100+ datasets found
  1. Annual life expectancy in the United States 1850-2100

    • statista.com
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual life expectancy in the United States 1850-2100 [Dataset]. https://www.statista.com/statistics/1040079/life-expectancy-united-states-all-time/
    Explore at:
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    From the mid-19th century until today, life expectancy at birth in the United States has roughly doubled, from 39.4 years in 1850 to 79.6 years in 2025. It is estimated that life expectancy in the U.S. began its upward trajectory in the 1880s, largely driven by the decline in infant and child mortality through factors such as vaccination programs, antibiotics, and other healthcare advancements. Improved food security and access to clean water, as well as general increases in living standards (such as better housing, education, and increased safety) also contributed to a rise in life expectancy across all age brackets. There were notable dips in life expectancy; with an eight year drop during the American Civil War in the 1860s, a seven year drop during the Spanish Flu empidemic in 1918, and a 2.5 year drop during the Covid-19 pandemic. There were also notable plateaus (and minor decreases) not due to major historical events, such as that of the 2010s, which has been attributed to a combination of factors such as unhealthy lifestyles, poor access to healthcare, poverty, and increased suicide rates, among others. However, despite the rate of progress slowing since the 1950s, most decades do see a general increase in the long term, and current UN projections predict that life expectancy at birth in the U.S. will increase by another nine years before the end of the century.

  2. Historical life expectancy from birth in selected regions 33-1875

    • statista.com
    Updated Dec 31, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2006). Historical life expectancy from birth in selected regions 33-1875 [Dataset]. https://www.statista.com/statistics/1069683/life-expectancy-historical-areas/
    Explore at:
    Dataset updated
    Dec 31, 2006
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Sweden, France, United Kingdom (England), Egypt, Japan
    Description

    For most of the world, throughout most of human history, the average life expectancy from birth was around 24. This figure fluctuated greatly depending on the time or region, and was higher than 24 in most individual years, but factors such as pandemics, famines, and conflicts caused regular spikes in mortality and reduced life expectancy. Child mortality The most significant difference between historical mortality rates and modern figures is that child and infant mortality was so high in pre-industrial times; before the introduction of vaccination, water treatment, and other medical knowledge or technologies, women would have around seven children throughout their lifetime, but around half of these would not make it to adulthood. Accurate, historical figures for infant mortality are difficult to ascertain, as it was so prevalent, it took place in the home, and was rarely recorded in censuses; however, figures from this source suggest that the rate was around 300 deaths per 1,000 live births in some years, meaning that almost one in three infants did not make it to their first birthday in certain periods. For those who survived to adolescence, they could expect to live into their forties or fifties on average. Modern figures It was not until the eradication of plague and improvements in housing and infrastructure in recent centuries where life expectancy began to rise in some parts of Europe, before industrialization and medical advances led to the onset of the demographic transition across the world. Today, global life expectancy from birth is roughly three times higher than in pre-industrial times, at almost 73 years. It is higher still in more demographically and economically developed countries; life expectancy is over 82 years in the three European countries shown, and over 84 in Japan. For the least developed countries, mostly found in Sub-Saharan Africa, life expectancy from birth can be as low as 53 years.

  3. Global life expectancy from birth in selected regions 1820-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global life expectancy from birth in selected regions 1820-2020 [Dataset]. https://www.statista.com/statistics/1302736/global-life-expectancy-by-region-country-historical/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Africa, LAC, Europe, North America, Asia
    Description

    A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.

  4. Life expectancy by continent and gender 2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Life expectancy by continent and gender 2024 [Dataset]. https://www.statista.com/statistics/270861/life-expectancy-by-continent/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    In 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84–83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53–54 years.

  5. C

    Public Health Statistics - Life Expectancy By Community Area - Historical

    • data.cityofchicago.org
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Jun 16, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vital statistics files produced by the Illinois Department of Public Health (IDPH) (2014). Public Health Statistics - Life Expectancy By Community Area - Historical [Dataset]. https://data.cityofchicago.org/Health-Human-Services/Public-Health-Statistics-Life-Expectancy-By-Commun/qjr3-bm53
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Jun 16, 2014
    Dataset authored and provided by
    Vital statistics files produced by the Illinois Department of Public Health (IDPH)
    Description

    Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.

    This dataset gives the average life expectancy and corresponding confidence intervals for each Chicago community area for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/qjr3-bm53/files/AAu4x8SCRz_bnQb8SVUyAXdd913TMObSYj6V40cR6p8?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description - LE by community area.pdf

  6. Life Expectancy 2000 to 2015 all nations.

    • kaggle.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    faisal.1001 (2025). Life Expectancy 2000 to 2015 all nations. [Dataset]. https://www.kaggle.com/datasets/faisal1001/life-expectancy-2000-to-2015-all-nations
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 17, 2025
    Dataset provided by
    Kaggle
    Authors
    faisal.1001
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Description

    File Description: "Life Expectancy Data.csv" This dataset contains 2,938 entries and 22 columns, covering life expectancy and related health indicators for multiple nations from 2000 to 2015. It includes country-wise data and other economic, social, and health metrics. Column Description: 1. Country – Name of the country. 2. Year – Data year (ranging from 2000 to 2015). 3. Status – Economic classification (Developing/Developed). 4. Life expectancy – Average lifespan in years. 5. Adult Mortality – Probability of death between ages 15-60 per 1,000 individuals. 6. Infant Deaths – Number of infant deaths per 1,000 live births. 7. Alcohol – Per capita alcohol consumption. 8. Percentage Expenditure – Government health expenditure as a percentage of GDP. 9. Hepatitis B – Immunization coverage percentage. 10. Measles – Number of reported measles cases. 11. BMI – Average Body Mass Index. 12. Under-Five Deaths – Mortality rate for children under five. 13. Polio & Diphtheria – Immunization rates. 14. HIV/AIDS – Deaths due to HIV/AIDS per 1,000 individuals. 15. GDP – Gross Domestic Product per capita. 16. Population – Total population of the country. 17. Thinness (1-19 years, 5-9 years) – Percentage of underweight children. 18. Income Composition of Resources– Human development index proxy. 19. Schooling– Average number of years of schooling. Missing Data: Some columns (like Hepatitis B, GDP, Population, Total Expenditure) contain missing values. Further File Information: Total Countries: 193 Years Covered: 2000–2015 Total Entries: 2,938 Missing Data Overview: Some columns have missing values, notably: Hepatitis B (553 missing) GDP (448 missing) Population (652 missing) Total expenditure (226 missing) Income Composition of Resources (167 missing) Schooling (163 missing) Summary Statistics: Life Expectancy:

    Range: 36.3 to 89 years Mean: 69.2 years Adult Mortality:

    Mean: 165 per 1,000 Max: 723 per 1,000 GDP per Capita:

    Mean: $7,483 Max: $119,172 Population:

    Mean: ~12.75 million Max: 1.29 billion Education:

    Schooling Average: 12 years Max: 20.7 years

    Futuristic Scope of this data: For comparative analysis of the 2000–2015 life expectancy dataset with new datasets on the same parametres , you can perform several statistical tests and analytical methods based on different research questions. Below are some key tests and approaches:

    1. Trend Analysis (Time-Series) Objective: Identify trends in life expectancy and related indicators over time. Methods: Moving Averages: Smooth fluctuations to detect trends. Linear/Polynomial Regression: Check whether life expectancy follows an increasing or decreasing trend. Time-Series Decomposition: Separate data into trend, seasonality, and residuals.
    2. Descriptive Statistics & Comparative Summary Objective: Compare summary statistics between years or groups. Tests/Methods: Mean, Median, Standard Deviation: Compare distributions of life expectancy, GDP, or schooling. Boxplots & Histograms: Show variations over different years or between developing vs. developed countries. Coefficient of Variation (CV): Compare variability in life expectancy across regions.
    3. Correlation & Regression Analysis Objective: Examine relationships between variables. Methods: Pearson/Spearman Correlation: Check relationships between life expectancy and GDP, health expenditure, etc. Multiple Linear Regression: Predict life expectancy based on GDP, immunization, and schooling. Multicollinearity (VIF Test): Ensure independent variables are not highly correlated.
    4. Hypothesis Testing (Comparative Analysis) Test Objective When to Use? t-Test (Independent Samples) Compare life expectancy between developed & developing nations Two groups (e.g., 2000 vs. 2015, or developed vs. developing) Paired t-Test Compare life expectancy in the same country over two time periods Before/after comparison (e.g., 2000 vs. 2015 for the same country) ANOVA (One-Way) Compare life expectancy across multiple groups More than two groups (e.g., continents or income groups) Chi-Square Test Test if categorical distributions (e.g., immunization coverage) differ over time Categorical variables (e.g., immunization rates vs. year)
    5. Clustering & Classification (Machine Learning) Objective: Group countries based on life expectancy patterns. Methods: K-Means Clustering: Identify groups with similar life expectancy trends. Hierarchical Clustering: Create a country similarity tree. Decision Trees/Random Forest: Classify countries based on development status using life expectancy factors.
    6. Forecasting Future Trends Objective: Predict life expectancy in future years using historical data. Methods: ARIMA (AutoRegressive Integrated Moving Average): Time-series forecasting. Exponential Smoothing: Forecast gradual trends. Machine Learning (LSTM, XGBoost): Predict based on multiple indicators.
    7. Comparative Regional Analysis O...
  7. f

    Data from: Limits to Human Life Span Through Extreme Value Theory

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jesson J. Einmahl; John H. J. Einmahl; Laurens de Haan (2023). Limits to Human Life Span Through Extreme Value Theory [Dataset]. http://doi.org/10.6084/m9.figshare.7578017.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Jesson J. Einmahl; John H. J. Einmahl; Laurens de Haan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    There is no scientific consensus on the fundamental question whether the probability distribution of the human life span has a finite endpoint or not and, if so, whether this upper limit changes over time. Our study uses a unique dataset of the ages at death—in days—of all (about 285,000) Dutch residents, born in the Netherlands, who died in the years 1986–2015 at a minimum age of 92 years and is based on extreme value theory, the coherent approach to research problems of this type. Unlike some other studies, we base our analysis on the configuration of thousands of mortality data of old people, not just the few oldest old. We find compelling statistical evidence that there is indeed an upper limit to the life span of men and to that of women for all the 30 years we consider and, moreover, that there are no indications of trends in these upper limits over the last 30 years, despite the fact that the number of people reaching high age (say 95 years) was almost tripling. We also present estimates for the endpoints, for the force of mortality at very high age, and for the so-called perseverance parameter. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

  8. Life expectancy at birth worldwide 1950-2100

    • statista.com
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Life expectancy at birth worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805060/life-expectancy-at-birth-worldwide/
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Global life expectancy at birth has risen significantly since the mid-1900s, from roughly 46 years in 1950 to 73.2 years in 2023. Post-COVID-19 projections There was a drop of 1.7 years during the COVID-19 pandemic, between 2019 and 2021, however, figures resumed upon their previous trajectory the following year due to the implementation of vaccination campaigns and the lower severity of later strains of the virus. By the end of the century it is believed that global life expectancy from birth will reach 82 years, although growth will slow in the coming decades as many of the more-populous Asian countries reach demographic maturity. However, there is still expected to be a wide gap between various regions at the end of the 2100s, with the Europe and North America expected to have life expectancies around 90 years, whereas Sub-Saharan Africa is predicted to be in the low-70s. The Great Leap Forward While a decrease of one year during the COVID-19 pandemic may appear insignificant, this is the largest decline in life expectancy since the "Great Leap Forward" in China in 1958, which caused global life expectancy to fall by almost four years between by 1960. The "Great Leap Forward" was a series of modernizing reforms, which sought to rapidly transition China's agrarian economy into an industrial economy, but mismanagement led to tens of millions of deaths through famine and disease.

  9. C

    Public Health Statistics - Life Expectancy By Race Ethnicity - Historical

    • data.cityofchicago.org
    • healthdata.gov
    • +3more
    csv, xlsx, xml
    Updated Jun 16, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vital statistics files produced by the Illinois Department of Public Health (IDPH) (2014). Public Health Statistics - Life Expectancy By Race Ethnicity - Historical [Dataset]. https://data.cityofchicago.org/Health-Human-Services/Public-Health-Statistics-Life-Expectancy-By-Race-E/3qdj-cqb8
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Jun 16, 2014
    Dataset authored and provided by
    Vital statistics files produced by the Illinois Department of Public Health (IDPH)
    Description

    Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.

    This dataset gives the average life expectancy and corresponding confidence intervals for sex and racial-ethnic groups in Chicago for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/3qdj-cqb8/files/pJ3PVVyubnsS2SpGO5P5IOPtNgCJZTE3LNOeLagC3mw?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description_LE_ Sex_Race_Ethnicity.pdf

  10. d

    Dataset to find corresponding ages across the lifespan in humans and...

    • search.dataone.org
    • datadryad.org
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christine Charvet (2025). Dataset to find corresponding ages across the lifespan in humans and chimpanzees [Dataset]. http://doi.org/10.5061/dryad.547d7wm7c
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Christine Charvet
    Time period covered
    Jan 1, 2021
    Description

    How the unique capacities of human cognition arose in evolution is a question of enduring interest. It is still unclear which developmental programs are responsible for the emergence of the human brain. The inability to determine corresponding ages between humans and apes has hampered progress in detecting developmental programs leading to the emergence of the human brain. I harness temporal variation in anatomical, behavioral, and transcriptional variation to determine corresponding ages from fetal to postnatal development and aging, between humans and chimpanzees. This multi-dimensional approach results in 137 corresponding time points across the lifespan, from embryonic day 44 to ~55 years of age, in humans and their equivalent ages in chimpanzees. I used these data to test whether developmental programs, such as the timeline of prefrontal cortex (PFC) maturation, previously claimed to differ between humans and chimpanzees, do so once variation in developmental schedules is controlle...

  11. Life expectancy at birth and at age 65, by province and territory,...

    • www150.statcan.gc.ca
    • datasets.ai
    • +5more
    Updated Dec 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2017). Life expectancy at birth and at age 65, by province and territory, three-year average [Dataset]. http://doi.org/10.25318/1310040901-eng
    Explore at:
    Dataset updated
    Dec 6, 2017
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Life expectancy at birth and at age 65, by sex, on a three-year average basis.

  12. Life Expectancy (WHO)

    • kaggle.com
    Updated Feb 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KumarRajarshi (2018). Life Expectancy (WHO) [Dataset]. https://www.kaggle.com/kumarajarshi/life-expectancy-who/kernels
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 10, 2018
    Dataset provided by
    Kaggle
    Authors
    KumarRajarshi
    Description

    Context

    Although there have been lot of studies undertaken in the past on factors affecting life expectancy considering demographic variables, income composition and mortality rates. It was found that affect of immunization and human development index was not taken into account in the past. Also, some of the past research was done considering multiple linear regression based on data set of one year for all the countries. Hence, this gives motivation to resolve both the factors stated previously by formulating a regression model based on mixed effects model and multiple linear regression while considering data from a period of 2000 to 2015 for all the countries. Important immunization like Hepatitis B, Polio and Diphtheria will also be considered. In a nutshell, this study will focus on immunization factors, mortality factors, economic factors, social factors and other health related factors as well. Since the observations this dataset are based on different countries, it will be easier for a country to determine the predicting factor which is contributing to lower value of life expectancy. This will help in suggesting a country which area should be given importance in order to efficiently improve the life expectancy of its population.

    Content

    The project relies on accuracy of data. The Global Health Observatory (GHO) data repository under World Health Organization (WHO) keeps track of the health status as well as many other related factors for all countries The data-sets are made available to public for the purpose of health data analysis. The data-set related to life expectancy, health factors for 193 countries has been collected from the same WHO data repository website and its corresponding economic data was collected from United Nation website. Among all categories of health-related factors only those critical factors were chosen which are more representative. It has been observed that in the past 15 years , there has been a huge development in health sector resulting in improvement of human mortality rates especially in the developing nations in comparison to the past 30 years. Therefore, in this project we have considered data from year 2000-2015 for 193 countries for further analysis. The individual data files have been merged together into a single data-set. On initial visual inspection of the data showed some missing values. As the data-sets were from WHO, we found no evident errors. Missing data was handled in R software by using Missmap command. The result indicated that most of the missing data was for population, Hepatitis B and GDP. The missing data were from less known countries like Vanuatu, Tonga, Togo, Cabo Verde etc. Finding all data for these countries was difficult and hence, it was decided that we exclude these countries from the final model data-set. The final merged file(final dataset) consists of 22 Columns and 2938 rows which meant 20 predicting variables. All predicting variables was then divided into several broad categories:​Immunization related factors, Mortality factors, Economical factors and Social factors.

    Acknowledgements

    The data was collected from WHO and United Nations website with the help of Deeksha Russell and Duan Wang.

    Inspiration

    The data-set aims to answer the following key questions: 1. Does various predicting factors which has been chosen initially really affect the Life expectancy? What are the predicting variables actually affecting the life expectancy? 2. Should a country having a lower life expectancy value(<65) increase its healthcare expenditure in order to improve its average lifespan? 3. How does Infant and Adult mortality rates affect life expectancy? 4. Does Life Expectancy has positive or negative correlation with eating habits, lifestyle, exercise, smoking, drinking alcohol etc. 5. What is the impact of schooling on the lifespan of humans? 6. Does Life Expectancy have positive or negative relationship with drinking alcohol? 7. Do densely populated countries tend to have lower life expectancy? 8. What is the impact of Immunization coverage on life Expectancy?

  13. d

    Human Mortality Database

    • dknet.org
    • neuinfo.org
    • +2more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Human Mortality Database [Dataset]. http://identifiers.org/RRID:SCR_002370
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    A database providing detailed mortality and population data to those interested in the history of human longevity. For each country, the database includes calculated death rates and life tables by age, time, and sex, along with all of the raw data (vital statistics, census counts, population estimates) used in computing these quantities. Data are presented in a variety of formats with regard to age groups and time periods. The main goal of the database is to document the longevity revolution of the modern era and to facilitate research into its causes and consequences. New data series is continually added to this collection. However, the database is limited by design to populations where death registration and census data are virtually complete, since this type of information is required for the uniform method used to reconstruct historical data series. As a result, the countries and areas included are relatively wealthy and for the most part highly industrialized. The database replaces an earlier NIA-funded project, known as the Berkeley Mortality Database. * Dates of Study: 1751-present * Study Features: Longitudinal, International * Sample Size: 37 countries or areas

  14. Life expectancy in the United Kingdom 1765-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in the United Kingdom 1765-2020 [Dataset]. https://www.statista.com/statistics/1040159/life-expectancy-united-kingdom-all-time/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1765 - 2020
    Area covered
    United Kingdom
    Description

    Life expectancy in the United Kingdom was below 39 years in the year 1765, and over the course of the next two and a half centuries, it is expected to have increased by more than double, to 81.1 by the year 2020. Although life expectancy has generally increased throughout the UK's history, there were several times where the rate deviated from its previous trajectory. These changes were the result of smallpox epidemics in the late eighteenth and early nineteenth centuries, new sanitary and medical advancements throughout time (such as compulsory vaccination), and the First world War and Spanish Flu epidemic in the 1910s.

  15. f

    Appendix S1 from Survival improvements of marine mammals in zoological...

    • rs.figshare.com
    • datasetcatalog.nlm.nih.gov
    xlsx
    Updated Oct 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Morgane Tidière; Fernando Colchero; Johanna Staerk; Michael J. Adkesson; Ditte H. Andersen; Lucie Bland; Martin Böye; Sabrina Brando; Isabella Clegg; Sarah cubaynes; Amy Cutting; Danny De Man; Andrew E. Derocher; Candice Dorsey; William Elgar; Eric Gaglione; Kirstin Anderson Hansen; Allison Jungheim; José Kok; Gail Laule; Agustín Lopez Goya; Lance Miller; Tania Monreal-Pawlowsky; Katelyn Mucha; Megan A. Owen; Stephen D. Petersen; Nicholas Pilfold; Douglas Richardson; Evan S. Richardson; Devon Sabo; Nobutaka Sato; Wynona Shellabarger; Cecilie R. Skovlund; Kanako Tomisawa; Sandra E. Trautwein; William Van Bonn; Cornelis Van Elk; Lorenzo Von Fersen; Magnus Wahlberg; Peijun Zhang; Xianfeng Zhang; Dalia A. Conde (2023). Appendix S1 from Survival improvements of marine mammals in zoological institutions mirror historical advances in human longevity [Dataset]. http://doi.org/10.6084/m9.figshare.24220226.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 18, 2023
    Dataset provided by
    The Royal Society
    Authors
    Morgane Tidière; Fernando Colchero; Johanna Staerk; Michael J. Adkesson; Ditte H. Andersen; Lucie Bland; Martin Böye; Sabrina Brando; Isabella Clegg; Sarah cubaynes; Amy Cutting; Danny De Man; Andrew E. Derocher; Candice Dorsey; William Elgar; Eric Gaglione; Kirstin Anderson Hansen; Allison Jungheim; José Kok; Gail Laule; Agustín Lopez Goya; Lance Miller; Tania Monreal-Pawlowsky; Katelyn Mucha; Megan A. Owen; Stephen D. Petersen; Nicholas Pilfold; Douglas Richardson; Evan S. Richardson; Devon Sabo; Nobutaka Sato; Wynona Shellabarger; Cecilie R. Skovlund; Kanako Tomisawa; Sandra E. Trautwein; William Van Bonn; Cornelis Van Elk; Lorenzo Von Fersen; Magnus Wahlberg; Peijun Zhang; Xianfeng Zhang; Dalia A. Conde
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life tables

  16. d

    Supplementary data to translate ages across humans and great apes

    • search.test.dataone.org
    • datadryad.org
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christine Charvet (2025). Supplementary data to translate ages across humans and great apes [Dataset]. http://doi.org/10.5061/dryad.0cfxpnw7r
    Explore at:
    Dataset updated
    Mar 20, 2025
    Dataset provided by
    urn:node:mnTestDRYAD4
    Authors
    Christine Charvet
    Time period covered
    Jan 1, 2023
    Description

    We have generated a large dataset consisting of 573 time points from various behavioral, anatomical, and transcriptional changes across human and eight non-human primate species. This dataset includes diverse human populations to capture within-species variations. We aligned ages across humans and great apes across their lifespan. Our findings indicate that human lifespan is unusually extended lifespan compared to other primates, suggesting a unique phase of life without a clear counterpart in great apes.

  17. B

    Data from: A methodology for the analysis of differential coexpression...

    • borealisdata.ca
    Updated Mar 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jesse Gillis; Paul Pavlidis (2019). A methodology for the analysis of differential coexpression across the human lifespan [Dataset]. http://doi.org/10.5683/SP2/QW7OR9
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 11, 2019
    Dataset provided by
    Borealis
    Authors
    Jesse Gillis; Paul Pavlidis
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    NIH, MSFHR, CIHR
    Description

    BACKGROUND: Differential coexpression is a change in coexpression between genes that may reflect 'rewiring' of transcriptional networks. It has previously been hypothesized that such changes might be occurring over time in the lifespan of an organism. While both coexpression and differential expression of genes have been previously studied in life stage change or aging, differential coexpression has not. Generalizing differential coexpression analysis to many time points presents a methodological challenge. Here we introduce a method for analyzing changes in coexpression across multiple ordered groups (e.g., over time) and extensively test its validity and usefulness. RESULTS: Our method is based on the use of the Haar basis set to efficiently represent changes in coexpression at multiple time scales, and thus represents a principled and generalizable extension of the idea of differential coexpression to life stage data. We used published microarray studies categorized by age to test the methodology. We validated the methodology by testing our ability to reconstruct Gene Ontology (GO) categories using our measure of differential coexpression and compared this result to using coexpression alone. Our method allows significant improvement in characterizing these groups of genes. Further, we examine the statistical properties of our measure of differential coexpression and establish that the results are significant both statistically and by an improvement in semantic similarity. In addition, we found that our method finds more significant changes in gene relationships compared to several other methods of expressing temporal relationships between genes, such as coexpression over time. CONCLUSION: Differential coexpression over age generates significant and biologically relevant information about the genes producing it. Our Haar basis methodology for determining age-related differential coexpression performs better than other tested methods. The Haar basis set also lends itself to ready interpretation in terms of both evolutionary and physiological mechanisms of aging and can be seen as a natural generalization of two-category differential coexpression. CONTACT: paul@bioinformatics.ubc.ca.

  18. Life expectancy in India 1800-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in India 1800-2020 [Dataset]. https://www.statista.com/statistics/1041383/life-expectancy-india-all-time/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    Life expectancy in India was 25.4 in the year 1800, and over the course of the next 220 years, it has increased to almost 70. Between 1800 and 1920, life expectancy in India remained in the mid to low twenties, with the largest declines coming in the 1870s and 1910s; this was because of the Great Famine of 1876-1878, and the Spanish Flu Pandemic of 1918-1919, both of which were responsible for the deaths of up to six and seventeen million Indians respectively; as well as the presence of other endemic diseases in the region, such as smallpox. From 1920 onwards, India's life expectancy has consistently increased, but it is still below the global average.

  19. o

    Replication data for: Limited Life Expectancy, Human Capital and Health...

    • openicpsr.org
    Updated Oct 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emily Oster; Ira Shoulson; E. Ray Dorsey (2019). Replication data for: Limited Life Expectancy, Human Capital and Health Investments [Dataset]. http://doi.org/10.3886/E112664V1
    Explore at:
    Dataset updated
    Oct 11, 2019
    Dataset provided by
    American Economic Association
    Authors
    Emily Oster; Ira Shoulson; E. Ray Dorsey
    Description

    Human capital theory predicts that life expectancy will impact human capital attainment. We estimate this relationship using variation in life expectancy driven by Huntington disease, an inherited neurological disorder. We compare investments for individuals who have ex-ante identical risks of HD but differ in disease realization. Individuals with the HD mutation complete less education and job training. The elasticity of demand for college attendance with respect to life expectancy is around 1.0. We relate this to cross-country and over-time differences in education. We use smoking and cancer screening data to test the corollary that health capital responds to life expectancy.

  20. f

    Data_Sheet_1_Demographic Change Across the Lifespan of Pet Dogs and Their...

    • frontiersin.figshare.com
    • figshare.com
    xlsx
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lisa J. Wallis; Dóra Szabó; Boglárka Erdélyi-Belle; Enikö Kubinyi (2023). Data_Sheet_1_Demographic Change Across the Lifespan of Pet Dogs and Their Impact on Health Status.XLSX [Dataset]. http://doi.org/10.3389/fvets.2018.00200.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers
    Authors
    Lisa J. Wallis; Dóra Szabó; Boglárka Erdélyi-Belle; Enikö Kubinyi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Although dogs' life expectancies are six to twelve times shorter than that of humans, the demographics (e. g., living conditions) of dogs can still change considerably with aging, similarly to humans. Despite the fact that the dog is a particularly good model for human healthspan, and the number of aged dogs in the population is growing in parallel with aged humans, there has been few previous attempts to describe demographic changes statistically. We utilized an on-line questionnaire to examine the link between the age and health of the dog, and owner and dog demographics in a cross-sectional Hungarian sample. Results from univariate analyses revealed that 20 of the 27 demographic variables measured differed significantly between six dog age groups. Our results revealed that pure breed dogs suffered from health problems at a younger age, and may die at an earlier age than mixed breeds. The oldest dog group (>12 years) consisted of fewer pure breeds than mixed breeds and the mixed breeds sample was on average older than the pure breed sample. Old dogs were classified more frequently as unhealthy, less often had a “normal” body condition score, and more often received medication and supplements. They were also more often male, neutered, suffered health problems (such as sensory, joint, and/or tooth problems), received less activity/interaction/training with the owner, and were more likely to have experienced one or more traumatic events. Surprisingly, the youngest age group contained more pure breeds, were more often fed raw meat, and had owners aged under 29 years, reflecting new trends among younger owners. The high prevalence of dogs that had experienced one or more traumatic events in their lifetime (over 40% of the sample), indicates that welfare and health could be improved by informing owners of the greatest risk factors of trauma, and providing interventions to reduce their impact. Experiencing multiple life events such as spending time in a shelter, changing owners, traumatic injury/prolonged disease/surgery, getting lost, and changes in family structure increased the likelihood that owners reported that their dogs currently show behavioral signs that they attribute to the previous trauma.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Annual life expectancy in the United States 1850-2100 [Dataset]. https://www.statista.com/statistics/1040079/life-expectancy-united-states-all-time/
Organization logo

Annual life expectancy in the United States 1850-2100

Explore at:
48 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 31, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

From the mid-19th century until today, life expectancy at birth in the United States has roughly doubled, from 39.4 years in 1850 to 79.6 years in 2025. It is estimated that life expectancy in the U.S. began its upward trajectory in the 1880s, largely driven by the decline in infant and child mortality through factors such as vaccination programs, antibiotics, and other healthcare advancements. Improved food security and access to clean water, as well as general increases in living standards (such as better housing, education, and increased safety) also contributed to a rise in life expectancy across all age brackets. There were notable dips in life expectancy; with an eight year drop during the American Civil War in the 1860s, a seven year drop during the Spanish Flu empidemic in 1918, and a 2.5 year drop during the Covid-19 pandemic. There were also notable plateaus (and minor decreases) not due to major historical events, such as that of the 2010s, which has been attributed to a combination of factors such as unhealthy lifestyles, poor access to healthcare, poverty, and increased suicide rates, among others. However, despite the rate of progress slowing since the 1950s, most decades do see a general increase in the long term, and current UN projections predict that life expectancy at birth in the U.S. will increase by another nine years before the end of the century.

Search
Clear search
Close search
Google apps
Main menu