From the mid-19th century until today, life expectancy at birth in the United States has roughly doubled, from 39.4 years in 1850 to 79.6 years in 2025. It is estimated that life expectancy in the U.S. began its upward trajectory in the 1880s, largely driven by the decline in infant and child mortality through factors such as vaccination programs, antibiotics, and other healthcare advancements. Improved food security and access to clean water, as well as general increases in living standards (such as better housing, education, and increased safety) also contributed to a rise in life expectancy across all age brackets. There were notable dips in life expectancy; with an eight year drop during the American Civil War in the 1860s, a seven year drop during the Spanish Flu empidemic in 1918, and a 2.5 year drop during the Covid-19 pandemic. There were also notable plateaus (and minor decreases) not due to major historical events, such as that of the 2010s, which has been attributed to a combination of factors such as unhealthy lifestyles, poor access to healthcare, poverty, and increased suicide rates, among others. However, despite the rate of progress slowing since the 1950s, most decades do see a general increase in the long term, and current UN projections predict that life expectancy at birth in the U.S. will increase by another nine years before the end of the century.
In 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84–83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53–54 years.
Life expectancy at birth and at age 65, by sex, on a three-year average basis.
In 2023, the median age of the population of the United States was 39.2 years. While this may seem quite young, the median age in 1960 was even younger, at 29.5 years. The aging population in the United States means that society is going to have to find a way to adapt to the larger numbers of older people. Everything from Social Security to employment to the age of retirement will have to change if the population is expected to age more while having fewer children. The world is getting older It’s not only the United States that is facing this particular demographic dilemma. In 1950, the global median age was 23.6 years. This number is projected to increase to 41.9 years by the year 2100. This means that not only the U.S., but the rest of the world will also have to find ways to adapt to the aging population.
Global life expectancy at birth has risen significantly since the mid-1900s, from roughly 46 years in 1950 to 73.2 years in 2023. Post-COVID-19 projections There was a drop of 1.7 years during the COVID-19 pandemic, between 2019 and 2021, however, figures resumed upon their previous trajectory the following year due to the implementation of vaccination campaigns and the lower severity of later strains of the virus. By the end of the century it is believed that global life expectancy from birth will reach 82 years, although growth will slow in the coming decades as many of the more-populous Asian countries reach demographic maturity. However, there is still expected to be a wide gap between various regions at the end of the 2100s, with the Europe and North America expected to have life expectancies around 90 years, whereas Sub-Saharan Africa is predicted to be in the low-70s. The Great Leap Forward While a decrease of one year during the COVID-19 pandemic may appear insignificant, this is the largest decline in life expectancy since the "Great Leap Forward" in China in 1958, which caused global life expectancy to fall by almost four years between by 1960. The "Great Leap Forward" was a series of modernizing reforms, which sought to rapidly transition China's agrarian economy into an industrial economy, but mismanagement led to tens of millions of deaths through famine and disease.
This statistic shows the average life expectancy in North America for those born in 2022, by gender and region. In Canada, the average life expectancy was 80 years for males and 84 years for females.
Life expectancy in North America
Of those considered in this statistic, the life expectancy of female Canadian infants born in 2021 was the longest, at 84 years. Female infants born in America that year had a similarly high life expectancy of 81 years. Male infants, meanwhile, had lower life expectancies of 80 years (Canada) and 76 years (USA).
Compare this to the worldwide life expectancy for babies born in 2021: 75 years for women and 71 years for men. Of continents worldwide, North America ranks equal first in terms of life expectancy of (77 years for men and 81 years for women). Life expectancy is lowest in Africa at just 63 years and 66 years for males and females respectively. Japan is the country with the highest life expectancy worldwide for babies born in 2020.
Life expectancy is calculated according to current mortality rates of the population in question. Global variations in life expectancy are caused by differences in medical care, public health and diet, and reflect global inequalities in economic circumstances. Africa’s low life expectancy, for example, can be attributed in part to the AIDS epidemic. In 2019, around 72,000 people died of AIDS in South Africa, the largest amount worldwide. Nigeria, Tanzania and India were also high on the list of countries ranked by AIDS deaths that year. Likewise, Africa has by far the highest rate of mortality by communicable disease (i.e. AIDS, neglected tropics diseases, malaria and tuberculosis).
https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
File Description: "Life Expectancy Data.csv" This dataset contains 2,938 entries and 22 columns, covering life expectancy and related health indicators for multiple nations from 2000 to 2015. It includes country-wise data and other economic, social, and health metrics. Column Description: 1. Country – Name of the country. 2. Year – Data year (ranging from 2000 to 2015). 3. Status – Economic classification (Developing/Developed). 4. Life expectancy – Average lifespan in years. 5. Adult Mortality – Probability of death between ages 15-60 per 1,000 individuals. 6. Infant Deaths – Number of infant deaths per 1,000 live births. 7. Alcohol – Per capita alcohol consumption. 8. Percentage Expenditure – Government health expenditure as a percentage of GDP. 9. Hepatitis B – Immunization coverage percentage. 10. Measles – Number of reported measles cases. 11. BMI – Average Body Mass Index. 12. Under-Five Deaths – Mortality rate for children under five. 13. Polio & Diphtheria – Immunization rates. 14. HIV/AIDS – Deaths due to HIV/AIDS per 1,000 individuals. 15. GDP – Gross Domestic Product per capita. 16. Population – Total population of the country. 17. Thinness (1-19 years, 5-9 years) – Percentage of underweight children. 18. Income Composition of Resources– Human development index proxy. 19. Schooling– Average number of years of schooling. Missing Data: Some columns (like Hepatitis B, GDP, Population, Total Expenditure) contain missing values. Further File Information: Total Countries: 193 Years Covered: 2000–2015 Total Entries: 2,938 Missing Data Overview: Some columns have missing values, notably: Hepatitis B (553 missing) GDP (448 missing) Population (652 missing) Total expenditure (226 missing) Income Composition of Resources (167 missing) Schooling (163 missing) Summary Statistics: Life Expectancy:
Range: 36.3 to 89 years Mean: 69.2 years Adult Mortality:
Mean: 165 per 1,000 Max: 723 per 1,000 GDP per Capita:
Mean: $7,483 Max: $119,172 Population:
Mean: ~12.75 million Max: 1.29 billion Education:
Schooling Average: 12 years Max: 20.7 years
Futuristic Scope of this data: For comparative analysis of the 2000–2015 life expectancy dataset with new datasets on the same parametres , you can perform several statistical tests and analytical methods based on different research questions. Below are some key tests and approaches:
This map shows median age in the US by country, state, county, tract, and congressional district for 2023. ArcGIS Online account required for use.The pop-up is configured to show median age, median age by sex, child age (under 18) population, senior age (over 65) population, the age dependency ratio, and population by 5 year age increments. Blending is used at the Tract level to highlight areas of human settlement. Congressional district is turned off by default and can be enabled in the Layers pane.Esri 2023 Age Dependency Ratio is the estimated ratio of the child population (Age 0-17) and senior population (Age 65+) to the working-age population (Age 18-64) in the geographic area. This ratio is then multiplied by 100. Higher ratios denote that a greater burden is carried by working-age people. Lower ratios mean more people are working who can support the dependent population. Read more. See Updated Demographics for more information on Esri Demographic variables.Esri Updated Demographics represent the suite of annually updated U.S. demographic data that provides current-year and five-year forecasts for more than two thousand demographic and socioeconomic characteristics, a subset of which is included in this layer. Included are a host of tables covering key characteristics of the population, households, housing, age, race, income, and much more. Esri's Updated Demographics data consists of point estimates, representing July 1 of the current and forecast years.Esri Updated Demographics DocumentationMethodologyUnderstanding Esri’s Updated Demographics portfolioEssential Esri Demographics vocabularyThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. This layer requires an ArcGIS Online subscription and does not consume credits. Please cite Esri when using this data. For information about purchasing additional Esri's Updated Demographics data, contact datasales@esri.com. Feedback: we would like to hear from you while this layer is in beta release. If you have any feedback regarding this item or Esri Demographics, please use this survey.
This statistic shows the median age of the world population from 1950 to 2100. By 2100, the global median age is projected to be 41.9 years of age.
This table contains 2394 series, with data for years 1991 -1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 3;Income adequacy quintile 2 ...), Age (14 items: At 25 years; At 30 years; At 35 years; At 40 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Probability of survival; Low 95% confidence interval; life expectancy; High 95% confidence interval; life expectancy ...).
71.84 (years) in 2010. Life Expectancy refers to the average number of years that people who already have lived to a certain age and can relive. It reflects integrated indicators of the level of human health and the level of death and is mainly affected by the level of social and economic conditions and health standards and other factors, and differs a lot in different societies and different period of time. In the case of not specified ages, the average life expectancy refers to life expectancy of the population aged 0.
Monaco is the country with the highest median age in the world. The population has a median age of around 57 years, which is around six years more than in Japan and Saint Pierre and Miquelon – the other countries that make up the top three. Southern European countries make up a large part of the top 20, with Italy, Slovenia, Greece, San Marino, Andorra, and Croatia all making the list. Low infant mortality means higher life expectancy Monaco and Japan also have the lowest infant mortality rates in the world, which contributes to the calculation of a higher life expectancy because fewer people are dying in the first years of life. Indeed, many of the nations with a high median age also feature on the list of countries with the highest average life expectancy, such as San Marino, Japan, Italy, and Lichtenstein. Demographics of islands and small countries Many smaller countries and island nations have populations with a high median age, such as Guernsey and the Isle of Man, which are both island territories within the British Isles. An explanation for this could be that younger people leave to seek work or education opportunities, while others choose to relocate there for retirement.
73.52 (years) in 2010. Life Expectancy refers to the average number of years that people who already have lived to a certain age and can relive. It reflects integrated indicators of the level of human health and the level of death and is mainly affected by the level of social and economic conditions and health standards and other factors, and differs a lot in different societies and different period of time. In the case of not specified ages, the average life expectancy refers to life expectancy of the population aged 0.
75,58 (years) in 2010. Life Expectancy refers to the average number of years that people who already have lived to a certain age and can relive. It reflects integrated indicators of the level of human health and the level of death and is mainly affected by the level of social and economic conditions and health standards and other factors, and differs a lot in different societies and different period of time. In the case of not specified ages, the average life expectancy refers to life expectancy of the population aged 0.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: Analysis of Variance (ANOVA) test has been applied to check the difference in mean age at menarche across categories of covariates; P
73.16 (years) in 2010. Life Expectancy refers to the average number of years that people who already have lived to a certain age and can relive. It reflects integrated indicators of the level of human health and the level of death and is mainly affected by the level of social and economic conditions and health standards and other factors, and differs a lot in different societies and different period of time. In the case of not specified ages, the average life expectancy refers to life expectancy of the population aged 0.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken out by age group. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in July 2020, this dataset will be updated every weekday. Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020. A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity.
70,30 (years) in 2010. Life Expectancy refers to the average number of years that people who already have lived to a certain age and can relive. It reflects integrated indicators of the level of human health and the level of death and is mainly affected by the level of social and economic conditions and health standards and other factors, and differs a lot in different societies and different period of time. In the case of not specified ages, the average life expectancy refers to life expectancy of the population aged 0.
It is only in the past two centuries where demographics and the development of human populations has emerged as a subject in its own right, as industrialization and improvements in medicine gave way to exponential growth of the world's population. There are very few known demographic studies conducted before the 1800s, which means that modern scholars have had to use a variety of documents from centuries gone by, along with archeological and anthropological studies, to try and gain a better understanding of the world's demographic development. Genealogical records One such method is the study of genealogical records from the past; luckily, there are many genealogies relating to European families that date back as far as medieval times. Unfortunately, however, all of these studies relate to families in the upper and elite classes; this is not entirely representative of the overall population as these families had a much higher standard of living and were less susceptible to famine or malnutrition than the average person (although elites were more likely to die during times of war). Nonetheless, there is much to be learned from this data. Impact of the Black Death In the centuries between 1200 and 1745, English male aristocrats who made it to their 21st birthday were generally expected to live to an age between 62 and 72 years old. The only century where life expectancy among this group was much lower was in the 1300s, where the Black Death caused life expectancy among adult English noblemen to drop to just 45 years. Experts assume that the pre-plague population of England was somewhere between four and seven million people in the thirteenth century, and just two million in the fourteenth century, meaning that Britain lost at least half of its population due to the plague. Although the plague only peaked in England for approximately eighteen months, between 1348 and 1350, it devastated the entire population, and further outbreaks in the following decades caused life expectancy in the decade to drop further. The bubonic plague did return to England sporadically until the mid-seventeenth century, although life expectancy among English male aristocrats rose again in the centuries following the worst outbreak, and even peaked at more than 71 years in the first half of the sixteenth century.
From the mid-19th century until today, life expectancy at birth in the United States has roughly doubled, from 39.4 years in 1850 to 79.6 years in 2025. It is estimated that life expectancy in the U.S. began its upward trajectory in the 1880s, largely driven by the decline in infant and child mortality through factors such as vaccination programs, antibiotics, and other healthcare advancements. Improved food security and access to clean water, as well as general increases in living standards (such as better housing, education, and increased safety) also contributed to a rise in life expectancy across all age brackets. There were notable dips in life expectancy; with an eight year drop during the American Civil War in the 1860s, a seven year drop during the Spanish Flu empidemic in 1918, and a 2.5 year drop during the Covid-19 pandemic. There were also notable plateaus (and minor decreases) not due to major historical events, such as that of the 2010s, which has been attributed to a combination of factors such as unhealthy lifestyles, poor access to healthcare, poverty, and increased suicide rates, among others. However, despite the rate of progress slowing since the 1950s, most decades do see a general increase in the long term, and current UN projections predict that life expectancy at birth in the U.S. will increase by another nine years before the end of the century.