http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
This dataset was created by amulil
Released under GPL 2
https://choosealicense.com/licenses/cc/https://choosealicense.com/licenses/cc/
FineVideo
FineVideo Description Dataset Explorer Revisions Dataset Distribution
How to download and use FineVideo Using datasets Using huggingface_hub Load a subset of the dataset
Dataset StructureData Instances Data Fields
Dataset Creation License CC-By Considerations for Using the Data Social Impact of Dataset Discussion of Biases
Additional Information Credits Future Work Opting out of FineVideo Citation Information
Terms of use for FineVideo… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFV/finevideo.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Further cleaning done. Please look through the dataset and ensure that I didn't miss anything. Update: Confirmed working method for training the model: https://huggingface.co/AlekseyKorshuk/vicuna-7b/discussions/4#64346c08ef6d5abefe42c12c Two choices:
Removes instances of "I'm sorry, but": https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json Has instances of "I'm sorry, but":… See the full description on the dataset page: https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered.
https://choosealicense.com/licenses/odc-by/https://choosealicense.com/licenses/odc-by/
🍷 FineWeb
15 trillion tokens of the finest data the 🌐 web has to offer
What is it?
The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This replication package contains datasets and scripts related to the paper: "*How do Hugging Face Models Document Datasets, Bias, and Licenses? An Empirical Study*"
## Root directory
- `statistics.r`: R script used to compute the correlation between usage and downloads, and the RQ1/RQ2 inter-rater agreements
- `modelsInfo.zip`: zip file containing all the downloaded model cards (in JSON format)
- `script`: directory containing all the scripts used to collect and process data. For further details, see README file inside the script directory.
## Dataset
- `Dataset/Dataset_HF-models-list.csv`: list of HF models analyzed
- `Dataset/Dataset_github-prj-list.txt`: list of GitHub projects using the *transformers* library
- `Dataset/Dataset_github-Prj_model-Used.csv`: contains usage pairs: project, model
- `Dataset/Dataset_prj-num-models-reused.csv`: number of models used by each GitHub project
- `Dataset/Dataset_model-download_num-prj_correlation.csv` contains, for each model used by GitHub projects: the name, the task, the number of reusing projects, and the number of downloads
## RQ1
- `RQ1/RQ1_dataset-list.txt`: list of HF datasets
- `RQ1/RQ1_datasetSample.csv`: sample set of models used for the manual analysis of datasets
- `RQ1/RQ1_analyzeDatasetTags.py`: Python script to analyze model tags for the presence of datasets. it requires to unzip the `modelsInfo.zip` in a directory with the same name (`modelsInfo`) at the root of the replication package folder. Produces the output to stdout. To redirect in a file fo be analyzed by the `RQ2/countDataset.py` script
- `RQ1/RQ1_countDataset.py`: given the output of `RQ2/analyzeDatasetTags.py` (passed as argument) produces, for each model, a list of Booleans indicating whether (i) the model only declares HF datasets, (ii) the model only declares external datasets, (iii) the model declares both, and (iv) the model is part of the sample for the manual analysis
- `RQ1/RQ1_datasetTags.csv`: output of `RQ2/analyzeDatasetTags.py`
- `RQ1/RQ1_dataset_usage_count.csv`: output of `RQ2/countDataset.py`
## RQ2
- `RQ2/tableBias.pdf`: table detailing the number of occurrences of different types of bias by model Task
- `RQ2/RQ2_bias_classification_sheet.csv`: results of the manual labeling
- `RQ2/RQ2_isBiased.csv`: file to compute the inter-rater agreement of whether or not a model documents Bias
- `RQ2/RQ2_biasAgrLabels.csv`: file to compute the inter-rater agreement related to bias categories
- `RQ2/RQ2_final_bias_categories_with_levels.csv`: for each model in the sample, this file lists (i) the bias leaf category, (ii) the first-level category, and (iii) the intermediate category
## RQ3
- `RQ3/RQ3_LicenseValidation.csv`: manual validation of a sample of licenses
- `RQ3/RQ3_{NETWORK-RESTRICTIVE|RESTRICTIVE|WEAK-RESTRICTIVE|PERMISSIVE}-license-list.txt`: lists of licenses with different permissiveness
- `RQ3/RQ3_prjs_license.csv`: for each project linked to models, among other fields it indicates the license tag and name
- `RQ3/RQ3_models_license.csv`: for each model, indicates among other pieces of info, whether the model has a license, and if yes what kind of license
- `RQ3/RQ3_model-prj-license_contingency_table.csv`: usage contingency table between projects' licenses (columns) and models' licenses (rows)
- `RQ3/RQ3_models_prjs_licenses_with_type.csv`: pairs project-model, with their respective licenses and permissiveness level
## scripts
Contains the scripts used to mine Hugging Face and GitHub. Details are in the enclosed README
https://choosealicense.com/licenses/cc/https://choosealicense.com/licenses/cc/
Localized Audio Visual DeepFake Dataset (LAV-DF)
This repo is the dataset for the DICTA paper Do You Really Mean That? Content Driven Audio-Visual Deepfake Dataset and Multimodal Method for Temporal Forgery Localization (Best Award), and the journal paper "Glitch in the Matrix!": A Large Scale Benchmark for Content Driven Audio-Visual Forgery Detection and Localization submitted to CVIU.
LAV-DF Dataset
Download
To use this LAV-DF dataset, you should… See the full description on the dataset page: https://huggingface.co/datasets/ControlNet/LAV-DF.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
MVBench
Important Update
[18/10/2024] Due to NTU RGB+D License, 320 videos from NTU RGB+D need to be downloaded manually. Please visit ROSE Lab to access the data. We also provide a list of the 320 videos used in MVBench for your reference.
We introduce a novel static-to-dynamic method for defining temporal-related tasks. By converting static tasks into dynamic ones, we facilitate systematic generation of video tasks necessitating a wide range of temporal abilities, from… See the full description on the dataset page: https://huggingface.co/datasets/OpenGVLab/MVBench.
Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
Summary
databricks-dolly-15k is an open source dataset of instruction-following records generated by thousands of Databricks employees in several of the behavioral categories outlined in the InstructGPT paper, including brainstorming, classification, closed QA, generation, information extraction, open QA, and summarization. This dataset can be used for any purpose, whether academic or commercial, under the terms of the Creative Commons Attribution-ShareAlike 3.0 Unported… See the full description on the dataset page: https://huggingface.co/datasets/databricks/databricks-dolly-15k.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Card for OpenAI HumanEval
Dataset Summary
The HumanEval dataset released by OpenAI includes 164 programming problems with a function sig- nature, docstring, body, and several unit tests. They were handwritten to ensure not to be included in the training set of code generation models.
Supported Tasks and Leaderboards
Languages
The programming problems are written in Python and contain English natural text in comments and docstrings.… See the full description on the dataset page: https://huggingface.co/datasets/openai/openai_humaneval.
https://choosealicense.com/licenses/undefined/https://choosealicense.com/licenses/undefined/
Dataset Card for tiny-imagenet
Dataset Summary
Tiny ImageNet contains 100000 images of 200 classes (500 for each class) downsized to 64×64 colored images. Each class has 500 training images, 50 validation images, and 50 test images.
Languages
The class labels in the dataset are in English.
Dataset Structure
Data Instances
{ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=64x64 at 0x1A800E8E190, 'label': 15 }… See the full description on the dataset page: https://huggingface.co/datasets/zh-plus/tiny-imagenet.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
In this huggingface discussion you can share what you used the dataset for. Derives from https://www.kaggle.com/datasets/rtatman/questionanswer-dataset?resource=download we generated our own subset using generate.py.
🚢 Stanford Human Preferences Dataset (SHP)
If you mention this dataset in a paper, please cite the paper: Understanding Dataset Difficulty with V-Usable Information (ICML 2022).
Summary
SHP is a dataset of 385K collective human preferences over responses to questions/instructions in 18 different subject areas, from cooking to legal advice. The preferences are meant to reflect the helpfulness of one response over another, and are intended to be used for training RLHF… See the full description on the dataset page: https://huggingface.co/datasets/stanfordnlp/SHP.
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
Dataset Card for "imagenet_1k_resized_256"
Dataset summary
The same ImageNet dataset but all the smaller side resized to 256. A lot of pretraining workflows contain resizing images to 256 and random cropping to 224x224, this is why 256 is chosen. The resized dataset can also be downloaded much faster and consume less space than the original one. See here for detailed readme.
Dataset Structure
Below is the example of one row of data. Note that the labels in… See the full description on the dataset page: https://huggingface.co/datasets/evanarlian/imagenet_1k_resized_256.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Zenseact Open Dataset (ZOD) is a large multi-modal autonomous driving (AD) dataset, created by researchers at Zenseact. It was collected over a 2-year period in 14 different European counties, using a fleet of vehicles equipped with a full sensor suite. The dataset consists of three subsets: Frames, Sequences, and Drives, designed to encompass both data diversity and support for spatiotemporal learning, sensor fusion, localization, and mapping. Together with the data, we have developed a SDK containing tutorials, downloading functionality, and a dataset API for easy access to the data. The development kit is available on Github.
https://choosealicense.com/licenses/cdla-permissive-2.0/https://choosealicense.com/licenses/cdla-permissive-2.0/
This dataset is the Version 2.0 of microsoft/FStarDataSet.
Primary-Objective
This dataset's primary objective is to train and evaluate Proof-oriented Programming with AI (PoPAI, in short). Given a specification of a program and proof in F*, the objective of a AI model is to synthesize the implemantation (see below for details about the usage of this dataset, including the input and output).
Data Format
Each of the examples in this dataset are organized as dictionaries… See the full description on the dataset page: https://huggingface.co/datasets/microsoft/FStarDataSet-V2.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Card for GSM8K
Dataset Summary
GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning.
These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to reach the… See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
InternVid
InternVid-10M-FLT
We present InternVid-10M-FLT, a subset of this dataset, consisting of 10 million video clips, with generated high-quality captions for publicly available web videos.
Download
The 10M samples are provided in jsonlines file. Columns include the videoID, timestamps, generated caption and their UMT similarity scores.\
How to Use
from datasets import load_dataset dataset = load_dataset("OpenGVLab/InternVid")
Method… See the full description on the dataset page: https://huggingface.co/datasets/OpenGVLab/InternVid.
Dataset Card for LLaVA-NeXT
We provide the whole details of LLaVA-NeXT Dataset. In this dataset, we include the data that was used in the instruction tuning stage for LLaVA-NeXT and LLaVA-NeXT(stronger). Aug 30, 2024: We update the dataset with raw format (de-compress it for json file and images with structured folder), you can directly download them if you are familiar with LLaVA data format.
Dataset Sources
Compared to the instruction data mixture for LLaVA-1.5… See the full description on the dataset page: https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All eight of datasets in ESB can be downloaded and prepared in just a single line of code through the Hugging Face Datasets library: from datasets import load_dataset
librispeech = load_dataset("esb/datasets", "librispeech", split="train")
"esb/datasets": the repository namespace. This is fixed for all ESB datasets.
"librispeech": the dataset name. This can be changed to any of any one of the eight datasets in ESB to download that dataset.
split="train": the split. Set this to one of… See the full description on the dataset page: https://huggingface.co/datasets/hf-audio/esb-datasets-test-only.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Dataset Card for Alpaca
Dataset Summary
Alpaca is a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003 engine. This instruction data can be used to conduct instruction-tuning for language models and make the language model follow instruction better. The authors built on the data generation pipeline from Self-Instruct framework and made the following modifications:
The text-davinci-003 engine to generate the instruction data instead… See the full description on the dataset page: https://huggingface.co/datasets/tatsu-lab/alpaca.
http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
This dataset was created by amulil
Released under GPL 2