A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.
Over the past 160 years, life expectancy (from birth) in the United States has risen from 39.4 years in 1860, to 78.9 years in 2020. One of the major reasons for the overall increase of life expectancy in the last two centuries is the fact that the infant and child mortality rates have decreased by so much during this time. Medical advancements, fewer wars and improved living standards also mean that people are living longer than they did in previous centuries.
Despite this overall increase, the life expectancy dropped three times since 1860; from 1865 to 1870 during the American Civil War, from 1915 to 1920 during the First World War and following Spanish Flu epidemic, and it has dropped again between 2015 and now. The reason for the most recent drop in life expectancy is not a result of any specific event, but has been attributed to negative societal trends, such as unbalanced diets and sedentary lifestyles, high medical costs, and increasing rates of suicide and drug use.
For most of the world, throughout most of human history, the average life expectancy from birth was around 24. This figure fluctuated greatly depending on the time or region, and was higher than 24 in most individual years, but factors such as pandemics, famines, and conflicts caused regular spikes in mortality and reduced life expectancy. Child mortality The most significant difference between historical mortality rates and modern figures is that child and infant mortality was so high in pre-industrial times; before the introduction of vaccination, water treatment, and other medical knowledge or technologies, women would have around seven children throughout their lifetime, but around half of these would not make it to adulthood. Accurate, historical figures for infant mortality are difficult to ascertain, as it was so prevalent, it took place in the home, and was rarely recorded in censuses; however, figures from this source suggest that the rate was around 300 deaths per 1,000 live births in some years, meaning that almost one in three infants did not make it to their first birthday in certain periods. For those who survived to adolescence, they could expect to live into their forties or fifties on average. Modern figures It was not until the eradication of plague and improvements in housing and infrastructure in recent centuries where life expectancy began to rise in some parts of Europe, before industrialization and medical advances led to the onset of the demographic transition across the world. Today, global life expectancy from birth is roughly three times higher than in pre-industrial times, at almost 73 years. It is higher still in more demographically and economically developed countries; life expectancy is over 82 years in the three European countries shown, and over 84 in Japan. For the least developed countries, mostly found in Sub-Saharan Africa, life expectancy from birth can be as low as 53 years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>U.S. life expectancy for 2024 was <strong>79.25</strong>, a <strong>1.11% increase</strong> from 2023.</li>
<li>U.S. life expectancy for 2023 was <strong>78.39</strong>, a <strong>1.23% increase</strong> from 2022.</li>
<li>U.S. life expectancy for 2022 was <strong>77.43</strong>, a <strong>1.45% increase</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
It is only in the past two centuries where demographics and the development of human populations has emerged as a subject in its own right, as industrialization and improvements in medicine gave way to exponential growth of the world's population. There are very few known demographic studies conducted before the 1800s, which means that modern scholars have had to use a variety of documents from centuries gone by, along with archeological and anthropological studies, to try and gain a better understanding of the world's demographic development. Genealogical records One such method is the study of genealogical records from the past; luckily, there are many genealogies relating to European families that date back as far as medieval times. Unfortunately, however, all of these studies relate to families in the upper and elite classes; this is not entirely representative of the overall population as these families had a much higher standard of living and were less susceptible to famine or malnutrition than the average person (although elites were more likely to die during times of war). Nonetheless, there is much to be learned from this data. Impact of the Black Death In the centuries between 1200 and 1745, English male aristocrats who made it to their 21st birthday were generally expected to live to an age between 62 and 72 years old. The only century where life expectancy among this group was much lower was in the 1300s, where the Black Death caused life expectancy among adult English noblemen to drop to just 45 years. Experts assume that the pre-plague population of England was somewhere between four and seven million people in the thirteenth century, and just two million in the fourteenth century, meaning that Britain lost at least half of its population due to the plague. Although the plague only peaked in England for approximately eighteen months, between 1348 and 1350, it devastated the entire population, and further outbreaks in the following decades caused life expectancy in the decade to drop further. The bubonic plague did return to England sporadically until the mid-seventeenth century, although life expectancy among English male aristocrats rose again in the centuries following the worst outbreak, and even peaked at more than 71 years in the first half of the sixteenth century.
Keywords; Search terms: historical time series; historical statistics; histat / HISTAT . Abstract: In this study the constantly rising human life expectancy since the beginning of the 18th century is analysed in some regions of Germany in comparative point of view. On the basis of worldwide singular sources in terms of clan registers of villages and localities as well as flow sheets the researcher Arthur E. Imhof and his research group of the ‘Freie Universität Berlin’ analysed more than 130.000 individual biografies from the 17th till the 19th century in six regions of northern, southern and central Germany. Aim of this research project was to compile area life-tables and to compute the life-expectancy. To enable comparisons with life-expectancy-calculations of today, all data originally prepared by generations are transformed into period-tables according to modern demografic methods. Topics Regional and national datafiles on populationstructure, development of mortality, historical demography, family structure, date of birth, marriages, number of birth, date of death, cause of death, locality of death, occupation, occupation of the parents. This study is available as SPSS-Data file as well as a downloadable EXCEL-Data-File, offered via the online-downloadsystem HISTAT (Historical Statistics). In HISTAT timeseries data are available. Categorisation in HISTAT:In HISTAT an excerpt of the archived total data stock is offered. The total data stock can be ordered as individual personal data at GESIS, Data Archive and Data Analysis. A. Datatables about mortality (14 tables, timeseries)B. Synoptical mortality tables (14 tables, timeseries)C. Datatables about life expectancy (14 tables, timeseries)D. Synoptical tables: all regions (without Hamburg) by sex in periodical presentation. (14 tables, timeseries)
Global life expectancy at birth has risen significantly since the mid-1900s, from roughly 46 years in 1950 to 73.2 years in 2023. Post-COVID-19 projections There was a drop of 1.7 years during the COVID-19 pandemic, between 2019 and 2021, however, figures resumed upon their previous trajectory the following year due to the implementation of vaccination campaigns and the lower severity of later strains of the virus. By the end of the century it is believed that global life expectancy from birth will reach 82 years, although growth will slow in the coming decades as many of the more-populous Asian countries reach demographic maturity. However, there is still expected to be a wide gap between various regions at the end of the 2100s, with the Europe and North America expected to have life expectancies around 90 years, whereas Sub-Saharan Africa is predicted to be in the low-70s. The Great Leap Forward While a decrease of one year during the COVID-19 pandemic may appear insignificant, this is the largest decline in life expectancy since the "Great Leap Forward" in China in 1958, which caused global life expectancy to fall by almost four years between by 1960. The "Great Leap Forward" was a series of modernizing reforms, which sought to rapidly transition China's agrarian economy into an industrial economy, but mismanagement led to tens of millions of deaths through famine and disease.
In 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84–83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53–54 years.
Keywords; Search terms: historical time series; historical statistics; histat / HISTAT; life expectancy; mortality rates .
Abstract:
In this study human life expectancy, which since the start of the 18th century has continually increased, is investigated in comparative perspective in Germany, Sweden and Norway.
Topics: Regional as well as national data sets on population structure and the development of mortality.
The following table overview represents a cutout from the study´s archived total stocks. The complete data stock contains not only time-series data. These complete data are available by GESIS Data Archive on request.
Topics of Data-Tables with Time-Series:
I (risk) population by generations II (risk) population by periods III probability of dying by generations IV probability of dying by periods V life expectancy by generations VI life expectancy by periods
Systematics within the tables (Consecutively Numbering)
Place: Letter indicating the region: A. Germany (German Reich)/FRG B. Germany (German Reich)/GDR C. governmental district Aurich/Lower Saxony D. governmental district Kassel/Hessen E. governmental district Minden/North Rhine-Westphalia F. governmental district Trier/Saarland H. Herrenberg/South West Germany (Südwestdeuschland) N. Norway S. Sweden
Place: Number for the table´s subject (variable)
(risk) population (P´ x)
Probability of dying (qx)
Life expectancy (ex)
Place: Letter for the type of table (meaning of the annual details) P. period table G. generation table
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>China life expectancy for 2024 was <strong>77.64</strong>, a <strong>0.22% increase</strong> from 2023.</li>
<li>China life expectancy for 2023 was <strong>77.47</strong>, a <strong>0.22% increase</strong> from 2022.</li>
<li>China life expectancy for 2022 was <strong>77.30</strong>, a <strong>0.22% increase</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Japan life expectancy for 2024 was <strong>85.15</strong>, a <strong>0.14% increase</strong> from 2023.</li>
<li>Japan life expectancy for 2023 was <strong>85.03</strong>, a <strong>0.14% increase</strong> from 2022.</li>
<li>Japan life expectancy for 2022 was <strong>84.91</strong>, a <strong>0.14% increase</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>U.K. life expectancy for 2024 was <strong>81.92</strong>, a <strong>0.83% increase</strong> from 2023.</li>
<li>U.K. life expectancy for 2023 was <strong>81.24</strong>, a <strong>0.28% increase</strong> from 2022.</li>
<li>U.K. life expectancy for 2022 was <strong>81.01</strong>, a <strong>0.45% increase</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Study of disease in the past can help illuminate patterns of human health, disease, and aging in the present. As average human life expectancy and incidence of chronic disease have increased in the last century, efforts to understand this epidemiologic shift have led to more investigation of healthy aging. Using osteological and radiological methods of analysis, this study examined 212 mostly nineteenth century adult skeletons from the crypt of St. Bride’s in London, in order to investigate the relationship between age-at-death, sex, and number of lesions observed in bone. Lesions were classified into macro-level categories according to the Rapid Method for Recording Human Skeletal Data, and the correlation between age group and number of lesions in each category, as well as the total number of lesions, were analyzed. Correlations between age-at-death and the number and type of lesions were compared across both methods of analysis. A greater total number of lesions and a greater number of types of lesions was observed for the osteologically analyzed data, compared to the radiologically analyzed data. Correlations between age-at-death and specific pathology groups were in general weak, though stronger for the osteologically analyzed data. For each method of analysis, there were statistically significant differences between the total number of lesions and age group, with total number of lesions increasing with age, regardless of method of analysis. Joint and metabolic lesions were the most significant predictors of age-at-death. The correlations between total lesions observed and age-at-death were similar for radiologically and osteologically analyzed data, for the same set of bones. This suggests that, for the bones analyzed, while the number of lesions recorded differed according to method of analysis, the relationship between overall observed lesion burden and age-at-death was similar for both osteological and radiological analysis.
Life expectancy in India was 25.4 in the year 1800, and over the course of the next 220 years, it has increased to almost 70. Between 1800 and 1920, life expectancy in India remained in the mid to low twenties, with the largest declines coming in the 1870s and 1910s; this was because of the Great Famine of 1876-1878, and the Spanish Flu Pandemic of 1918-1919, both of which were responsible for the deaths of up to six and seventeen million Indians respectively; as well as the presence of other endemic diseases in the region, such as smallpox. From 1920 onwards, India's life expectancy has consistently increased, but it is still below the global average.
Life expectancy in the United Kingdom was below 39 years in the year 1765, and over the course of the next two and a half centuries, it is expected to have increased by more than double, to 81.1 by the year 2020. Although life expectancy has generally increased throughout the UK's history, there were several times where the rate deviated from its previous trajectory. These changes were the result of smallpox epidemics in the late eighteenth and early nineteenth centuries, new sanitary and medical advancements throughout time (such as compulsory vaccination), and the First world War and Spanish Flu epidemic in the 1910s.
A dataset to advance the study of life-cycle interactions of biomedical and socioeconomic factors in the aging process. The EI project has assembled a variety of large datasets covering the life histories of approximately 39,616 white male volunteers (drawn from a random sample of 331 companies) who served in the Union Army (UA), and of about 6,000 African-American veterans from 51 randomly selected United States Colored Troops companies (USCT). Their military records were linked to pension and medical records that detailed the soldiers������?? health status and socioeconomic and family characteristics. Each soldier was searched for in the US decennial census for the years in which they were most likely to be found alive (1850, 1860, 1880, 1900, 1910). In addition, a sample consisting of 70,000 men examined for service in the Union Army between September 1864 and April 1865 has been assembled and linked only to census records. These records will be useful for life-cycle comparisons of those accepted and rejected for service. Military Data: The military service and wartime medical histories of the UA and USCT men were collected from the Union Army and United States Colored Troops military service records, carded medical records, and other wartime documents. Pension Data: Wherever possible, the UA and USCT samples have been linked to pension records, including surgeon''''s certificates. About 70% of men in the Union Army sample have a pension. These records provide the bulk of the socioeconomic and demographic information on these men from the late 1800s through the early 1900s, including family structure and employment information. In addition, the surgeon''''s certificates provide rich medical histories, with an average of 5 examinations per linked recruit for the UA, and about 2.5 exams per USCT recruit. Census Data: Both early and late-age familial and socioeconomic information is collected from the manuscript schedules of the federal censuses of 1850, 1860, 1870 (incomplete), 1880, 1900, and 1910. Data Availability: All of the datasets (Military Union Army; linked Census; Surgeon''''s Certificates; Examination Records, and supporting ecological and environmental variables) are publicly available from ICPSR. In addition, copies on CD-ROM may be obtained from the CPE, which also maintains an interactive Internet Data Archive and Documentation Library, which can be accessed on the Project Website. * Dates of Study: 1850-1910 * Study Features: Longitudinal, Minority Oversamples * Sample Size: ** Union Army: 35,747 ** Colored Troops: 6,187 ** Examination Sample: 70,800 ICPSR Link: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06836
At the beginning of the 1840s, life expectancy from birth in Ireland was just over 38 years. However, this figure would see a dramatic decline with the beginning of the Great Famine in 1845, and dropped below 21 years in the second half of the decade (in 1849 alone, life expectancy fell to just 14 years). The famine came as a result of a Europe-wide potato blight, which had a disproportionally devastating impact on the Irish population due to the dependency on potatoes (particularly in the south and east), and the prevalence of a single variety of potato on the island that allowed the blight to spread faster than in other areas of Europe. Additionally, authorities forcefully redirected much of the country's surplus grain to the British mainland, which exacerbated the situation. Within five years, mass starvation would contribute to the deaths of over one million people on the island, while a further one million would emigrate; this also created a legacy of emigration from Ireland, which saw the population continue to fall until the mid-1900s, and the total population of the island is still well below its pre-famine level of 8.5 million people.
Following the end of the Great Famine, life expectancy would begin to gradually increase in Ireland, as post-famine reforms would see improvements in the living standards of the country’s peasantry, most notably the Land Wars, a largely successful series of strikes, boycotts and protests aimed at reform of the country's agricultural land distribution, which began in the 1870s and lasted into the 20th century. As these reforms were implemented, life expectancy in Ireland would rise to more than fifty years by the turn of the century. While this rise would slow somewhat in the 1910s, due to the large number of Irish soldiers who fought in the First World War and the Spanish Flu pandemic, as well as the period of civil unrest leading up to the island's partition in 1921, life expectancy in Ireland would rise greatly in the 20th century. In the second half of the 20th century, Ireland's healthcare system and living standards developed similarly to the rest of Western Europe, and today, it is often ranks among the top countries globally in terms of human development, GDP and quality of healthcare. With these developments, the increase in life expectancy from birth in Ireland was relatively constant in the first century of independence, and in 2020 is estimated to be 82 years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Malaysia life expectancy for 2024 was <strong>76.79</strong>, a <strong>0.18% increase</strong> from 2023.</li>
<li>Malaysia life expectancy for 2023 was <strong>76.66</strong>, a <strong>1.61% increase</strong> from 2022.</li>
<li>Malaysia life expectancy for 2022 was <strong>75.44</strong>, a <strong>2.07% increase</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
Life expectancy in China was just 32 in the year 1850, and over the course of the next 170 years, it is expected to more than double to 76.6 years in 2020. Between 1850 and 1950, finding reliable data proved difficult for anthropologists, however some events, such as the Taiping Rebellion and Dungan Revolt in the nineteenth century did reduce life expectancy by a few years, and also the Chinese Civil War and Second World War in the first half of the twentieth century. In the second half of the 1900s, Chinese life expectancy increased greatly, as the country became more industrialized and the standard of living increased.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This figure mimics Fig 5 from the main text, except that it presents global population size when long-run life expectancy is 100 years (left axis) or 120 years (right axis). (TXT)
A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.