HydroSHEDS is a mapping product that provides hydrographic information for regional and global-scale applications in a consistent format. It offers a suite of geo-referenced datasets (vector and raster) at various scales, including river networks, watershed boundaries, drainage directions, and flow accumulations. HydroSHEDS is based on elevation data obtained in 2000 by NASA's Shuttle Radar Topography Mission (SRTM). This hydrologically conditioned elevation dataset is the result of an iterative conditioning and correction process. Note that the conditioning process alters the original DEM and may render it incorrect for applications other than deriving drainage directions. Endorheic basins (inland sinks) are ''seeded'' with a no-data cell at their lowest point in order to terminate the flow. Full details of the underlying digital elevation model are available in the HydroSHEDS website and documentation. This dataset is at 30 arc-second resolution. The datasets available at 30 arc-seconds are the Hydrologically Conditioned DEM, Drainage (Flow) Direction, and Flow Accumulation. Note that the quality of the HydroSHEDS data is significantly lower for regions above 60 degrees northern latitude as there is no underlying SRTM elevation data available and thus a coarser-resolution DEM was (HYDRO1k provided by USGS). HydroSHEDS was developed by the World Wildlife Fund (WWF) Conservation Science Program in partnership with the U.S. Geological Survey, the International Centre for Tropical Agriculture, The Nature Conservancy, and the Center for Environmental Systems Research of the University of Kassel, Germany.
HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales) provides hydrographic information in a consistent and comprehensive format for regional and global-scale applications.
The HydroSHEDS database provides a suite of raster and vector datasets, covering many of the common derivative products used in hydrological analyses, including stream networks, watershed boundaries, drainage directions, and ancillary data layers such as flow accumulations, distances, and river topology information.
The goal of developing HydroSHEDS was to generate key data layers to support regional and global watershed analyses, hydrological modeling, and freshwater conservation planning at a quality, resolution and extent that has previously been unachievable. Available resolutions range from 3 arc-second (approx. 90 meters at the equator) to 5 minute (approx. 10 km at the equator) with seamless near-global extent.
HydroSHEDS has been developed by the Conservation Science Program of World Wildlife Fund (WWF), in partnership or collaboration with the U.S. Geological Survey (USGS); the International Centre for Tropical Agriculture (CIAT); The Nature Conservancy (TNC); McGill University, Montreal, Canada; the Australian National University, Canberra, Australia; and the Center for Environmental Systems Research (CESR), University of Kassel, Germany. Major funding for this project was provided to WWF by JohnsonDiversey, Inc. and Sealed Air Corporation.
HydroSHEDS data are free for non-commercial and commercial use. See License Agreement for specific restrictions and use requirements.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales) provides hydrographic information in a consistent and comprehensive format for regional and global-scale applications. HydroSHEDS offers a suite of geo-referenced data sets (vector and raster), including stream networks, watershed boundaries, drainage directions, and ancillary data layers such as flow accumulations, distances, and river topology information. HydroSHEDS is derived from elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution. Available HydroSHEDS resolutions range from 3 arc-second (approx. 90 meters at the equator) to 5 minute (approx. 10 km at the equator) with seamless near-global extent.
Citation:Title: HydroSHEDS (RIV) - River network (stream lines) at 15s resolution - AfricaCredits: World Wildlife Fund (WWF)Publication Date: 2006Publisher: U.S. Geological SurveyOnline Linkages: http://hydrosheds.cr.usgs.govhttp://www.worldwildlife.org/hydroshedsOther Citation Info: Please cite HydroSHEDS as: Lehner, B., Verdin, K., Jarvis, A. (2006): HydroSHEDS Technical Documentation. World Wildlife Fund US, Washington, DC. Available at http://hydrosheds.cr.usgs.gov.
This layer package was loaded using Data Basin.Click here to go to the detail page for this layer package in Data Basin, where you can find out more information, such as full metadata, or use it to create a live web map.
HydroSHEDS is a mapping product that provides hydrographic information for regional and global-scale applications in a consistent format. It offers a suite of geo-referenced datasets (vector and raster) at various scales, including river networks, watershed boundaries, drainage directions, and flow accumulations. HydroSHEDS is based on elevation data obtained in 2000 by NASA's Shuttle Radar Topography Mission (SRTM). This dataset provides polygons of nested, hierarchical watersheds, based on 15 arc-seconds (approx. 500 m at the equator) resolution raster data. The watersheds range from level 1 (coarse) to level 12 (detailed), using Pfastetter codes. Technical documentation: https://hydrosheds.org/images/inpages/HydroBASINS_TechDoc_v1c.pdf Note that the quality of the HydroSHEDS data is significantly lower for regions above 60 degrees northern latitude as there is no underlying SRTM elevation data available and thus a coarser-resolution DEM was (HYDRO1k provided by USGS). HydroSHEDS was developed by the World Wildlife Fund (WWF) Conservation Science Program in partnership with the U.S. Geological Survey, the International Centre for Tropical Agriculture, The Nature Conservancy, and the Center for Environmental Systems Research of the University of Kassel, Germany.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales) provides hydrographic information in a consistent and comprehensive format for regional and global-scale applications. HydroSHEDS offers a suite of geo-referenced data sets (vector and raster), including stream networks, watershed boundaries, drainage directions, and ancillary data layers such as flow accumulations, distances, and river topology information. HydroSHEDS is derived from elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution. Available HydroSHEDS resolutions range from 3 arc-second (approx. 90 meters at the equator) to 5 minute (approx. 10 km at the equator) with seamless near-global extent.
Citation:Title: HydroSHEDS (BAS) - Africa drainage basins (watershed boundaries) at 30s resolutionCredits: World Wildlife Fund (WWF)Publication Date: 2006Publisher: U.S. Geological SurveyOnline Linkages: http://hydrosheds.cr.usgs.govhttp://www.worldwildlife.org/hydroshedsOther Citation Info: Please cite HydroSHEDS as: Lehner, B., Verdin, K., Jarvis, A. (2006): HydroSHEDS Technical Documentation. World Wildlife Fund US, Washington, DC. Available at http://hydrosheds.cr.usgs.gov.
This layer package was loaded using Data Basin.Click here to go to the detail page for this layer package in Data Basin, where you can find out more information, such as full metadata, or use it to create a live web map.
HydroSHEDS is a mapping product that provides hydrographic information for regional and global-scale applications in a consistent format. It offers a suite of geo-referenced datasets (vector and raster) at various scales, including river networks, watershed boundaries, drainage directions, and flow accumulations. HydroSHEDS is based on elevation data obtained in 2000 by NASA's Shuttle Radar Topography Mission (SRTM). This dataset provides polylines that represent river networks, derived from and consistent with other HydroSHEDS datasets. These data are based on 15 arc-seconds (approx. 500 m at the equator) resolution raster data. Mapping the world's free-flowing rivers: data set and technical documentation Note that the quality of the HydroSHEDS data is significantly lower for regions above 60 degrees northern latitude as there is no underlying SRTM elevation data available and thus a coarser-resolution DEM was (HYDRO1k provided by USGS). HydroSHEDS was developed by the World Wildlife Fund (WWF) Conservation Science Program in partnership with the U.S. Geological Survey, the International Centre for Tropical Agriculture, The Nature Conservancy, and the Center for Environmental Systems Research of the University of Kassel, Germany.
A hydrologically correct DEM is designed to calculate secondary surfaces such as flow direction and flow accumulation.DEM resolution: 3 arc-secondElevation in meters (referenced to WGS84 EGM96 geoid)Source: https://www.hydrosheds.org/products/hydrosheds
HydroSHEDS is a mapping product that provides hydrographic information for regional and global-scale applications in a consistent format. It offers a suite of geo-referenced datasets (vector and raster) at various scales, including river networks, watershed boundaries, drainage directions, and flow accumulations. HydroSHEDS is based on elevation data obtained in 2000 by NASA's Shuttle Radar Topography Mission (SRTM). This drainage direction dataset defines the direction of flow from each cell in the conditioned DEM to its steepest down-slope neighbor. Values of drainage direction vary from 1 to 128. All final outlet cells to the ocean are flagged with a value of 0. All cells that mark the lowest point of an endorheic basin (inland sink) are flagged with a value of -1. The drainage direction values follow the convention adopted by ESRI's flow direction implementation: 1=E, 2=SE, 4=S, 8=SW, 16=W, 32=NW, 64=N, 128=NE. This dataset is at 30 arc-second resolution. The datasets available at 30 arc-seconds are the Hydrologically Conditioned DEM, Drainage (Flow) Direction, and Flow Accumulation. Note that the quality of the HydroSHEDS data is significantly lower for regions above 60 degrees northern latitude as there is no underlying SRTM elevation data available and thus a coarser-resolution DEM was (HYDRO1k provided by USGS). HydroSHEDS was developed by the World Wildlife Fund (WWF) Conservation Science Program in partnership with the U.S. Geological Survey, the International Centre for Tropical Agriculture, The Nature Conservancy, and the Center for Environmental Systems Research of the University of Kassel, Germany.
The major rivers of the world are derived from the World Wildlife Fund's (WWF) HydroSHEDS drainage direction layer and a stream network layer. The drainage direction layer was created from NASA's Shuttle Radar Topographic Mission (SRTM) 15-second Digital Elevation Model (DEM). The raster stream network was determined by using the HydroSHEDS flow accumulation grid, with a threshold of about 1000 sqkm upstream area. The stream network dataset consists of the following information: the origin node of each arc in the network (FROM_NODE), the destination of each arc in the network (TO_NODE), the Strahler stream order of each arc in the network (STRAHLER), numerical code and name of the major basin that the arc falls within (MAJ_BAS and MAJ_NAME); - area of the major basin in square km that the arc falls within (MAJ_AREA); - numerical code and name of the sub-basin that the arc falls within (SUB_BAS and SUB_NAME); - area of the sub-basin in square km that the arc falls within (SUB_AREA); - numerical code of the sub-basin towards which the sub-basin flows that the arc falls within (TO_SUBBAS) (the codes -888 and -999 have been assigned respectively to internal sub-basins and to sub-basins draining into the sea). The attributes table now includes a field named "Regime" with tentative classification of perennial ("P") and intermittent ("I") streams.
HydroBASINS is a series of polygon layers that depict watershed boundaries and sub-basin delineations at a global scale. The goal of this product is to provide a seamless global coverage of consistently sized and hierarchically nested sub-basins at different scales (from tens to millions of square kilometers), supported by a coding scheme that allows for analysis of watershed topology such as up- and downstream connectivity.
Using the HydroSHEDS database at 15 arc-second resolution, watersheds were delineated in a consistent manner at different scales, and a hierarchical sub-basin breakdown was created following the topological concept of the Pfafstetter coding system. The resulting polygon layers are termed HydroBASINS and represent a subset of the HydroSHEDS database.
The HydroBASINS product has been developed on behalf of World Wildlife Fund US (WWF), with support and in collaboration with the EU BioFresh project, Berlin, Germany; the International Union for Conservation of Nature (IUCN), Cambridge, UK; and McGill University, Montreal, Canada.
HydroBASINS is covered by the same License Agreement as the HydroSHEDS database.
Citations and acknowledgements of the HydroBASINS data should be made as follows:
Lehner, B., Grill G. (2013): Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrological Processes, 27(15): 2171–2186. Data is available at www.hydrosheds.org.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales) provides hydrographic information in a consistent and comprehensive format for regional and global-scale applications. HydroSHEDS offers a suite of geo-referenced data sets in raster and vector format, including stream networks, watershed boundaries, drainage directions, and ancillary data layers such as flow accumulations, distances, and river topology information. The goal of developing HydroSHEDS was to generate key data layers to support regional and global watershed analyses, hydrological modeling, and freshwater conservation planning at a quality, resolution and extent that has previously been unachievable. Available resolutions range from 3 arc-second (approx. 90 meters at the equator) to 5 minute (approx. 10 km at the equator) with seamless near-global extent. HydroSHEDS has been developed by the Conservation Science Program of World Wildlife Fund (WWF), in partnership or collaboration with the U.S. Geological Survey (USGS); the International Centre for Tropical Agriculture (CIAT); The Nature Conservancy (TNC); McGill University, Montreal, Canada; the Australian National University, Canberra, Australia; and the Center for Environmental Systems Research (CESR), University of Kassel, Germany. Major funding for this project was provided to WWF by JohnsonDiversey, Inc. and Sealed Air Corporation. HydroSHEDS data are free for non-commercial and commercial use. See License Agreement for specific restrictions and use requirements. This product [insert Licensee Derivative Product name] incorporates data from the HydroSHEDS database which is © World Wildlife Fund, Inc. (2006-2013) and has been used herein under license. WWF has not evaluated the data as altered and incorporated within [insert Licensee Derivative Product name], and therefore gives no warranty regarding its accuracy, completeness, currency or suitability for any particular purpose. Portions of the HydroSHEDS database incorporate data which are the intellectual property rights of © USGS (2006-2008), NASA (2000-2005), ESRI (1992-1998), CIAT (2004-2006), UNEP-WCMC (1993), WWF (2004), Commonwealth of Australia (2007), and Her Royal Majesty and the British Crown and are used under license. The HydroSHEDS database and more information are available at http://www.hydrosheds.org.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset divides the North American continent in major hydrological basins and their sub-basins according to its hydrological characteristics. It was obtained by delineating drainage basin boundaries from hydrologically corrected elevation data (WWF HydroSHEDS and Hydro1K).
The dataset consists of the following information:- numerical code and name of the major basin (MAJ_BAS and MAJ_NAME); - area of the major basin in square km (MAJ_AREA); - numerical code and name of the sub-basin (SUB_BAS and SUB_NAME); - area of the sub-basin in square km (SUB_AREA); - numerical code of the sub-basin towards which the sub-basin flows (TO_SUBBAS) (the codes -888 and -999 have been assigned respectively to internal sub-basins and to sub-basins draining into the sea)
Supplemental Information:
This dataset is developed as part of a GIS-based information system on water resources for the Asian continent. It has been published in the framework of the AQUASTAT - programme of the Land and Water Division of the Food and Agriculture Organization of the United Nations.
Contact points:
Metadata contact: AQUASTAT FAO-UN Land and Water Division
Contact: Jippe Hoogeveen FAO-UN Land and Water Division
Data lineage:
The majority of the linework of the map was obtained by delineating drainage basin boundaries from hydrologically corrected elevation data with a resolution of 15 arc-seconds. The elevation dataset was part of a mapping product, HydroSHEDS, developed by the Conservation Science Program of World Wildlife Fund. Original input data had been obtained during NASA's Shuttle Radar Topography Mission (SRTM). Areas north of the SRTM extent, 60 degrees N, were obtained by merging with the HYDRO1k basin layer.
Online resources:
Download - Hydrological basins in North America (ESRI shapefile)
General information regarding the HydroSHEDS data product
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset divides the African continent in major hydrological basins and their sub-basins according to its hydrological characteristics. It was obtained by delineating drainage basin boundaries from hydrologically corrected elevation data (WWF HydroSHEDS and Hydro1K).
The dataset consists of the following information:- numerical code and name of the major basin (MAJ_BAS and MAJ_NAME); - area of the major basin in square km (MAJ_AREA); - numerical code and name of the sub-basin (SUB_BAS and SUB_NAME); - area of the sub-basin in square km (SUB_AREA); - numerical code of the sub-basin towards which the sub-basin flows (TO_SUBBAS) (the codes -888 and -999 have been assigned respectively to internal sub-basins and to sub-basins draining into the sea)
Supplemental Information:
This dataset is developed as part of a GIS-based information system on water resources for the African continent. It has been published in the framework of the AQUASTAT - programme of the Land and Water Division of the Food and Agriculture Organization of the United Nations.
Contact points:
Metadata Contact: AQUASTAT
Resource Contact: Jippe Hoogeveen
Data lineage:
The linework of the map was obtained by delineating drainage basin boundaries from hydrologically corrected elevation data with a resolution of 15 arc-seconds.The elevation dataset was part of a mapping product, HydroSHEDS, developed by the Conservation Science Program of World Wildlife Fund. Original input data had been obtained during NASA's Shuttle Radar Topography Mission (SRTM).
For general information regarding the HydroSHEDS data product: http://www.worldwildlife.org/hydrosheds
For dataset download and technical information:http://hydrosheds.cr.usgs.gov
https://data.apps.fao.org/catalog//iso/7707086d-af3c-41cc-8aa5-323d8609b2d1
Online resources:
Download - Hydrological basins in Africa (ESRI shapefile)
General information regarding the HydroSHEDS data product
The full documentation can be found at https://www.hydrosheds.org/images/inpages/HydroBASINS_TechDoc_v1c.pdf, Watershed boundaries provide important geospatial units for many applications, but at a global scale there is a lack of high-quality mapping sources. The HydroSHEDS database (Hydrological data and maps based on SHuttle Elevation Derivatives; Lehner et al. 2008; for more information see http://www.hydrosheds.org) provides hydrographic data layers that allow for the derivation of watershed boundaries for any given location based on the near-global, high-resolution SRTM digital elevation model. Using this hydrographic information, watersheds were delineated in a consistent manner at different scales, and a hierarchical sub-basin breakdown was created following the topological concept of the Pfafstetter coding system (Verdin & Verdin 1999). The resulting polygon layers are termed HydroBASINS and represent a subset of the HydroSHEDS database. All HydroBASINS layers were derived from World Wildlife Fund’s HydroSHEDS data (Lehner et al. 2008; Lehner and Grill 2013) based on a grid resolution of 15 arc-seconds (approximately 500 m at the equator). For more information please refer to the Technical Documentation of HydroSHEDS at http://www.hydrosheds.org. It should be noted that the quality of the HydroSHEDS data is significantly lower for regions above 60 degrees northern latitude as there is no underlying SRTM elevation data available and thus a coarser scale DEM has been inserted (HYDRO1k provided by USGS; see http://gcmd.nasa.gov/records/GCMD_HYDRO1k.html).
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Hydro-basins provide hydrographic data layers that allow for the derivation of watershed boundaries for any given location based on the near-global, high-resolution SRTM digital elevation model. Watersheds were delineated in a consistent manner at different scales, and a hierarchical sub-basin breakdown was created following the topological concept of the Pfafstetter coding system (Verdin & Verdin 1999). The resulting polygon layers are termed HydroBASINS and represent a subset of the HydroSHEDS database. There are 12 levels. Level 6 represents major river systems from headwaters to coast. This version is sourced from FAO.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Digital elevation model (DEM) of the Malaprabha (K4) sub-basin.The data is obtained from HydroSHED (https://hydrosheds.org).
Data publication: 2020-01-01
Supplemental Information:
No data value: -9999
Citation:
This product incorporates data from the HydroSHEDS database which is © World Wildlife Fund, Inc. (2006-2013) and has been used herein under license. WWF has not evaluated the data as altered and incorporated within the DEM of the Malaprabha (K4) sub-basin, and therefore gives no warranty regarding its accuracy, completeness, currency or suitability for any particular purpose. Portions of the HydroSHEDS database incorporate data which are the intellectual property rights of © USGS (2006-2008), NASA (2000-2005), ESRI (1992-1998), CIAT (2004-2006), UNEP-WCMC (1993), WWF (2004), Commonwealth of Australia (2007), and Her Royal Majesty and the British Crown and are used under license. The HydroSHEDS database and more information are available at http://www.hydrosheds.org.
Contact points:
Metadata Contact: Elga Salvadore
Responsible Party: Elga Salvadore
Resource Contact: Center U.S. Geological Survey Earth Resources Observation and Science (EROS)
Data lineage:
The dataset is obtained by clipping the original dataset. See https://hydrosheds.org/ for more information.
Resource constraints:
copyright
Online resources:
HydroSHEDS is a mapping product that provides hydrographic information for regional and global-scale applications in a consistent format. It offers a suite of geo-referenced datasets (vector and raster) at various scales, including river networks, watershed boundaries, drainage directions, and flow accumulations. HydroSHEDS is based on elevation data obtained in 2000 by NASA's Shuttle Radar Topography Mission (SRTM). This hydrologically conditioned elevation dataset is the result of an iterative conditioning and correction process. Note that the conditioning process alters the original DEM and may render it incorrect for applications other than deriving drainage directions. Endorheic basins (inland sinks) are 'seeded' with a no-data cell at their lowest point in order to terminate the flow. Full details of the underlying digital elevation model are available in the HydroSHEDS website and documentation. This dataset is at 15 arc-second resolution. The datasets available at 15 arc-seconds are the Hydrologically Conditioned DEM, Drainage (Flow) Direction, and Flow Accumulation. Note that the quality of the HydroSHEDS data is significantly lower for regions above 60 degrees northern latitude as there is no underlying SRTM elevation data available and thus a coarser-resolution DEM was (HYDRO1k provided by USGS). HydroSHEDS was developed by the World Wildlife Fund (WWF) Conservation Science Program in partnership with the U.S. Geological Survey, the International Centre for Tropical Agriculture, The Nature Conservancy, and the Center for Environmental Systems Research of the University of Kassel, Germany.
HydroSHEDS is a mapping product that provides hydrographic information for regional and global-scale applications in a consistent format. It offers a suite of geo-referenced datasets (vector and raster) at various scales, including river networks, watershed boundaries, drainage directions, and flow accumulations. HydroSHEDS is based on elevation data obtained in 2000 by NASA's Shuttle Radar Topography Mission (SRTM). This hydrologically conditioned elevation dataset is the result of an iterative conditioning and correction process. Note that the conditioning process alters the original DEM and may render it incorrect for applications other than deriving drainage directions. Endorheic basins (inland sinks) are ''seeded'' with a no-data cell at their lowest point in order to terminate the flow. Full details of the underlying digital elevation model are available in the HydroSHEDS website and documentation. This dataset is at 30 arc-second resolution. The datasets available at 30 arc-seconds are the Hydrologically Conditioned DEM, Drainage (Flow) Direction, and Flow Accumulation. Note that the quality of the HydroSHEDS data is significantly lower for regions above 60 degrees northern latitude as there is no underlying SRTM elevation data available and thus a coarser-resolution DEM was (HYDRO1k provided by USGS). HydroSHEDS was developed by the World Wildlife Fund (WWF) Conservation Science Program in partnership with the U.S. Geological Survey, the International Centre for Tropical Agriculture, The Nature Conservancy, and the Center for Environmental Systems Research of the University of Kassel, Germany.