In 2023, the U.S. Consumer Price Index was 309.42, and is projected to increase to 352.27 by 2029. The base period was 1982-84. The monthly CPI for all urban consumers in the U.S. can be accessed here. After a time of high inflation, the U.S. inflation rateis projected fall to two percent by 2027. United States Consumer Price Index ForecastIt is projected that the CPI will continue to rise year over year, reaching 325.6 in 2027. The Consumer Price Index of all urban consumers in previous years was lower, and has risen every year since 1992, except in 2009, when the CPI went from 215.30 in 2008 to 214.54 in 2009. The monthly unadjusted Consumer Price Index was 296.17 for the month of August in 2022. The U.S. CPI measures changes in the price of consumer goods and services purchased by households and is thought to reflect inflation in the U.S. as well as the health of the economy. The U.S. Bureau of Labor Statistics calculates the CPI and defines it as, "a measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services." The BLS records the price of thousands of goods and services month by month. They consider goods and services within eight main categories: food and beverage, housing, apparel, transportation, medical care, recreation, education, and other goods and services. They aggregate the data collected in order to compare how much it would cost a consumer to buy the same market basket of goods and services within one month or one year compared with the previous month or year. Given that the CPI is used to calculate U.S. inflation, the CPI influences the annual adjustments of many financial institutions in the United States, both private and public. Wages, social security payments, and pensions are all affected by the CPI.
The Consumer price surveys primarily provide the following: Data on CPI in Palestine covering the West Bank, Gaza Strip and Jerusalem J1 for major and sub groups of expenditure. Statistics needed for decision-makers, planners and those who are interested in the national economy. Contribution to the preparation of quarterly and annual national accounts data.
Consumer Prices and indices are used for a wide range of purposes, the most important of which are as follows: Adjustment of wages, government subsidies and social security benefits to compensate in part or in full for the changes in living costs. To provide an index to measure the price inflation of the entire household sector, which is used to eliminate the inflation impact of the components of the final consumption expenditure of households in national accounts and to dispose of the impact of price changes from income and national groups. Price index numbers are widely used to measure inflation rates and economic recession. Price indices are used by the public as a guide for the family with regard to its budget and its constituent items. Price indices are used to monitor changes in the prices of the goods traded in the market and the consequent position of price trends, market conditions and living costs. However, the price index does not reflect other factors affecting the cost of living, e.g. the quality and quantity of purchased goods. Therefore, it is only one of many indicators used to assess living costs. It is used as a direct method to identify the purchasing power of money, where the purchasing power of money is inversely proportional to the price index.
Palestine West Bank Gaza Strip Jerusalem
The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.
The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.
Sample survey data [ssd]
A non-probability purposive sample of sources from which the prices of different goods and services are collected was updated based on the establishment census 2017, in a manner that achieves full coverage of all goods and services that fall within the Palestinian consumer system. These sources were selected based on the availability of the goods within them. It is worth mentioning that the sample of sources was selected from the main cities inside Palestine: Jenin, Tulkarm, Nablus, Qalqiliya, Ramallah, Al-Bireh, Jericho, Jerusalem, Bethlehem, Hebron, Gaza, Jabalia, Dier Al-Balah, Nusseirat, Khan Yunis and Rafah. The selection of these sources was considered to be representative of the variation that can occur in the prices collected from the various sources. The number of goods and services included in the CPI is approximately 730 commodities, whose prices were collected from 3,200 sources. (COICOP) classification is used for consumer data as recommended by the United Nations System of National Accounts (SNA-2008).
Not apply
Computer Assisted Personal Interview [capi]
A tablet-supported electronic form was designed for price surveys to be used by the field teams in collecting data from different governorates, with the exception of Jerusalem J1. The electronic form is supported with GIS, and GPS mapping technique that allow the field workers to locate the outlets exactly on the map and the administrative staff to manage the field remotely. The electronic questionnaire is divided into a number of screens, namely: First screen: shows the metadata for the data source, governorate name, governorate code, source code, source name, full source address, and phone number. Second screen: shows the source interview result, which is either completed, temporarily paused or permanently closed. It also shows the change activity as incomplete or rejected with the explanation for the reason of rejection. Third screen: shows the item code, item name, item unit, item price, product availability, and reason for unavailability. Fourth screen: checks the price data of the related source and verifies their validity through the auditing rules, which was designed specifically for the price programs. Fifth screen: saves and sends data through (VPN-Connection) and (WI-FI technology).
In case of the Jerusalem J1 Governorate, a paper form has been designed to collect the price data so that the form in the top part contains the metadata of the data source and in the lower section contains the price data for the source collected. After that, the data are entered into the price program database.
The price survey forms were already encoded by the project management depending on the specific international statistical classification of each survey. After the researcher collected the price data and sent them electronically, the data was reviewed and audited by the project management. Achievement reports were reviewed on a daily and weekly basis. Also, the detailed price reports at data source levels were checked and reviewed on a daily basis by the project management. If there were any notes, the researcher was consulted in order to verify the data and call the owner in order to correct or confirm the information.
At the end of the data collection process in all governorates, the data will be edited using the following process: Logical revision of prices by comparing the prices of goods and services with others from different sources and other governorates. Whenever a mistake is detected, it should be returned to the field for correction. Mathematical revision of the average prices for items in governorates and the general average in all governorates. Field revision of prices through selecting a sample of the prices collected from the items.
Not apply
The findings of the survey may be affected by sampling errors due to the use of samples in conducting the survey rather than total enumeration of the units of the target population, which increases the chances of variances between the actual values we expect to obtain from the data if we had conducted the survey using total enumeration. The computation of differences between the most important key goods showed that the variation of these goods differs due to the specialty of each survey. For example, for the CPI, the variation between its goods was very low, except in some cases such as banana, tomato, and cucumber goods that had a high coefficient of variation during 2019 due to the high oscillation in their prices. The variance of the key goods in the computed and disseminated CPI survey that was carried out on the Palestine level was for reasons related to sample design and variance calculation of different indicators since there was a difficulty in the dissemination of results by governorates due to lack of weights. Non-sampling errors are probable at all stages of data collection or data entry. Non-sampling errors include: Non-response errors: the selected sources demonstrated a significant cooperation with interviewers; so, there wasn't any case of non-response reported during 2019. Response errors (respondent), interviewing errors (interviewer), and data entry errors: to avoid these types of errors and reduce their effect to a minimum, project managers adopted a number of procedures, including the following: More than one visit was made to every source to explain the objectives of the survey and emphasize the confidentiality of the data. The visits to data sources contributed to empowering relations, cooperation, and the verification of data accuracy. Interviewer errors: a number of procedures were taken to ensure data accuracy throughout the process of field data compilation: Interviewers were selected based on educational qualification, competence, and assessment. Interviewers were trained theoretically and practically on the questionnaire. Meetings were held to remind interviewers of instructions. In addition, explanatory notes were supplied with the surveys. A number of procedures were taken to verify data quality and consistency and ensure data accuracy for the data collected by a questioner throughout processing and data entry (knowing that data collected through paper questionnaires did not exceed 5%): Data entry staff was selected from among specialists in computer programming and were fully trained on the entry programs. Data verification was carried out for 10% of the entered questionnaires to ensure that data entry staff had entered data correctly and in accordance with the provisions of the questionnaire. The result of the verification was consistent with the original data to a degree of 100%. The files of the entered data were received, examined, and reviewed by project managers before findings were extracted. Project managers carried out many checks on data logic and coherence, such as comparing the data of the current month with that of the previous month, and comparing the data of sources and between governorates. Data collected by tablet devices were checked for consistency and accuracy by applying rules at item level to be checked.
Other technical procedures to improve data quality: Seasonal adjustment processes
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Quality of Life Index (higher is better) is an estimation of overall quality of life by using an empirical formula which takes into account purchasing power index (higher is better), pollution index (lower is better), house price to income ratio (lower is better), cost of living index (lower is better), safety index (higher is better), health care index (higher is better), traffic commute time index (lower is better) and climate index (higher is better).
Current formula (written in Java programming language):
index.main = Math.max(0, 100 + purchasingPowerInclRentIndex / 2.5 - (housePriceToIncomeRatio * 1.0) - costOfLivingIndex / 10 + safetyIndex / 2.0 + healthIndex / 2.5 - trafficTimeIndex / 2.0 - pollutionIndex * 2.0 / 3.0 + climateIndex / 3.0);
For details how purchasing power (including rent) index, pollution index, property price to income ratios, cost of living index, safety index, climate index, health index and traffic index are calculated please look up their respective pages.
Formulas used in the past
Formula used between June 2017 and Decembar 2017
We decided to decrease weight from costOfLivingIndex in this formula:
index.main = Math.max(0, 100 + purchasingPowerInclRentIndex / 2.5 - (housePriceToIncomeRatio * 1.0) - costOfLivingIndex / 5 + safetyIndex / 2.0 + healthIndex / 2.5 - trafficTimeIndex / 2.0 - pollutionIndex * 2.0 / 3.0 + climateIndex / 3.0);
The World Happiness 2017, which ranks 155 countries by their happiness levels, was released at the United Nations at an event celebrating International Day of Happiness on March 20th. The report continues to gain global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions. Leading experts across fields – economics, psychology, survey analysis, national statistics, health, public policy and more – describe how measurements of well-being can be used effectively to assess the progress of nations. The reports review the state of happiness in the world today and show how the new science of happiness explains personal and national variations in happiness.
The scores are based on answers to the main life evaluation question asked in the poll. This question, known as the Cantril ladder, asks respondents to think of a ladder with the best possible life for them being a 10 and the worst possible life being a 0 and to rate their own current lives on that scale. The scores are from nationally representative samples for 2017 and use the Gallup weights to make the estimates representative. The columns following the happiness score estimate the extent to which each of six factors – economic production, social support, life expectancy, freedom, absence of corruption, and generosity – contribute to making life evaluations higher in each country than they are in Dystopia, a hypothetical country that has values equal to the world’s lowest national averages for each of the six factors. They have no impact on the total score reported for each country, but they do explain why some countries rank higher than others.
Quality of life index, link: https://www.numbeo.com/quality-of-life/indices_explained.jsp
Happiness store, link: https://www.kaggle.com/unsdsn/world-happiness/home
At **** U.S. dollars, Switzerland has the most expensive Big Macs in the world, according to the January 2025 Big Mac index. Concurrently, the cost of a Big Mac was **** dollars in the U.S., and **** U.S. dollars in the Euro area. What is the Big Mac index? The Big Mac index, published by The Economist, is a novel way of measuring whether the market exchange rates for different countries’ currencies are overvalued or undervalued. It does this by measuring each currency against a common standard – the Big Mac hamburger sold by McDonald’s restaurants all over the world. Twice a year the Economist converts the average national price of a Big Mac into U.S. dollars using the exchange rate at that point in time. As a Big Mac is a completely standardized product across the world, the argument goes that it should have the same relative cost in every country. Differences in the cost of a Big Mac expressed as U.S. dollars therefore reflect differences in the purchasing power of each currency. Is the Big Mac index a good measure of purchasing power parity? Purchasing power parity (PPP) is the idea that items should cost the same in different countries, based on the exchange rate at that time. This relationship does not hold in practice. Factors like tax rates, wage regulations, whether components need to be imported, and the level of market competition all contribute to price variations between countries. The Big Mac index does measure this basic point – that one U.S. dollar can buy more in some countries than others. There are more accurate ways to measure differences in PPP though, which convert a larger range of products into their dollar price. Adjusting for PPP can have a massive effect on how we understand a country’s economy. The country with the largest GDP adjusted for PPP is China, but when looking at the unadjusted GDP of different countries, the U.S. has the largest economy.
In 2025, Luxembourg reached the highest score in the quality of life index in Europe, with 220 points. In second place, The Netherlands registered 211 points. On the opposite side of the spectrum, Albania and Ukraine registered the lowest quality of life across Europe with 104 and 115 points respectively. The Quality of Life Index (where a higher score indicates a higher quality of life) is an estimation of overall quality of life, calculated using an empirical formula. This formula considers various factors, including the purchasing power index, pollution index, house price-to-income ratio, cost of living index, safety index, health care index, traffic commute time index, and climate index.
A household budget survey or Household Income and Expenditure survey (HES) as it is commonly called, is one of the most important economic surveys carried out by the Management and Information Systems Division (MISD). The survey is household-based and serves to provide up-to-date and comprehensive information on the components of the average household budget.
Household expenditure surveys are normally carried out every five to seven years so that updated information can be obtained on spending patterns and most importantly, on the composition of the 'basket of goods'.
In a HES, information on both income and expenditure is collected. Background variables such as household composition, age and sex structure and economic activity are also included to help classify the households in various demographic and socio-economic groups and to provide updated estimates on previous household surveys.
The primary purpose of the HES was to collect up-to-date detailed information on the expenditure of households to provide new weights for the calculation of the Cost of Living Index estimated here by the Retail Price Index (RPI).
A second important use of this survey is to provide data on aggregate consumers' expenditure and income to be used in the compilation of the Gross Domestic Product (GDP) and National Income accounts. The 'expenditure approach' of the GDP calculation usually estimates the consumer expenditure component. Results from this survey will thus provide data to crosscheck those estimates.
Another key purpose of the HES survey is that it makes available information on the level and distribution of household incomes. Such information is useful in the assessment of the social and economic planning systems. The distribution of household income provides an approximate measure of poverty in society.
In general, the survey provides the public with useful and interesting information on current spending patterns of the households in Seychelles. These patterns are expected to have changed considerably over the last decade.
The survey covered households on Mahe, Praslin and La Digue (the three mainly inhabited islands), and for practical consideration, excluded those on the outer islands.
Persons living in hospitals, military barracks, prisons etc. were excluded. Households headed by expatriates were also excluded, because the income and spending patterns of such households are expected to be different from those of the average Seychellois household.
Sample survey data [ssd]
Sampling Design The most appropriate sampling frame available was the list of households obtained from the 1997 Population and Housing Census. Although not updated over the two years prior to the survey, the database provided the ideal frame for direct sampling given that the sampling units would be the households themselves.
The frame listed 17,878 households enumerated during the 1997 census covering all the islands. In consideration of logistic and administrative problems, the geographical coverage was restricted to the three main islands (Mahe, Praslin and La Digue), which account for 99% of all households.
The sampling was done in two stages. An overall sample of 10% (around 1788 households) was desired. In the first stage the households were stratified by district. The sample size was distributed among the districts representative of their size (number of households), to determine the number of households to be drawn from each district (i.e. proportional allocation). From each district, the allocated number of households was then drawn using systematic sampling method whereby households are selected at equal intervals starting from a chosen random number. With each household having the same probability of being selected, the sample becomes self-weighting.
Face-to-face [f2f]
The data were captured on personal computers using a programme written in DELPHI. The software for data capturing made provisions to enter all details collected. For the account book (Form HES3) items purchased or acquired (although it would not be possible to analyse all the descriptive details because of the variety of specifications, units, packaging etc, description and units of items) were captured to help identify commonly purchased items for future pricing.
The data files were then merged into one database and processed in SPSS and MS EXCEL for tabulation .
The original sample drawn included 1696 households representing around 9.5 percent of households on Mahe, Praslin and La Digue. The enumeration covered 1219 households but after post-enumeration checks, data from just over 800 or 67% of these households were used in the final analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the living wage and the percent of families with incomes below the living wage for California, its counties, regions and cities/towns. Living wage is the wage needed to cover basic family expenses (basic needs budget) plus all relevant taxes; it does not include publicly provided income or housing assistance. The percent of families below the living wage was calculated using data from the Living Wage Calculator and the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. The living wage is the wage or annual income that covers the cost of the bare necessities of life for a worker and his/her family. These necessities include housing, transportation, food, childcare, health care, and payment of taxes. Low income populations and non-white race/ethnic have disproportionately lower wages, poorer housing, and higher levels of food insecurity. More information about the data table and a data dictionary can be found in the About/Attachments section.
In 2024, the average annual inflation rate in China ranged at around 0.2 percent compared to the previous year. For 2025, projections by the IMF expect slightly negative inflation. The monthly inflation rate in China dropped to negative values in the first quarter of 2025. Calculation of inflation The inflation rate is calculated based on the Consumer Price Index (CPI) for China. The CPI is computed using a product basket that contains a predefined range of products and services on which the average consumer spends money throughout the year. Included are expenses for groceries, clothes, rent, power, telecommunications, recreational activities, and raw materials (e.g. gas, oil), as well as federal fees and taxes. The product basked is adjusted every five years to reflect changes in consumer preference and has been updated in 2020 for the last time. The inflation rate is then calculated using changes in the CPI. As the inflation of a country is seen as a key economic indicator, it is frequently used for international comparison. China's inflation in comparison Among the main industrialized and emerging economies worldwide, China displayed comparatively low inflation in 2023 and 2024. In previous years, China's inflation ranged marginally above the inflation rates of established industrialized powerhouses such as the United States or the European Union. However, this changed in 2021, as inflation rates in developed countries rose quickly, while prices in China only increased moderately. According to IMF estimates for 2024, Zimbabwe was expected to be the country with the highest inflation rate, with a consumer price increase of about 561 percent compared to 2023. In 2023, Turkmenistan had the lowest price increase worldwide with prices actually decreasing by about 1.7 percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Regional Price Index contrasts the cost of a common basket of goods and services at a number of regional locations to the Perth metropolitan area. The RPIs were commissioned to assist with the calculation of the Western Australian State Government’s regional district allowance, and it has been used to assist in policy decision-making. Show full description
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Guyana inflation rate for 2023 was <strong>2.82%</strong>, a <strong>3.29% decline</strong> from 2022.</li>
<li>Guyana inflation rate for 2022 was <strong>6.12%</strong>, a <strong>1.08% increase</strong> from 2021.</li>
<li>Guyana inflation rate for 2021 was <strong>5.03%</strong>, a <strong>4.04% increase</strong> from 2020.</li>
</ul>Inflation as measured by the consumer price index reflects the annual percentage change in the cost to the average consumer of acquiring a basket of goods and services that may be fixed or changed at specified intervals, such as yearly. The Laspeyres formula is generally used.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing Thailand inflation rate by year from 1960 to 2023.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
In 2023, the U.S. Consumer Price Index was 309.42, and is projected to increase to 352.27 by 2029. The base period was 1982-84. The monthly CPI for all urban consumers in the U.S. can be accessed here. After a time of high inflation, the U.S. inflation rateis projected fall to two percent by 2027. United States Consumer Price Index ForecastIt is projected that the CPI will continue to rise year over year, reaching 325.6 in 2027. The Consumer Price Index of all urban consumers in previous years was lower, and has risen every year since 1992, except in 2009, when the CPI went from 215.30 in 2008 to 214.54 in 2009. The monthly unadjusted Consumer Price Index was 296.17 for the month of August in 2022. The U.S. CPI measures changes in the price of consumer goods and services purchased by households and is thought to reflect inflation in the U.S. as well as the health of the economy. The U.S. Bureau of Labor Statistics calculates the CPI and defines it as, "a measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services." The BLS records the price of thousands of goods and services month by month. They consider goods and services within eight main categories: food and beverage, housing, apparel, transportation, medical care, recreation, education, and other goods and services. They aggregate the data collected in order to compare how much it would cost a consumer to buy the same market basket of goods and services within one month or one year compared with the previous month or year. Given that the CPI is used to calculate U.S. inflation, the CPI influences the annual adjustments of many financial institutions in the United States, both private and public. Wages, social security payments, and pensions are all affected by the CPI.