100+ datasets found
  1. h

    IQA-PyTorch-Datasets

    • huggingface.co
    Updated Nov 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chaofeng Chen (2025). IQA-PyTorch-Datasets [Dataset]. https://huggingface.co/datasets/chaofengc/IQA-PyTorch-Datasets
    Explore at:
    Dataset updated
    Nov 30, 2025
    Authors
    Chaofeng Chen
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Description

    This is the dataset repository used in the pyiqa toolbox. Please refer to Awesome Image Quality Assessment for details of each dataset Example commandline script with huggingface-cli: huggingface-cli download chaofengc/IQA-PyTorch-Datasets live.tgz --local-dir ./datasets --repo-type dataset cd datasets tar -xzvf live.tgz

      Disclaimer for This Dataset Collection
    

    This collection of datasets is compiled and maintained for academic, research, and educational… See the full description on the dataset page: https://huggingface.co/datasets/chaofengc/IQA-PyTorch-Datasets.

  2. pytorch-transformers

    • kaggle.com
    zip
    Updated May 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cheongwoong Kang (2020). pytorch-transformers [Dataset]. https://www.kaggle.com/cheongwoongkang/pytorchtransformers
    Explore at:
    zip(6408980 bytes)Available download formats
    Dataset updated
    May 14, 2020
    Authors
    Cheongwoong Kang
    Description
  3. pytorch-image-models-dependents

    • huggingface.co
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hugging Face OSS Metrics (2023). pytorch-image-models-dependents [Dataset]. https://huggingface.co/datasets/open-source-metrics/pytorch-image-models-dependents
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    Hugging Facehttps://huggingface.co/
    Authors
    Hugging Face OSS Metrics
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    pytorch-image-models metrics

    This dataset contains metrics about the huggingface/pytorch-image-models package. Number of repositories in the dataset: 3615 Number of packages in the dataset: 89

      Package dependents
    

    This contains the data available in the used-by tab on GitHub.

      Package & Repository star count
    

    This section shows the package and repository star count, individually.

    Package Repository

    There are 18 packages that have more than 1000… See the full description on the dataset page: https://huggingface.co/datasets/open-source-metrics/pytorch-image-models-dependents.

  4. Pytorch HuggingFace Datasets

    • kaggle.com
    zip
    Updated Dec 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Megha Kapoor (2019). Pytorch HuggingFace Datasets [Dataset]. https://www.kaggle.com/datasets/meghakapoor/pytorch-huggingface-datasets
    Explore at:
    zip(1612603196 bytes)Available download formats
    Dataset updated
    Dec 21, 2019
    Authors
    Megha Kapoor
    Description

    Dataset

    This dataset was created by Megha Kapoor

    Contents

  5. h

    dped-pytorch

    • huggingface.co
    Updated Jun 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ivan (2025). dped-pytorch [Dataset]. https://huggingface.co/datasets/i44p/dped-pytorch
    Explore at:
    Dataset updated
    Jun 5, 2025
    Authors
    Ivan
    Description

    i44p/dped-pytorch dataset hosted on Hugging Face and contributed by the HF Datasets community

  6. PyTorch 1.12.1 + CUDA 11.6 + HuggingFace

    • kaggle.com
    zip
    Updated Feb 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johannes (2023). PyTorch 1.12.1 + CUDA 11.6 + HuggingFace [Dataset]. https://www.kaggle.com/datasets/ecoue123/pytorchhuggingface-wheels-cuda-116
    Explore at:
    zip(1973005623 bytes)Available download formats
    Dataset updated
    Feb 2, 2023
    Authors
    Johannes
    Description

    !python -m pip install --upgrade /kaggle/input/pytorchhuggingface-wheels-cuda-116/*.whl

  7. E

    Data from: PyTorch model for Slovenian Named Entity Recognition SloNER 1.0

    • live.european-language-grid.eu
    Updated Jan 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). PyTorch model for Slovenian Named Entity Recognition SloNER 1.0 [Dataset]. https://live.european-language-grid.eu/catalogue/tool-service/20980
    Explore at:
    Dataset updated
    Jan 26, 2023
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    The SloNER is a model for Slovenian Named Entity Recognition. It is is a PyTorch neural network model, intended for usage with the HuggingFace transformers library (https://github.com/huggingface/transformers).

    The model is based on the Slovenian RoBERTa contextual embeddings model SloBERTa 2.0 (http://hdl.handle.net/11356/1397). The model was trained on the SUK 1.0 training corpus (http://hdl.handle.net/11356/1747).The source code of the model is available on GitHub repository https://github.com/clarinsi/SloNER.

  8. deberta-v3-base

    • kaggle.com
    zip
    Updated Oct 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paolo Rechia (2022). deberta-v3-base [Dataset]. https://www.kaggle.com/datasets/paolorechia/deberta-v3-base
    Explore at:
    zip(342000711 bytes)Available download formats
    Dataset updated
    Oct 16, 2022
    Authors
    Paolo Rechia
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Deberta v3 PyTorch model from huggingface:

    https://huggingface.co/microsoft/deberta-v3-base/tree/main

    Meant to be used for competitions where internet access is disallowed.

  9. h

    gene_annotations

    • huggingface.co
    Updated Oct 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PyTorch Survival (2023). gene_annotations [Dataset]. https://huggingface.co/datasets/pytorch-survival/gene_annotations
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 13, 2023
    Authors
    PyTorch Survival
    Description

    pytorch-survival/gene_annotations dataset hosted on Hugging Face and contributed by the HF Datasets community

  10. h

    all-pytorch-code

    • huggingface.co
    Updated Oct 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kye Gomez (2023). all-pytorch-code [Dataset]. https://huggingface.co/datasets/kye/all-pytorch-code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 9, 2023
    Authors
    Kye Gomez
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    kye/all-pytorch-code dataset hosted on Hugging Face and contributed by the HF Datasets community

  11. Accelerate by HuggingFace (for offline usage)

    • kaggle.com
    zip
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shreyansh Singh (2021). Accelerate by HuggingFace (for offline usage) [Dataset]. https://www.kaggle.com/shreyansh2626/accelerate-by-huggingface-for-offline-usage
    Explore at:
    zip(45173 bytes)Available download formats
    Dataset updated
    Apr 16, 2021
    Authors
    Shreyansh Singh
    Description

    Context

    Accelerate is a Python library that allows running raw PyTorch training scripts on any kind of device very easily. It allows easy integration into your code. More details are here - https://huggingface.co/blog/accelerate-library

  12. h

    pytorch-llama

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    H, pytorch-llama [Dataset]. https://huggingface.co/datasets/Crayon2023/pytorch-llama
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    H
    Description

    Crayon2023/pytorch-llama dataset hosted on Hugging Face and contributed by the HF Datasets community

  13. PyTorch 1.12.1 + HuggingFace

    • kaggle.com
    zip
    Updated Feb 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johannes (2023). PyTorch 1.12.1 + HuggingFace [Dataset]. https://www.kaggle.com/datasets/ecoue123/pytorchhuggingface-wheels
    Explore at:
    zip(251159566 bytes)Available download formats
    Dataset updated
    Feb 2, 2023
    Authors
    Johannes
    Description

    !python -m pip install --upgrade /kaggle/input/pytorchhuggingface-wheels/*.whl

  14. pretrained transformers

    • kaggle.com
    zip
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikita Kozodoi (2021). pretrained transformers [Dataset]. https://www.kaggle.com/kozodoi/transformers
    Explore at:
    zip(10650926247 bytes)Available download formats
    Dataset updated
    Jul 27, 2021
    Authors
    Nikita Kozodoi
    Description

    To import pretrained transformer weights, simply specify the path in the corresponding function: model_path = '../input/transformers/roberta-base' model = AutoModel.from_pretrained(model_path) See this notebook for a more detailed example.

    The dataset includes the following weights, configs and tokenizers: - albert-large-v2 - bert-base-uncased - bert-large-uncased - distilroberta-base - distilbert-base-uncased - google/electra-base-discriminator - facebook/bart-base - facebook/bart-large - funnel-transformer/small - funnel-transformer/large - roberta-base - roberta-large - t5-base - t5-large - xlnet-base-cased - xlnet-large-cased

    All files are downloaded from Huggingface Model Hub at https://huggingface.co/models. License: Apache License 2.0

  15. pytorch-pretrained-BERT

    • kaggle.com
    zip
    Updated Apr 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kazuhiro (2019). pytorch-pretrained-BERT [Dataset]. https://www.kaggle.com/matsuik/ppbert
    Explore at:
    zip(3511104 bytes)Available download formats
    Dataset updated
    Apr 17, 2019
    Authors
    Kazuhiro
    Description
  16. h

    IQA-PyTorch-Datasets-metainfo

    • huggingface.co
    Updated Oct 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chaofeng Chen (2025). IQA-PyTorch-Datasets-metainfo [Dataset]. https://huggingface.co/datasets/chaofengc/IQA-PyTorch-Datasets-metainfo
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 24, 2025
    Authors
    Chaofeng Chen
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Description

    This repo contains the meta information of datasets stored in chaofengc/IQA-PyTorch-Weights. They are used in the training codes of the pyiqa toolbox.

      Disclaimer for Datasets Included
    

    This collection of datasets is compiled and maintained for academic, research, and educational purposes. It is important to note the following points regarding the datasets included in this Collection:

    Rights & Permissions: Each dataset in this Collection is the property of its… See the full description on the dataset page: https://huggingface.co/datasets/chaofengc/IQA-PyTorch-Datasets-metainfo.

  17. h

    pytorch-repo-code

    • huggingface.co
    Updated Oct 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kye Gomez (2023). pytorch-repo-code [Dataset]. https://huggingface.co/datasets/kye/pytorch-repo-code
    Explore at:
    Dataset updated
    Oct 20, 2023
    Authors
    Kye Gomez
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    kye/pytorch-repo-code dataset hosted on Hugging Face and contributed by the HF Datasets community

  18. h

    pytorch-Qwen-7B

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    H, pytorch-Qwen-7B [Dataset]. https://huggingface.co/datasets/Crayon2023/pytorch-Qwen-7B
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    H
    Description

    Crayon2023/pytorch-Qwen-7B dataset hosted on Hugging Face and contributed by the HF Datasets community

  19. h

    damaged-media

    • huggingface.co
    Updated May 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniela Ivanova (2024). damaged-media [Dataset]. https://huggingface.co/datasets/danielaivanova/damaged-media
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 6, 2024
    Authors
    Daniela Ivanova
    License

    https://choosealicense.com/licenses/afl-3.0/https://choosealicense.com/licenses/afl-3.0/

    Description

    Dataset Card for "ARTeFACT"

    ARTeFACT: Benchmarking Segmentation Models on Diverse Analogue Media Damage

    Here we provide example code for downloading the data, loading it as a PyTorch dataset, splitting by material and/or content, and visualising examples.

      Housekeeping
    

    !pip install datasets !pip install -qqqU wandb transformers pytorch-lightning==1.9.2 albumentations torchmetrics torchinfo !pip install -qqq requests gradio

    import os from glob import glob

    import cv2… See the full description on the dataset page: https://huggingface.co/datasets/danielaivanova/damaged-media.

  20. Distilbert_Huggingface_TF_PT_models

    • kaggle.com
    zip
    Updated Jan 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    RAHUL BAJAJ (2022). Distilbert_Huggingface_TF_PT_models [Dataset]. https://www.kaggle.com/datasets/bajajra/distilbert-huggingface-tf-pt
    Explore at:
    zip(2322298545 bytes)Available download formats
    Dataset updated
    Jan 31, 2022
    Authors
    RAHUL BAJAJ
    Description

    Dataset

    This dataset was created by RAHUL BAJAJ

    Contents

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Chaofeng Chen (2025). IQA-PyTorch-Datasets [Dataset]. https://huggingface.co/datasets/chaofengc/IQA-PyTorch-Datasets

IQA-PyTorch-Datasets

chaofengc/IQA-PyTorch-Datasets

Explore at:
Dataset updated
Nov 30, 2025
Authors
Chaofeng Chen
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Description

Description

This is the dataset repository used in the pyiqa toolbox. Please refer to Awesome Image Quality Assessment for details of each dataset Example commandline script with huggingface-cli: huggingface-cli download chaofengc/IQA-PyTorch-Datasets live.tgz --local-dir ./datasets --repo-type dataset cd datasets tar -xzvf live.tgz

  Disclaimer for This Dataset Collection

This collection of datasets is compiled and maintained for academic, research, and educational… See the full description on the dataset page: https://huggingface.co/datasets/chaofengc/IQA-PyTorch-Datasets.

Search
Clear search
Close search
Google apps
Main menu