In 2023, there were 45 hurricanes registered worldwide, up from 45 hurricanes a year earlier. This was nevertheless below the average of 47 hurricanes per year registered from 1990 to 2022. The years of 1992 and 2018 tied as the most active in the indicated period, each with 59 hurricanes recorded. The Pacific Northwest basin recorded the largest number of hurricanes in 2023.
Most exposed countries to hurricanes With the Pacific Northwest basin being one of the most active for hurricanes in the world , there is perhaps no surprise that Japan was the country most exposed to tropical cyclones in 2023. It was followed by the Philippines, also a West Pacific nation. Meanwhile, the Bahamas was the most exposed country in the Atlantic Ocean and ranked third most exposed worldwide during the same year.
Effects of tropical cyclones From 1970 to 2019, almost 800,000 deaths due to tropical cyclones have been reported worldwide. In the past decade, the number of such casualties stood at some 19,600, the lowest decadal figure in the last half-century . In contrast to the lower number of deaths, economic losses caused by tropical cyclones has continuously grown since 1970, reaching a record high of more than 570 billion U.S. dollars from 2010 to 2019.
Between 2011 and 2020, 19 hurricanes made landfall in the United States, the same figure reported in the previous decade. This is the highest number recorded for a 10-year timespan since the 1940s, which holds the current record for most landfalls, with 24 hurricanes. In 2023, only hurricane Ian made landfall in the U.S.
Between 1851 and 2023, there were 304 hurricane direct hits in the United States, of which 40 percent were category 1 hurricanes. In the same period, 97 major hurricanes (with a category 3 or higher) made landfall in the country. Hurricane Michael, in 2018, was the latest category 5 hurricane to hit the North American country. Florida was the state most commonly hit by hurricanes.
The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate Monthly Overview - Hurricanes & Tropical Storms report focuses primarily on storms and conditions that affect the U.S. and its territories, in Atlantic and Pacific basins. The report places each basin's tropical cyclone activity in a climate-scale context. Key statistics (dates, strengths, landfall, energy, etc.) for major cyclone activity in other basins is occasionally presented. Reports began in June 2002. The primary Atlantic hurricane season (June-November) is covered each year; other months are included as storm events warrant. An annual summary is available from 2002. These reports are not updated in real time.
In 2021, there were 68 fatalities due to hurricanes reported in the United States. Since the beginning of the century, the highest number of fatalities was recorded in 2005, when four major hurricanes – including Hurricane Katrina – resulted in 1,518 deaths.
The worst hurricanes in U.S. history
Hurricane Katrina, which made landfall in August 2005, ranked as the third deadliest hurricane in the U.S. since records began. Affecting mainly the city of New Orleans and its surroundings, the category 3 hurricane caused an estimated 1,500 fatalities. Katrina was also the costliest tropical cyclone to hit the U.S. in the past seven decades, with damages amounting to roughly 186 billion U.S. dollars. Hurricanes Harvey and Maria, both of which made landfall in 2017, ranked second and third, resulting in damage costs of 149 and 107 billion dollars, respectively.
How are hurricanes classified?
According to the Saffir-Simpson scale, hurricanes can be classified into five categories, depending on their maximum sustained wind speed. Most of the hurricanes that have made landfall in the U.S. since 1851 are category 1, the mildest of the five. Hurricanes rated category 3 or above are considered major hurricanes and can cause devastating damage. In 2021, there were 38 hurricanes recorded across the globe, of which 17 were major hurricanes.
This layer features tropical storm (hurricanes, typhoons, cyclones) tracks, positions, and observed wind swaths from the past hurricane season for the Atlantic, Pacific, and Indian Basins. These are products from the National Hurricane Center (NHC) and Joint Typhoon Warning Center (JTWC). They are part of an archive of tropical storm data maintained in the International Best Track Archive for Climate Stewardship (IBTrACS) database by the NOAA National Centers for Environmental Information.Data SourceNOAA National Hurricane Center tropical cyclone best track archive.Update FrequencyWe automatically check these products for updates every 15 minutes from the NHC GIS Data page.The NHC shapefiles are parsed using the Aggregated Live Feeds methodology to take the returned information and serve the data through ArcGIS Server as a map service.Area CoveredWorldWhat can you do with this layer?Customize the display of each attribute by using the ‘Change Style’ option for any layer.Run a filter to query the layer and display only specific types of storms or areas.Add to your map with other weather data layers to provide insight on hazardous weather events.Use ArcGIS Online analysis tools like ‘Enrich Data’ on the Observed Wind Swath layer to determine the impact of cyclone events on populations.Visualize data in ArcGIS Insights or Operations Dashboards.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to NOAA or JTWC sources for official guidance.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
This is an annual edition poster showing all of the hurricanes having impacted the continental U.S. from 1950 to 2022. This 36x28 inch glossy poster gives a quick look of the location and strength of each hurricane which impacted the continental United States. The poster is also available to download as a PDF file. The map includes the name, category strength, year, and approximate strike location of each hurricane. For the 2022 edition two new hurricanes were added: Hurricane Ian, a Category-4 Hurricane hitting the western Florida Peninsula with a secondary landfall in South Carolina, and Hurricane Nicole, a Category-1 hurricane hitting the east coast of Florida.
description: This Historical Hurricane Tracks web site provides visualizations of storm tracks derived from the 6-hourly (0000, 0600, 1200, 1800 UTC) center locations and intensities for subtropical depressions and storms, extratropical storms, tropical depressions and storms, and all hurricanes, from 1848 through the previous Atlantic hurricane season (June 1 through November 30) as recorded in the International Best Track Archive for Climate Stewardship (IBTrACS, http://www.ncdc.noaa.gov/oa/ibtracs/index.php) data set. Users may use this site to search for storms by location, ocean basin, hurricane category/scale, storm name, and atmospheric pressure.; abstract: This Historical Hurricane Tracks web site provides visualizations of storm tracks derived from the 6-hourly (0000, 0600, 1200, 1800 UTC) center locations and intensities for subtropical depressions and storms, extratropical storms, tropical depressions and storms, and all hurricanes, from 1848 through the previous Atlantic hurricane season (June 1 through November 30) as recorded in the International Best Track Archive for Climate Stewardship (IBTrACS, http://www.ncdc.noaa.gov/oa/ibtracs/index.php) data set. Users may use this site to search for storms by location, ocean basin, hurricane category/scale, storm name, and atmospheric pressure.
This 36"x24" National Hurricane Center poster depicts the complete tracks of all major hurricanes in the north Atlantic and eastern north Pacific basins since as early as 1851. A major hurricane is defined as a category-3 hurricane or greater with sustained one-minute average winds of 111 mph (96kts) or greater.
Nearly 40 percent of all hurricanes that made landfall in the United States between 1851 and 2022 hit Florida. The state was hit by 120 hurricanes in the period, of which 37 were major hurricanes (category 3 or higher). Texas and Louisiana were the second and third most hit states in the country, with 64 and 63 hurricanes, respectively.
Hurricane tracks and positions provide information on where the storm has been, where it is currently located, and where it is predicted to go. Each storm location is depicted by the sustained wind speed, according to the Saffir-Simpson Scale. It should be noted that the Saffir-Simpson Scale only applies to hurricanes in the Atlantic and Eastern Pacific basins, however all storms are still symbolized using that classification for consistency.Data SourceThis data is provided by NOAA National Hurricane Center (NHC) for the Central+East Pacific and Atlantic, and the Joint Typhoon Warning Center for the West+Central Pacific and Indian basins. For more disaster-related live feeds visit the Disaster Web Maps & Feeds ArcGIS Online Group.Sample DataSee Sample Layer Item for sample data during inactive Hurricane Season!Update FrequencyThe Aggregated Live Feeds methodology checks the Source for updates every 15 minutes. Tropical cyclones are normally issued every six hours at 5:00 AM EDT, 11:00 AM EDT, 5:00 PM EDT, and 11:00 PM EDT (or 4:00 AM EST, 10:00 AM EST, 4:00 PM EST, and 10:00 PM EST).Public advisories for Eastern Pacific tropical cyclones are normally issued every six hours at 2:00 AM PDT, 8:00 AM PDT, 2:00 PM PDT, and 8:00 PM PDT (or 1:00 AM PST, 7:00 AM PST, 1:00 PM PST, and 7:00 PM PST).Intermediate public advisories may be issued every 3 hours when coastal watches or warnings are in effect, and every 2 hours when coastal watches or warnings are in effect and land-based radars have identified a reliable storm center. Additionally, special public advisories may be issued at any time due to significant changes in warnings or in a cyclone. For the NHC data source you can subscribe to RSS Feeds.North Pacific and North Indian Ocean tropical cyclone warnings are updated every 6 hours, and South Indian and South Pacific Ocean tropical cyclone warnings are routinely updated every 12 hours. Times are set to Zulu/UTC.Scale/ResolutionThe horizontal accuracy of these datasets is not stated but it is important to remember that tropical cyclone track forecasts are subject to error, and that the effects of a tropical cyclone can span many hundreds of miles from the center.Area CoveredWorldGlossaryForecast location: Represents the official NHC forecast locations for the center of a tropical cyclone. Forecast center positions are given for projections valid 12, 24, 36, 48, 72, 96, and 120 hours after the forecast's nominal initial time. Click here for more information.
Forecast points from the JTWC are valid 12, 24, 36, 48 and 72 hours after the forecast’s initial time.Forecast track: This product aids in the visualization of an NHC official track forecast, the forecast points are connected by a red line. The track lines are not a forecast product, as such, the lines should not be interpreted as representing a specific forecast for the location of a tropical cyclone in between official forecast points. It is also important to remember that tropical cyclone track forecasts are subject to error, and that the effects of a tropical cyclone can span many hundreds of miles from the center. Click here for more information.The Cone of Uncertainty: Cyclone paths are hard to predict with absolute certainty, especially days in advance.
The cone represents the probable track of the center of a tropical cyclone and is formed by enclosing the area swept out by a set of circles along the forecast track (at 12, 24, 36 hours, etc). The size of each circle is scaled so that two-thirds of the historical official forecast errors over a 5-year sample fall within the circle. Based on forecasts over the previous 5 years, the entire track of a tropical cyclone can be expected to remain within the cone roughly 60-70% of the time. It is important to note that the area affected by a tropical cyclone can extend well beyond the confines of the cone enclosing the most likely track area of the center. Click here for more information.Coastal Watch/Warning: Coastal areas are placed under watches and warnings depending on the proximity and intensity of the approaching storm.Tropical Storm Watch is issued when a tropical cyclone containing winds of 34 to 63 knots (39 to 73 mph) or higher poses a possible threat, generally within 48 hours. These winds may be accompanied by storm surge, coastal flooding, and/or river flooding. The watch does not mean that tropical storm conditions will occur. It only means that these conditions are possible.Tropical Storm Warning is issued when sustained winds of 34 to 63 knots (39 to 73 mph) or higher associated with a tropical cyclone are expected in 36 hours or less. These winds may be accompanied by storm surge, coastal flooding, and/or river flooding.Hurricane Watch is issued when a tropical cyclone containing winds of 64 knots (74 mph) or higher poses a possible threat, generally within 48 hours. These winds may be accompanied by storm surge, coastal flooding, and/or river flooding. The watch does not mean that hurricane conditions will occur. It only means that these conditions are possible.Hurricane Warning is issued when sustained winds of 64 knots (74 mph) or higher associated with a tropical cyclone are expected in 36 hours or less. These winds may be accompanied by storm surge, coastal flooding, and/or river flooding. A hurricane warning can remain in effect when dangerously high water or a combination of dangerously high water and exceptionally high waves continue, even though winds may be less than hurricane force.RevisionsNov 20, 2023: Added Event Label to 'Forecast Position' layer, showing arrival time and wind speed localized to user's location.Mar 27, 2022: Added UID, Max_SS, Max_Wind, Max_Gust, and Max_Label fields to ForecastErrorCone layer.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to NOAA or JTWC sources for official guidance.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NCALM Seed. PI: Phillip Lane, Massachusetts Institute of Technology. The survey area consists of a 44.75 square kilometer area covering a portion of Bald Point State Park, Florida. The data were collected to examine a 4,500-year record of hurricane frequency and storm surge magnitude archived in North Florida Sinkholes. Data collection occurred on September 4, 2010. Publications associated with this dataset can be found at NCALM's Data Tracking Center
This study used computer modeling to study the impacts of hurricanes across the Yucatan Peninsula since 1851. For details on methods and results please see the published paper (Boose, E. R., D. R. Foster, A. Barker Plotkin and B. Hall. 2003. Geographical and historical variation in hurricanes across the Yucatan Peninsula. In Lowland Maya Area: Three Millennia at the Human-Wildland Interface. A. Gomez-Pompa, M. F. Allen, S. Fedick and J. J. Jimenez-Osornio, eds. Haworth Press, New York, NY. In press). The Abstract from the paper is reproduced below. "The ecological impacts of hurricanes across the Yucatan Peninsula over the last 150 years were investigated using a simple meteorological model (HURRECON) developed at Harvard Forest as well as a database of historical hurricane data (HURDAT) maintained by the U. S. National Hurricane Center. All hurricanes over the period 1851-2000 with sustained winds of hurricane force (33 meters/sec) within 300 kilometers of the study region were analyzed (n = 105). Each storm was reconstructed to produce estimates of wind damage on the Fujita scale across the region. Individual reconstructions were then compiled to study cumulative impacts of all 105 storms. "Results showed considerable variation in hurricane activity from year to year, and from decade to decade, while at the half-century scale there was an increase in hurricane intensity since the mid-nineteenth century. Ninety percent of the hurricanes causing F1 damage or higher (on the Fujita scale) occurred in the months of August, September, and October. A strong spatial gradient in hurricane frequency and intensity extended across the region from northeast to southwest, resulting from (1) the greater number of hurricanes to the north, (2) the east to west movement of most hurricanes across the area, and (3) the tendency for most hurricanes to weaken significantly after landfall. For example, during the study period, northeastern parts of the peninsula experienced a minimum of one F3 hurricane, six F2 hurricanes, and thirty F1 hurricanes, while southwestern parts experienced no F2 or F3 damage and fewer than five F1 storms. Though a significant disturbance across much of the Yucatan Peninsula, hurricanes may have shorter-lived and less severe ecological impacts than fire or human land use. The interaction of these factors (e.g., fires following hurricanes), however, may be very significant and deserves further study."
Hurricanes, also known as typhoons and cyclones, fall under the scientific term tropical cyclone. Tropical cyclones that develop over the Atlantic and eastern Pacific Ocean are considered hurricanes. The Atlantic hurricane season begins on June 1 and ends on November 30, and the eastern Pacific hurricane season begins on May 15 and ends on November 30.Meteorologists have classified the development of a tropical cyclone into four stages: Tropical disturbance, tropical depression, tropical storm, and tropical cyclone. Tropical cyclones begin as small tropical disturbances where rain clouds build over warm ocean waters. Eventually, the clouds grow large enough to develop a pattern, where the wind begins to circulate around a center point. As winds are drawn higher, increasing air pressure causes the rising thunderstorms to disperse from the center of the storm. This creates an area of rotating thunderstorms called a tropical depression with winds 62 kmph (38 mph) or less. Systems with wind speeds between 63 kmph (39 mph) and 118 kmph (73 mph) are considered tropical storms. If the winds of the tropical storm hit 119 kmph (74 mph), the storm is classified as a hurricane.Tropical cyclones need two primary ingredients to form: warm water and constant wind directions. Warm ocean waters of at least 26 degrees Celsius (74 degrees Fahrenheit) provide the energy needed for the storm to become a hurricane. Hurricanes can maintain winds in a constant direction at increasing speeds as air rotates about and gathers into the hurricane’s center. This inward and upward spiral prevents the storm from ripping itself apart.Hurricanes have distinctive parts: the eye, eyewall, and rain bands. The eye is the calm center of the hurricane where the cooler drier air sinks back down to the surface of the water. Here, winds are tranquil and skies are partly cloudy, sometimes even clear. The eyewall is composed of the strongest ring of thunderstorms and surrounds the eye. This is where rain and winds are the strongest and heaviest. Rain bands are stretches of rain clouds that go far beyond the hurricane’s eyewall, usually hundreds of kilometers.Scientists typically use the Saffir-Simpson Hurricane Wind Scale to measure the strength of a hurricane’s winds and intensity. This scale gives a 1 to 5 rating based on the hurricane’s maximum sustained winds. Hurricanes rated category 3 or higher are recognized as major hurricanes.Category 1: Wind speeds are between 119 and 153 kmph (74 and 95 mph). Although this is the lowest category of hurricane, category 1 hurricanes still produce dangerous winds and could result in damaged roofs, power lines, or fallen tree branches.Category 2: Wind speeds are between 154 and 177 kmph (96 and 110 mph). These dangerous winds are likely to cause moderate damage; enough to snap or uproot small trees, destroy roofs, and cause power outages.Category 3: Wind speeds are between 178 and 208 kmph (111 and 129 mph). At this strength, extensive damage may occur. Well-built homes could incur damage to their exterior and many trees will likely be snapped or uprooted. Water and electricity could be unavailable for at least several days after the hurricane passes.Category 4: Wind speeds are between 209 and 251 kmph (130 and 156 mph). Extreme damage will occur. Most of the area will be uninhabitable for weeks or months after the hurricane. Well-built homes could sustain major damage to their exterior, most trees may be snapped or uprooted, and power outages could last weeks to months.Category 5: Wind speeds are 252 kmph (157 mph) or higher. Catastrophic damage will occur. Most of the area will be uninhabitable for weeks or months after the hurricane. A significant amount of well-built, framed homes will likely be destroyed, uprooted trees may isolate residential areas, and power outages could last weeks to months.Hurricane data was gathered by the National Oceanic and Atmospheric Administration (NOAA) and distributed through the National Hurricane Center. These reports include barometric pressure, maximum wind speed, total damages caused, and the number of storm-related deaths. In this dataset, damage totals are adjusted for changes in inflation. Maximum winds determine the Saffir-Simpson category of the storm.Do you live in an area where tropical cyclones hit? Learn how to stay safe with National Geographic’s Hurricane Safe collection of videos.This map layer filters NOAA’s International Best Track Archive for Climate Stewardship data on the location and intensity of tropical cyclones worldwide based on windspeed to show category 3, 4, and 5 storms. This dataset covers the period of 1842–2020, and the oldest storm shown on the map occurred in 1853.Want to learn more about how hurricanes form? Check out Forces of Nature or explore The Ten Most Damaging Hurricanes in U.S. History story.
Historical HurricanesThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration, displays hurricanes from 1842-2024. According to NOAA, "a tropical cyclone is a rotating low-pressure weather system that has organized thunderstorms but no fronts (a boundary separating two air masses of different densities). Tropical cyclones with maximum sustained surface winds of less than 39 miles per hour (mph) are called tropical depressions. Those with maximum sustained winds of 39 mph or higher are called tropical storms. When a storm's maximum sustained winds reach 74 mph, it is called a hurricane."Hurricane Andrew (1992)Data currency: December 31, 2024Data source: International Best Track Archive for Climate Stewardship (IBTrACS)Data modification: Field added - Hurricane DateFor more information: International Best Track Archive for Climate Stewardship (IBTrACS)Support documentation: IBTrACS v04 column documentationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric Administration (NOAA)Per NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."
Time series of tropical cyclone "best track" position and intensity data are provided for all ocean basins where tropical cyclones occur. Position and intensity data are available at 6-hourly intervals over the duration of each cyclone's life. The general period of record begins in 1851, but this varies by ocean basin. See the inventories [http://rda.ucar.edu/datasets/ds824.1/inventories/] for data availability specific to each basin. This data set was received as a revision to an NCDC tropical cyclone data set, with data generally available through the late 1990s. Since then, the set is being continually updated from the U.S. NOAA National Hurricane Center and the U.S. Navy Joint Typhoon Warning Center best track archives. For a complete history of updates for each ocean basin, see the dataset documentation [http://rda.ucar.edu/datasets/ds824.1/docs/].
The GRIP Hurricane and Tropical Storm Forecasts dataset consists of tropical cyclone model forecast tracks archived during the NASA Genesis and Rapid Intensification Processes (GRIP) field campaign. GRIP was one of three hurricane field campaigns conducted during the 2010 Atlantic/Pacific hurricane season. This tri-agency effort included NASA GRIP, the NSF Pre-Depression Investigation of Cloud-systems in the Tropics (PREDICT) and the NOAA Intensity Forecasting Experiment 2010 (IFEX10). The hurricane and tropical storm forecasts data files are available from August 12 through November 14, 2010 in ASCII text format with browse files in KML format, viewable in Google Earth. The ASCII text files contain 5-day model “consensus” forecasts and the KML browse files contain model forecasts ranging from 5-days to 10-days.
This project used a combination of historical research and computer modeling to study the impacts of hurricanes in New England since 1620. For details on methods and results, please see the published paper (Boose, E. R., K. E. Chamberlin and D. R. Foster. 2001. Landscape and regional impacts of hurricanes in New England. Ecological Monographs 71: 27-48). The Abstract from the paper is reproduced below. "Hurricanes are a major factor controlling ecosystem structure, function and dynamics in many coastal forests and yet their ecological role can be understood only by assessing impacts in space and time over a period of centuries. We present a new method for reconstructing hurricane disturbance regimes using a combination of historical research and computer modeling. Historical data on wind damage for each hurricane in the selected region are quantified using the Fujita scale to produce regional maps of actual damage. A simple meteorological model (HURRECON), parameterized and tested for selected recent hurricanes, provides regional estimates of wind speed, direction, and damage for each storm. Individual reconstructions are compiled to analyze spatial and temporal patterns of hurricane impacts. Long-term effects of topography on a landscape scale are then examined with a simple topographic exposure model (EXPOS). "We applied this method to New England, USA, examining hurricanes since European settlement in 1620. Results showed strong regional gradients in hurricane frequency and intensity from southeast to northwest: average return intervals for F0 damage on the Fujita scale (loss of leaves and branches) ranged from 5 to 85 years, average return intervals for F1 damage (scattered blowdowns, small gaps) ranged from 10 to more than 200 years, and average return intervals for F2 damage (extensive blowdowns, large gaps) ranged from 85 to more than 380 years. On a landscape scale, average return intervals for F2 damage in the town of Petersham MA ranged from 125 years across most sites to more than 380 years on scattered lee slopes. Actual forest damage was strongly dependent on land-use and natural disturbance history. Annual and decadal timing of hurricanes varied widely. There was no clear century-scale trend in the number of major hurricanes. "The historical-modeling approach is applicable to any region with good historical records and will enable ecologists and land managers to incorporate insights on hurricane disturbance regimes into the interpretation and conservation of forests at landscape to regional scales."
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Strongest Tropical Cyclones: 1980-2009 poster - a 30-year collage of Hurricane Satellite (HURSAT) data. This poster depicts a series of 5 degree grids where within each grid is a false color image of the strongest tropical cyclone captured by satellites during the period 1980 to 2009. The poster size is 48"x 30".
The 2020 Atlantic hurricane season ranked amongst the top six most powerful seasons in the satellite era, based on Accumulated Cyclone Energy (ACE). That year, the 30 named storms (including 14 hurricanes, of which seven major hurricanes) in the basin registered an ACE of 180. All of the top ten most extreme Atlantic hurricane seasons recorded in the satellite era happened since 1990, with 2005 leading the ranking with an ACE of 250.
In 2023, there were 45 hurricanes registered worldwide, up from 45 hurricanes a year earlier. This was nevertheless below the average of 47 hurricanes per year registered from 1990 to 2022. The years of 1992 and 2018 tied as the most active in the indicated period, each with 59 hurricanes recorded. The Pacific Northwest basin recorded the largest number of hurricanes in 2023.
Most exposed countries to hurricanes With the Pacific Northwest basin being one of the most active for hurricanes in the world , there is perhaps no surprise that Japan was the country most exposed to tropical cyclones in 2023. It was followed by the Philippines, also a West Pacific nation. Meanwhile, the Bahamas was the most exposed country in the Atlantic Ocean and ranked third most exposed worldwide during the same year.
Effects of tropical cyclones From 1970 to 2019, almost 800,000 deaths due to tropical cyclones have been reported worldwide. In the past decade, the number of such casualties stood at some 19,600, the lowest decadal figure in the last half-century . In contrast to the lower number of deaths, economic losses caused by tropical cyclones has continuously grown since 1970, reaching a record high of more than 570 billion U.S. dollars from 2010 to 2019.