Facebook
TwitterThis dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.
Facebook
TwitterHUD Income Limits are collected and published to determine the maximum income a household may earn to participate in certain housing subsidy programs. Home income limits from the year 2019 were used. Median income is developed for each metropolitan area (and applies to all counties in the metro area), and each non-metropolitan area (and is a county level measure). Data was obtained for communities in all 50 states, Puerto Rico and U.S. Virgin Islands. The calculations stem from median family income data provided by the Census and adjusted for certain local conditions.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
California State Income Limits reflect updated median income and household income levels for acutely low-, extremely low-, very low-, low- and moderate-income households for California’s 58 counties (required by Health and Safety Code Section 50093). These income limits apply to State and local affordable housing programs statutorily linked to HUD income limits and differ from income limits applicable to other specific federal, State, or local programs.
Facebook
TwitterA Qualified Census Tract (QCT) is any census tract (or equivalent geographic area defined by the Census Bureau) in which at least 50% of households have an income less than 60% of the Area Median Gross Income (AMGI). HUD has defined 60% of AMGI as 120% of HUD's Very Low Income Limits (VLILs), which are based on 50% of area median family income, adjusted for high cost and low income areas.
Facebook
TwitterFor source data: https://data.census.gov/table/ACSST5Y2023.S1903For HUD income limits: https://www.huduser.gov/portal/datasets/il.htmlFor more information about this dataset, please contact egis@isd.lacounty.gov
Facebook
TwitterPathways to Removing Obstacles to Housing (PRO Housing) Pathways to Removing Obstacles to Housing, or PRO Housing, is a competitive grant program being administered by HUD. PRO Housing seeks to identify and remove barriers to affordable housing production and preservation.Under the Need rating factor, applicants will be awarded ten (10) points if their application primarily serves a ‘priority geography’. Priority geography means a geography that has an affordable housing need greater than a threshold calculation for one of three measures. The threshold calculation is determined by the need of the 90th-percentile jurisdiction (top 10%) for each factor as computed comparing only jurisdictions with greater than 50,000 population. Threshold calculations are done at the county and place level and applied respectively to county and place applicants. An application can also quality as a priority geography if it serves a geography that scores in the top 5% of its State for the same three measures. The measures are as follows: Affordable housing not keeping pace, measured as (change in population 2019-2009 divided by 2009 population) – (change in number of units affordable and available to households at 80% HUD Area Median Family Income (HAMFI) 2019-2009 divided by units affordable and available at 80% HAMFI 2009).Insufficient affordable housing, measured as number of households at 80% HAMFI divided by number of affordable and available units for households at 80% HAMFI. Widespread housing cost burden or substandard housing, measured as number of households with housing problems at 100% HAMFI divided by number of households at 100% HAMFI. Housing problems is defined as: cost burden of at least 50%, overcrowding, or substandard housing.Applicants may use this web application to search for priority geographies.For more information on Pro Housing, please visit: https://www.hud.gov/program_offices/comm_planning/pro_housing
Facebook
TwitterThere is more to housing affordability than the rent or mortgage you pay. Transportation costs are the second-biggest budget item for most families, but it can be difficult for people to fully factor transportation costs into decisions about where to live and work. The Location Affordability Index (LAI) is a user-friendly source of standardized data at the neighborhood (census tract) level on combined housing and transportation costs to help consumers, policymakers, and developers make more informed decisions about where to live, work, and invest. Compare eight household profiles (see table below) —which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.*$11,880 for a single person household in 2016 according to US Dept. of Health and Human Services: https://aspe.hhs.gov/computations-2016-poverty-guidelinesThis layer is symbolized by the percentage of housing and transportation costs as a percentage of income for the Median-Income Family profile, but the costs as a percentage of income for all household profiles are listed in the pop-up:Also available is a gallery of 8 web maps (one for each household profile) all symbolized the same way for easy comparison: Median-Income Family, Very Low-Income Individual, Working Individual, Single Professional, Retired Couple, Single-Parent Family, Moderate-Income Family, and Dual-Professional Family.An accompanying story map provides side-by-side comparisons and additional context.--Variables used in HUD's calculations include 24 measures such as people per household, average number of rooms per housing unit, monthly housing costs (mortgage/rent as well as utility and maintenance expenses), average number of cars per household, median commute distance, vehicle miles traveled per year, percent of trips taken on transit, street connectivity and walkability (measured by block density), and many more.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/. There you will find some background and an FAQ page, which includes the question:"Manhattan, San Francisco, and downtown Boston are some of the most expensive places to live in the country, yet the LAI shows them as affordable for the typical regional household. Why?" These areas have some of the lowest transportation costs in the country, which helps offset the high cost of housing. The area median income (AMI) in these regions is also high, so when costs are shown as a percent of income for the typical regional household these neighborhoods appear affordable; however, they are generally unaffordable to households earning less than the AMI.Date of Coverage: 2012-2016 Date Released: March 2019Date Downloaded from HUD Open Data: 4/18/19Further Documentation:LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation_**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**
Title: Location Affordability Index - NMCDC Copy
Summary: This layer contains the Location Affordability Index from U.S. Dept. of Housing and Urban Development (HUD) - standardized household, housing, and transportation cost estimates by census tract for 8 household profiles.
Notes: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas.
Prepared by: dianaclavery_uo, copied by EMcRae_NMCDC
Source: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas. Check the source documentation or other details above for more information about data sources.
Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=447a461f048845979f30a2478b9e65bb
UID: 73
Data Requested: Family income spent on basic need
Method of Acquisition: Search for Location Affordability Index in the Living Atlas. Make a copy of most recent map available. To update this map, copy the most recent map available. In a new tab, open the AGOL Assistant Portal tool and use the functions in the portal to copy the new maps JSON, and paste it over the old map (this map with item id
Date Acquired: Map copied on May 10, 2022
Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 6
Tags: PENDING
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimate of Median Household Income for Philadelphia County/city, PA (MHIPA42101A052NCEN) from 1989 to 2023 about Philadelphia County/City, PA; Philadelphia; PA; households; median; income; and USA.
Facebook
TwitterThis is a map to assist Department of Housing & Community Development staff determine if properties qualify for ARPA and repair funds.Targeted Rehab Boundaries Boundaries for the West Dallas Targeted Rehab Program (Census Tracts 106.01, 160.02, 105, 205, 101.01, 101.02, 43) and Tenth Street Rehab Program (Historic Tenth Street). Home repair programs available in these areas: Housing & Neighborhood Revitalization Targeted Rehabilitation Program (TRP) (dallascityhall.com) Unserved Areas Dallas Water Utilities (DWU) 's Unserved Areas Report identified geographical areas that need water and/or wastewater services throughout the City. DWU is in the process of building out service in these areas. (2020 update) Home repair programs available in these areas: Housing & Neighborhood Revitalization ARPA Septic Tank (dallascityhall.com) QCTs This service contains a list of census tracts that qualify for the American Rescue Plan Act (ARPA). The list was provided to EGIS by BMS. The data used to produce this service can be found at Qualified Census Tracts and Difficult Development Areas | HUD USER. Low-Income Housing Tax Credit Qualified Census Tracts must have 50 percent of households with incomes below 60 percent of the Area Median Gross Income (AMGI) or have a poverty rate of 25 percent or more. Difficult Development Areas (DDA) are areas with high land, construction and utility costs relative to the area median income and are based on Fair Market Rents, income limits, the 2010 census counts, and 5-year American Community Survey (ACS) data. Maps of Qualified Census Tracts and Difficult Development Areas are available at: 2022 and 2023 Small DDAs and QCTs | HUD USER. Qualified Census Tracts - Generate QCT Tables for Individual Areas (Also Includes DDA Information) This data was created by the Department of Housing and Urban Development in 2023. This data is updated on a yearly basis. Updated ARPA boundaries ARPA Home Repair Program boundaries for qualified neighborhoods. Home repair programs available in these areas: American Rescue Plan Act Neighborhood Revitalization Program (dallascityhall.com) (Limited availability, applications accepted based on funding available) Housing Opportunity Fund TIF DistrictsThis is the Housing Opportunity Fund TIF District map for Housing & Community Development and Economic Development in the City of Dallas. The three TIF districts in this map are areas within the City of Dallas with select TIF funds for homeowner stabilization programs that may include Home Improvement and Preservation Programs (HIPP) and the Dallas Homebuyer Assistance Program (DHAP). The three Housing Opportunity Fund TIF districts are: the Oak Cliff Housing TIF, the Fort Worth Avenue Housing TIF, and the Deep Ellum Housing TIF. Housing & Community Development is starting to implement these areas in 2025.
Facebook
TwitterPortugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.
Facebook
TwitterPlease note that the inundation area as displayed in this web map is only an estimate. The estimated inundation area was compiled from various data inputs including:911 calls for serviceBaton Rouge Fire Department search and rescue data points311 citizen requests for serviceStreet-level damage assessmentsDebris collection routesRoad closure informationNOAA imageryCivil Air Patrol imageryFEMA DFIRM flood hazard areasTo complement these datasets, the City-Parish also received input from the general public to identify areas that were or were not inundated, and modifications to the layer were made based on this crowdsource input. Please note that not all structures in the estimated inundated area were impacted by floodwaters, as some structures are elevated above the water line or were otherwise spared from flooding.
Facebook
Twitterhttps://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains counts and measures for individuals from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 2.
The variables included in this dataset are for the census usually resident population count (unless otherwise stated). All data is for level 1 of the classification.
The variables for part 2 of the dataset are:
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Te Whata
Under the Mana Ōrite Relationship Agreement, Te Kāhui Raraunga (TKR) will be publishing Māori descent and iwi affiliation data from the 2023 Census in partnership with Stats NZ. This will be available on Te Whata, a TKR platform.
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
Study participation time series
In the 2013 Census study participation was only collected for the census usually resident population count aged 15 years and over.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Concept descriptions and quality ratings
Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.
Disability indicator
This data should not be used as an official measure of disability prevalence. Disability prevalence estimates are only available from the 2023 Household Disability Survey. Household Disability Survey 2023: Final content has more information about the survey.
Activity limitations are measured using the Washington Group Short Set (WGSS). The WGSS asks about six basic activities that a person might have difficulty with: seeing, hearing, walking or climbing stairs, remembering or concentrating, washing all over or dressing, and communicating. A person was classified as disabled in the 2023 Census if there was at least one of these activities that they had a lot of difficulty with or could not do at all.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Measures
Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures
Facebook
TwitterThese data provide a spatial representation of the discrepancies between median income and average home sales in the central Arizona Phoenix
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset provides an extensive look into the financial health of software developers in major cities and metropolitan areas around the United States. We explore disparities between states and cities in terms of mean software developer salaries, median home prices, cost of living avgs, rent avgs, cost of living plus rent avgs and local purchasing power averages. Through this data set we can gain insights on how to better understand which areas are more financially viable than others when seeking employment within the software development field. Our data allow us to uncover patterns among certain geographic locations in order to identify other compelling financial opportunities that software developers may benefit from
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains valuable information about software developer salaries across states and cities in the United States. It is important for recruiters and professionals alike to understand what kind of compensation software developers are likely to receive, as it may be beneficial when considering job opportunities or applying for a promotion. This guide will provide an overview of what you can learn from this dataset.
The data is organized by metropolitan areas, which encompass multiple cities within the same geographical region (e.g., “New York-Northern New Jersey” covers both New York City and Newark). From there, each metro can be broken down further into a number of different factors that may affect software developer salaries in the area:
- Mean Software Developer Salary (adjusted): The average salary of software developers in that particular metro area after accounting for cost of living differences within the region.
- Mean Software Developer Salary (unadjusted): The average salary of software developers in that particular metro area before adjusting for cost-of-living discrepancies between locales.
- Number of Software Developer Jobs: This column lists how many total jobs are available to software developers in this particular metropolitan area.
- Median Home Price: A metric which shows median value of all homes currently on the market within this partcular city or state. It helps gauge how expensive housing costs might be to potential residents who already have an idea about their income/salary range expectations when considering a move/relocation into another location or potentially looking at mortgage/rental options etc.. 5) Cost Of Living Avg: A metric designed to measure affordability using local prices paid on common consumer goods like food , transportation , health care , housing & other services etc.. Also prominent here along with rent avg ,cost od living plus rent avg helping compare relative cost structures between different locations while assessing potential remunerations & risk associated with them . 6)Local Purchasing Power Avg : A measure reflecting expected difference in discretionary spending ability among households regardless their income level upon relocation due to price discrepancies across locations allows individual assessment critical during job search particularly regarding relocation as well as comparison based decision making across prospective candidates during any hiring process . 7 ) Rent Avg : Average rental costs for homes / apartments dealbreakers even among prime job prospects particularly medium income earners.(basis family size & other constraints ) 8 ) Cost Of Living Plus Rent Avg : Used here as one sized fits perspective towards measuring overall cost structure including items
- Comparing salaries of software developers in different cities to determine which city provides the best compensation package.
- Estimating the cost of relocating to a new city by looking at average costs such as rent and cost of living.
- Predicting job growth for software developers by analyzing factors like local purchasing power, median home price and number of jobs available
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking perm...
Facebook
Twitterhttps://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains counts and measures for households from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 1.
The variables included in this dataset are for households in occupied private dwellings (unless otherwise stated). All data is for level 1 of the classification (unless otherwise stated):
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Concept descriptions and quality ratings
Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.
Household crowding
Household crowding is based on the Canadian National Occupancy Standard (CNOS). It calculates the number of bedrooms needed based on the demographic composition of the household. The household crowding index methodology for 2023 Census has been updated to use gender instead of sex. Household crowding should be used with caution for small geographical areas due to high volatility between census years as a result of population change and urban development. There may be additional volatility in areas affected by the cyclone, particularly in Gisborne and Hawke's Bay. Household crowding index – 2023 Census has details on how the methodology has changed, differences from 2018 Census, and more.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Measures
Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures calculations. Averages and medians based on less than six units (e.g. individuals, dwellings, households, families, or extended families) are suppressed. This suppression threshold changes for other quantiles. Where the cells have been suppressed, a placeholder value has been used.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for 'Total stated' where this applies.
Symbol
-997 Not available
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
Facebook
Twitterhttps://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de448525https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de448525
Abstract (en): The Housing Affordability Data System (HADS), 2002, is a housing-unit level dataset that measures the affordability of housing units and the housing cost burdens of households, relative to area median incomes, poverty level incomes, and Fair Market Rents. The dataset contains selected variables from the AMERICAN HOUSING SURVEY, 2002: METROPOLITAN MICRODATA (ICPSR 4589), as well as custom, derived variables measuring monthly housing costs, housing cost burdens, assisted housing, and total salary income. Housing-level variables include information on the number of rooms in the housing unit, the year the unit was built, whether it was occupied or vacant, whether the unit was rented or owned, whether it was a single family or multi-unit structure, the number of units in the building, the current market value of the unit, and measures of relative housing costs. The dataset also includes variables describing the number of people living in the household, household income, and the type of residential area (e.g., urban or suburban). The weight variable (WEIGHT) used in this dataset was based on the weight used in the AMERICAN HOUSING SURVEY, 2002: METROPOLITAN MICRODATA (ICPSR 4589). Please refer to the codebook documentation for more information on how weights were derived. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Created variable labels and/or value labels.; Created online analysis version with question text.; Checked for undocumented or out-of-range codes.. Housing units among eight 1970-based metropolitan areas and five 1990-based metropolitan areas included in the AMERICAN HOUSING SURVEY, 2002: METROPOLITAN MICRODATA (ICPSR 4589). Please refer to the codebook documentation for more information about how each metropolitan area was sampled in the AMERICAN HOUSING SURVEY, 2002: METROPOLITAN MICRODATA (ICPSR 4589). The data available for download are not weighted and users will need to weight the data prior to analysis.This 2002 HADS dataset is based on the 2002 American Housing Survey (AHS) public use files, but only includes selected AHS variables. Users can make use of all the AHS variables by linking the HADS files to the standard AHS public use files. Since the AHS is a longitudinal survey, successive HADS files can be linked in order to examine changes in housing affordability over time, at the housing unit level. For more information on linking files, please refer to the codebook documentation.Variable names containing more than 16 characters were truncated in order to be compatible with current statistical programs. Therefore, variable names may differ slightly from those listed in the original documentation. Value labels for the variables SMSA, VACANCY, METRO, FMTMETRO, BUILT and TYPE were added from the codebook documentation of the AMERICAN HOUSING SURVEY, 2002: METROPOLITAN MICRODATA (ICPSR 4589).The formats of the weight variable and variables measuring percentage of cost and income were adjusted in order to accommodate the values present in these variables. The variable SMSA was converted from character to numeric.ICPSR created a unique sequential record identifier variable named CASEID for use with online analysis.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterThis dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.