are derived from the 2011-2015 American Community Survey (ACS) and based on Census 2010 geography.
To learn more about the Low to Moderate Income Populations visit: https://www.hudexchange.info/programs/acs-low-mod-summary-data/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Low to Moderate Income Populations by Tract
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
City map highlighting 2023 qualified census tracts (QCT) in Mesa. Low-Income Housing Tax Credit Qualified Census Tracts must have 50 percent of households with incomes below 60 percent of the Area Median Gross Income (AMGI) or have a poverty rate of 25 percent or more. Maps of Qualified Census Tracts are available at: https://www.huduser.gov/portal/datasets/qct.html
This dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.
This map denotes the locations of HUD assisted Multi-Family properties that primarily serve elderly residents. In addition, each property illustrated through this service has at least one active Service Coordinator contract or grant, Section 236 loan, Section 8 202 contract, Section 8 Farmers Home Administration (FMHA) 515 contract, Section 8 New Construction contract, Section 202 Project Assistance Contracts (PAC) contract, and Section 202 Project Rental Assistance Contract (PRAC).
HUD is organized into 10 Regions where each Region is managed by a Regional Administrator, who also oversees the Regional Office. Each Field Office within a Region is managed by a Field Office Director, who reports to the Regional Administrator. There is at least one HUD Field Office in every State and a total of 10 Regional Offices. Staff who answer the main office telephone will be able to respond to or direct your calls to the appropriate person.
To learn more about HUD's Regions and local offices visit: https://www.hud.gov/program_offices/field_policy_mgt/localoffices, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov.
Data Dictionary: DD_HUD Regions
Date of Coverage: Current
HUD administers Federal aid to local Housing Agencies (HAs) that manage housing for low-income residents at rents they can afford. Likewise, HUD furnishes technical and professional assistance in planning, developing, and managing the buildings that comprise low-income housing developments. This dataset provides the location and resident characteristics of public housing development buildings. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. In an effort to protect Personally Identifiable Information (PII), the characteristics for each building are suppressed with a -4 value when the “Number_Reported” is equal to, or less than 10. To learn more about Public Housing visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/ Development FAQs - IMS/PIC | HUD.gov / U.S. Department of Housing and Urban Development (HUD), for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Public Housing Buildings Date Updated: Q1 2025
Denotes the service areas, and pertinent information associated with HUD's Regional Field Offices.HUD is organized into 10 Regions where each Region is managed by a Regional Administrator, who also oversees the Regional Office. Each Field Office within a Region is managed by a Field Office Director, who reports to the Regional Administrator. There is at least one HUD Field Office in every State and a total of 10 Regional Offices. Staff who answer the main office telephone will be able to respond to or direct your calls to the appropriate person.To learn more about the HUD Field Office Locations visit: https://www.huduser.gov/portal/regions/Regional.html, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_HUD Field Office JurisdictionsDate of Coverage: Current
The FHA insured Multifamily Housing portfolio consists primarily of rental housing properties with five or more dwelling units such as apartments or town houses, but can also be nursing homes, hospitals, elderly housing, mobile home parks, retirement service centers, and occasionally vacant land. Please note that this dataset overlaps the Multifamily Properties Assisted layer. The Multifamily property locations represent the approximate location of the property. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. In an effort to protect Personally Identifiable Information (PII), the characteristics for each building are suppressed with a -4 value when the “Number_Reported” is equal to, or less than 10. To learn more about HUD Insured Multifamily Properties visit: https://www.hud.gov/program_offices/housing/mfh Data Dictionary: DD_HUD Insured Multifamilly Properties Date of Coverage: 02/2025
LOW POVERTY INDEXSummary The low poverty index captures poverty in a given neighborhood. The index is based on the poverty rate (pv). The mean and standard error are estimated over the national distribution.The poverty rate is determined at the census tract level.InterpretationValues are inverted and percentile ranked nationally. The resulting values range from 0 to 100. The higher the score, the less exposure to poverty in a neighborhood.
Data Source: American Community Survey, 2011-2015. Related AFFH-T Local Government, PHA and State Tables/Maps: Table 12; Map 12. School Proficiency Index.
To learn more about the Low Poverty Index visit: https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 07/2020
First launched by the U.S. Department of Housing and Urban Development (HUD) and Department of Transportation (DOT) in November 2013, the Location Affordability Index (LAI) provides ubiquitous, standardized household housing and transportation cost estimates for all 50 states and the District of Columbia. Because what is affordable is different for everyone, users can choose among eight household profiles—which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.
Version 3 updates the constituent data sets with 2012-2016 American Community Survey data and makes several methodological tweaks, most notably moving to modeling at the Census tract level rather at the block group. As with Version 2, the inputs to the simultaneous equation model (SEM) include six endogenous variables—housing costs, car ownership, and transit usage for both owners and renters—and 18 exogenous variables, with vehicle miles traveled still modeled separately due to data limitations.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 2012-2016 Data Dictionary: DD_Location Affordability Indev v.3.0LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation
A FEMA housing inspection for renters is used to assess personal property loss and for owners to assess damage to their home as well as personal property. This inspection is done to determine eligibility for FEMA Individual Assistance. For both rental and owner inspections, if the property has flood damage the inspector measures the height of the flooding. They indicate the highest floor of the flooding (for example, Basement, 1st floor, 2nd floor, etc…) and the extent of the flooding in that room. In addition, for the units without flooding, HUD has estimated minor/major/severe damage based on the damage inspection estimates for real property (owner) and personal property (renter).In an effort to maintain the confidentiality of residents this file only presents data on block groups with ten or more damaged housing units. The suppression of block groups with fewer than ten damaged housing units results in an exclusion of approximately 6% of the total flooded units. These data reflect Hurricane Sandy damage in the states of New York, New Jersey, Connecticut, and Rhode Island. These data are incomplete, as each day there are additional registrants and inspections. This should be a viewed as a preliminary snapshot to assist with planning.To learn more about HUD's long-term recovery efforts for victims of Hurricane Sandy visit: https://www.hud.gov/sandyrebuilding, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
FY2024 full and partial census tracts that qualify as Low-Moderate Income Areas (LMA) where 51% or more of the population are considered as having Low-Moderate Income. The low- and moderate-income summary data (LMISD) is based on the 2016-2020 American Community Survey (ACS). As of August 1, 2024, to qualify any new low- and moderate-income area (LMA) activities, Community Development Block Grant (CDBG) grantees should use this map and data.
For more information about LMA/LMI click the following link to open in new browser tab https://www.hudexchange.info/programs/cdbg/cdbg-low-moderate-income-data/
SCHOOL PROFICIENCY INDEXSummaryThe school proficiency index uses school-level data on the performance of 4th grade students on state exams to describe which neighborhoods have high-performing elementary schools nearby and which are near lower performing elementary schools. The school proficiency index is a function of the percent of 4th grade students proficient in reading (r) and math (m) on state test scores for up to three schools (i=1,2,3) within 1.5 miles of the block-group centroid. S denotes 4th grade school enrollment:Elementary schools are linked with block-groups based on a geographic mapping of attendance area zones from School Attendance Boundary Information System (SABINS), where available, or within-district proximity matches of up to the three-closest schools within 1.5 miles. In cases with multiple school matches, an enrollment-weighted score is calculated following the equation above. Please note that in this version of the data (AFFHT0004), there is no school proficiency data for jurisdictions in Kansas, West Virginia, and Puerto Rico because no data was reported for jurisdictions in these states in the Great Schools 2013-14 dataset. InterpretationValues are percentile ranked and range from 0 to 100. The higher the score, the higher the school system quality is in a neighborhood. Data Source: Great Schools (proficiency data, 2015-16); Common Core of Data (4th grade school addresses and enrollment, 2015-16); Maponics (attendance boundaries, 2016).Related AFFH-T Local Government, PHA and State Tables/Maps: Table 12; Map 7.
To learn more about the School Proficiency Index visit: https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 07/2020
This service denotes the locations of colonias communities as defined in Section 916 of the Cranston-Gonzalez National Affordable Housing Act of 1990. In order to better serve colonia residents, the National Affordable Housing Act of 1990 (as amended) included Section 916 which called for the border states of Arizona, California, New Mexico and Texas to set aside a percentage of their annual State CDBG allocations for use in the colonias. The use of these set aside funds is to help meet the needs of the colonias residents in relationship to the need for potable water, adequate sewer systems, or decent, safe and sanitary housing. Therefore, the set-aside funds may be utilized for any CDBG eligible activity that is, or is in conjunction with, a potable water, sewer or housing activity.
This map denotes the locations of HUD assisted Multi-Family properties that primarily serve elderly residents. In addition, each property illustrated through this service has at least one active Service Coordinator contract or grant, Section 236 loan, Section 8 202 contract, Section 8 Farmers Home Administration (FMHA) 515 contract, Section 8 New Construction contract, Section 202 Project Assistance Contracts (PAC) contract, and Section 202 Project Rental Assistance Contract (PRAC).Please note that the data provided through this map only includes location data and attributes for those addresses that can be geocoded to an interpolated point along a street segment, or to a ZIP+4 centroid location. While not all records are able to be geocoded and mapped, we are continuously working to improve the address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD.To learn more about the Section 202 Program visit: https://www.hud.gov/program_offices/housing/mfh/progdesc/eld202, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov.Data Dictionary: DD_Multifamily PropertiesDate of Coverage: 12/2023Data Updated: Quarterly
This polygon feature class provides location and program data for HUD-FHA Revitalization Areas.Revitalization Areas are HUD-designated geographic areas authorized by Congress under provisions of the National Housing Act intended to promote "revitalization, through expanded homeownership opportunities.” HUD-owned single-family properties located in a Revitalization Areas are eligible for discounted sale through special programs, including the Asset Control Areas (ACA) Program, and the Good Neighbor Next Door (GNND) Program.Revitalization Areas are determined by comparing a block group's median household income and home ownership rate to the respective rates of the surrounding area. If the block group is located in a CBSA Metropolitan area, then the metro area is used. However, if the block group is located in a Non-Metro area, then the state rate is used.To learn more about the HUD FHA Revitalization Areas Program visit: https://www.hud.gov/program_offices/housing/sfh/reo/abtrevt/Data Dictionary: DD_Revitalization AreasDate of Coverage: 12/2018
The Louisville Neighborhoods layer consists of polygons representing approximate boundaries and extents of historical and cultural neighborhoods within the pre-merger limits of the City of Louisville, or post-merger Urban Service District. Each polygon carries attributes for neighborhood name and code. The names and boundaries are based on a federal urban neighborhood mapping grant from the late 1970's. Many of these boundaries are still used for grants. View detailed metadata.
HUD furnishes technical and professional assistance in planning, developing and managing these developments. Public Housing Developments are depicted as a distinct address chosen to represent the general location of an entire Public Housing Development, which may be comprised of several buildings scattered across a community. The building with the largest number of units is selected to represent the location of the development. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. In an effort to protect Personally Identifiable Information (PII), the characteristics for each building are suppressed with a -4 value when the “Number_Reported” is equal to, or less than 10. To learn more about Public Housing visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Public Housing Developments Date Updated: Q1 2025
CPD Maps includes data on the locations of existing CDBG, HOME, public housing and other HUD-funded community assets, so that users can view past investments geographically when considering various strategies for future funding. CPD Maps offers a large amount of data in a way that is easy to access. The website allows grantees and the general public to easily search, query, and display information to identify trends and analyze the needs of their community.