68 datasets found
  1. Outlier classification using autoencoders: application for fluctuation...

    • osti.gov
    • dataverse.harvard.edu
    Updated Jun 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center (2021). Outlier classification using autoencoders: application for fluctuation driven flows in fusion plasmas [Dataset]. http://doi.org/10.7910/DVN/SKEHRJ
    Explore at:
    Dataset updated
    Jun 2, 2021
    Dataset provided by
    Office of Sciencehttp://www.er.doe.gov/
    Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
    Description

    Understanding the statistics of fluctuation driven flows in the boundary layer of magnetically confined plasmas is desired to accurately model the lifetime of the vacuum vessel components. Mirror Langmuir probes (MLPs) are a novel diagnostic that uniquely allow us to sample the plasma parameters on a time scale shorter than the characteristic time scale of their fluctuations. Sudden large-amplitude fluctuations in the plasma degrade the precision and accuracy of the plasma parameters reported by MLPs for cases in which the probe bias range is of insufficient amplitude. While some data samples can readily be classified as valid and invalid, we find that such a classification may be ambiguous for up to 40% of data sampled for the plasma parameters and bias voltages considered in this study. In this contribution, we employ an autoencoder (AE) to learn a low-dimensional representation of valid data samples. By definition, the coordinates in this space are the features that mostly characterize valid data. Ambiguous data samples are classified in this space using standard classifiers for vectorial data. In this way, we avoid defining complicated threshold rules to identify outliers, which require strong assumptions and introduce biases in the analysis. By removing the outliers that are identified in the latent low-dimensional space of the AE, we find that the average conductive and convective radial heat fluxes are between approximately 5% and 15% lower as when removing outliers identified by threshold values. For contributions to the radial heat flux due to triple correlations, the difference is up to 40%.

  2. Health Outcomes and Socioeconomic Factors

    • kaggle.com
    zip
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Health Outcomes and Socioeconomic Factors [Dataset]. https://www.kaggle.com/datasets/thedevastator/uncovering-trends-in-health-outcomes-and-socioec/code
    Explore at:
    zip(355475 bytes)Available download formats
    Dataset updated
    Dec 3, 2022
    Authors
    The Devastator
    Description

    Health Outcomes and Socioeconomic Factors

    A Study of US County Data

    By Data Exercises [source]

    About this dataset

    This dataset contains a wealth of health-related information and socio-economic data aggregated from multiple sources such as the American Community Survey, clinicaltrials.gov, and cancer.gov, covering a variety of US counties. Your task is to use this collection of data to build an Ordinary Least Squares (OLS) regression model that predicts the target death rate in each county. The model should incorporate variables related to population size, health insurance coverage, educational attainment levels, median incomes and poverty rates. Additionally you will need to assess linearity between your model parameters; measure serial independence among errors; test for heteroskedasticity; evaluate normality in the residual distribution; identify any outliers or missing values and determine how categories variables are handled; compare models through implementation with k=10 cross validation within linear regressions as well as assessing multicollinearity among model parameters. Examine your results by utilizing statistical agreements such as R-squared values and Root Mean Square Error (RMSE) while also interpreting implications uncovered by your analysis based on health outcomes compared to correlates among demographics surrounding those effected most closely by land structure along geographic boundaries throughout the United States

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides data on health outcomes, demographics, and socio-economic factors for various US counties from 2010-2016. It can be used to uncover trends in health outcomes and socioeconomic factors across different counties in the US over a six year period.

    The dataset contains a variety of information including statefips (a two digit code that identifies the state), countyfips (a three digit code that identifies the county), avg household size, avg annual count of cancer cases, average deaths per year, target death rate, median household income, population estimate for 2015, poverty percent study per capita binned income as well as demographic information such as median age of male and female population percent married households adults with no high school diploma adults with high school diploma percentage with some college education bachelor's degree holders among adults over 25 years old employed persons 16 and over unemployed persons 16 and over private coverage available private coverage available alone temporary private coverage available public coverage available public coverage available alone percentages of white black Asian other race married households and birth rate.

    Using this dataset you can build a multivariate ordinary least squares regression model to predict “target_deathrate”. You will also need to implement k-fold (k=10) cross validation to best select your model parameters. Model diagnostics should be performed in order to assess linearity serial independence heteroskedasticity normality multicollinearity etc., while outliers missing values or categorical variables will also have an effect your model selection process. Finally it is important to interpret the resulting models within their context based upon all given factors associated with it such as outliers missing values demographic changes etc., before arriving at a meaningful conclusion which may explain trends in health outcomes and socioeconomic factors found within this dataset

    Research Ideas

    • Analysis of factors influencing target deathrates in different US counties.
    • Prediction of the effects of varying poverty levels on health outcomes in different US counties.
    • In-depth analysis of how various socio-economic factors (e.g., median income, educational attainment, etc.) contribute to overall public health outcomes in US counties

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. -...

  3. f

    Data from: Error and anomaly detection for intra-participant time-series...

    • tandf.figshare.com
    xlsx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David R. Mullineaux; Gareth Irwin (2023). Error and anomaly detection for intra-participant time-series data [Dataset]. http://doi.org/10.6084/m9.figshare.5189002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    David R. Mullineaux; Gareth Irwin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data.

  4. Salaries case study

    • kaggle.com
    zip
    Updated Oct 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shobhit Chauhan (2024). Salaries case study [Dataset]. https://www.kaggle.com/datasets/satyam0123/salaries-case-study
    Explore at:
    zip(13105509 bytes)Available download formats
    Dataset updated
    Oct 2, 2024
    Authors
    Shobhit Chauhan
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    To analyze the salaries of company employees using Pandas, NumPy, and other tools, you can structure the analysis process into several steps:

    Case Study: Employee Salary Analysis In this case study, we aim to analyze the salaries of employees across different departments and levels within a company. Our goal is to uncover key patterns, identify outliers, and provide insights that can support decisions related to compensation and workforce management.

    Step 1: Data Collection and Preparation Data Sources: The dataset typically includes employee ID, name, department, position, years of experience, salary, and additional compensation (bonuses, stock options, etc.). Data Cleaning: We use Pandas to handle missing or incomplete data, remove duplicates, and standardize formats. Example: df.dropna() to handle missing salary information, and df.drop_duplicates() to eliminate duplicate entries. Step 2: Data Exploration and Descriptive Statistics Exploratory Data Analysis (EDA): Using Pandas to calculate basic statistics such as mean, median, mode, and standard deviation for employee salaries. Example: df['salary'].describe() provides an overview of the distribution of salaries. Data Visualization: Leveraging tools like Matplotlib or Seaborn for visualizing salary distributions, box plots to detect outliers, and bar charts for department-wise salary breakdowns. Example: sns.boxplot(x='department', y='salary', data=df) provides a visual representation of salary variations by department. Step 3: Analysis Using NumPy Calculating Salary Ranges: NumPy can be used to calculate the range, variance, and percentiles of salary data to identify the spread and skewness of the salary distribution. Example: np.percentile(df['salary'], [25, 50, 75]) helps identify salary quartiles. Correlation Analysis: Identify the relationship between variables such as experience and salary using NumPy to compute correlation coefficients. Example: np.corrcoef(df['years_of_experience'], df['salary']) reveals if experience is a significant factor in salary determination. Step 4: Grouping and Aggregation Salary by Department and Position: Using Pandas' groupby function, we can summarize salary information for different departments and job titles to identify trends or inequalities. Example: df.groupby('department')['salary'].mean() calculates the average salary per department. Step 5: Salary Forecasting (Optional) Predictive Analysis: Using tools such as Scikit-learn, we could build a regression model to predict future salary increases based on factors like experience, education level, and performance ratings. Step 6: Insights and Recommendations Outlier Identification: Detect any employees earning significantly more or less than the average, which could signal inequities or high performers. Salary Discrepancies: Highlight any salary discrepancies between departments or gender that may require further investigation. Compensation Planning: Based on the analysis, suggest potential changes to the salary structure or bonus allocations to ensure fair compensation across the organization. Tools Used: Pandas: For data manipulation, grouping, and descriptive analysis. NumPy: For numerical operations such as percentiles and correlations. Matplotlib/Seaborn: For data visualization to highlight key patterns and trends. Scikit-learn (Optional): For building predictive models if salary forecasting is included in the analysis. This approach ensures a comprehensive analysis of employee salaries, providing actionable insights for human resource planning and compensation strategy.

  5. n

    Anolis carolinensis character displacement SNP

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jan 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Douglas Crawford (2023). Anolis carolinensis character displacement SNP [Dataset]. http://doi.org/10.5061/dryad.qbzkh18ks
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 27, 2023
    Dataset provided by
    University of Miami
    Authors
    Douglas Crawford
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Here are six files that provide details for all 44,120 identified single nucleotide polymorphisms (SNPs) or the 215 outlier SNPs associated with the evolution of rapid character displacement among replicate islands with (2Spp) and without competition (1Spp) between two Anolis species. On 2Spp islands, A. carolinensis occurs higher in trees and have evolved larger toe pads. Among 1Spp and 2Spp island populations, we identify 44,120 SNPs, with 215-outlier SNPs with improbably large FST values, low nucleotide variation, greater linkage than expected, and these SNPs are enriched for animal walking behavior. Thus, we conclude that these 215-outliers are evolving by natural selection in response to the phenotypic convergent evolution of character displacement. There are two, non-mutually exclusive perspective of these nucleotide variants. One is character displacement is convergent: all 215 outlier SNPs are shared among 3 out of 5 2Spp island and 24% of outlier SNPS are shared among all five out of five 2Spp island. Second, character displacement is genetically redundant because the allele frequencies in one or more 2Spp are similar to 1Spp islands: among one or more 2Spp islands 33% of outlier SNPS are within the range of 1Spp MiAF and 76% of outliers are more similar to 1Spp island than mean MiAF of 2Spp islands. Focusing on convergence SNP is scientifically more robust, yet it distracts from the perspective of multiple genetic solutions that enhances the rate and stability of adaptive change. The six files include: a description of eight islands, details of 94 individuals, and four files on SNPs. The four SNP files include the VCF files for 94 individuals with 44KSNPs and two files (Excel sheet/tab-delimited file) with FST, p-values and outlier status for all 44,120 identified single nucleotide polymorphisms (SNPs) associated with the evolution of rapid character displacement. The sixth file is a detailed file on the 215 outlier SNPs. Complete sequence data is available at Bioproject PRJNA833453, which including samples not included in this study. The 94 individuals used in this study are described in “Supplemental_Sample_description.txt” Methods Anoles and genomic DNA: Tissue or DNA for 160 Anolis carolinensis and 20 A. sagrei samples were provided by the Museum of Comparative Zoology at Harvard University (Table S2). Samples were previously used to examine evolution of character displacement in native A. carolinensis following invasion by A. sagrei onto man-made spoil islands in Mosquito Lagoon Florida (Stuart et al. 2014). One hundred samples were genomic DNAs, and 80 samples were tissues (terminal tail clip, Table S2). Genomic DNA was isolated from 80 of 160 A. carolinensis individuals (MCZ, Table S2) using a custom SPRI magnetic bead protocol (Psifidi et al. 2015). Briefly, after removing ethanol, tissues were placed in 200 ul of GH buffer (25 mM Tris- HCl pH 7.5, 25 mM EDTA, , 2M GuHCl Guanidine hydrochloride, G3272 SIGMA, 5 mM CaCl2, 0.5% v/v Triton X-100, 1% N-Lauroyl-Sarcosine) with 5% per volume of 20 mg/ml proteinase K (10 ul/200 ul GH) and digested at 55º C for at least 2 hours. After proteinase K digestion, 100 ul of 0.1% carboxyl-modified Sera-Mag Magnetic beads (Fisher Scientific) resuspended in 2.5 M NaCl, 20% PEG were added and allowed to bind the DNA. Beads were subsequently magnetized and washed twice with 200 ul 70% EtOH, and then DNA was eluted in 100 ul 0.1x TE (10 mM Tris, 0.1 mM EDTA). All DNA samples were gel electrophoresed to ensure high molecular mass and quantified by spectrophotometry and fluorescence using Biotium AccuBlueTM High Sensitivity dsDNA Quantitative Solution according to manufacturer’s instructions. Genotyping-by-sequencing (GBS) libraries were prepared using a modified protocol after Elshire et al. (Elshire et al. 2011). Briefly, high-molecular-weight genomic DNA was aliquoted and digested using ApeKI restriction enzyme. Digests from each individual sample were uniquely barcoded, pooled, and size selected to yield insert sizes between 300-700 bp (Borgstrom et al. 2011). Pooled libraries were PCR amplified (15 cycles) using custom primers that extend into the genomic DNA insert by 3 bases (CTG). Adding 3 extra base pairs systematically reduces the number of sequenced GBS tags, ensuring sufficient sequencing depth. The final library had a mean size of 424 bp ranging from 188 to 700 bp . Anolis SNPs: Pooled libraries were sequenced on one lane on the Illumina HiSeq 4000 in 2x150 bp paired-end configuration, yielding approximately 459 million paired-end reads ( ~138 Gb). The medium Q-Score was 42 with the lower 10% Q-Scores exceeding 32 for all 150 bp. The initial library contained 180 individuals with 8,561,493 polymorphic sites. Twenty individuals were Anolis sagrei, and two individuals (Yan 1610 & Yin 1411) clustered with A. sagrei and were not used to define A. carolinesis’ SNPs. Anolis carolinesis reads were aligned to the Anolis carolinensis genome (NCBI RefSeq accession number:/GCF_000090745.1_AnoCar2.0). Single nucleotide polymorphisms (SNPs) for A. carolinensis were called using the GBeaSy analysis pipeline (Wickland et al. 2017) with the following filter settings: minimum read length of 100 bp after barcode and adapter trimming, minimum phred-scaled variant quality of 30 and minimum read depth of 5. SNPs were further filtered by requiring SNPs to occur in > 50% of individuals, and 66 individuals were removed because they had less than 70% of called SNPs. These filtering steps resulted in 51,155 SNPs among 94 individuals. Final filtering among 94 individuals required all sites to be polymorphic (with fewer individuals, some sites were no longer polymorphic) with a maximum of 2 alleles (all are bi-allelic), minimal allele frequency 0.05, and He that does not exceed HWE (FDR <0.01). SNPs with large He were removed (2,280 SNPs). These SNPs with large significant heterozygosity may result from aligning paralogues (different loci), and thus may not represent polymorphisms. No SNPs were removed with low He (due to possible demography or other exceptions to HWE). After filtering, 94 individual yielded 44,120 SNPs. Thus, the final filtered SNP data set was 44K SNPs from 94 indiviuals. Statistical Analyses: Eight A. carolinensis populations were analyzed: three populations from islands with native species only (1Spp islands) and 5 populations from islands where A. carolinesis co-exist with A. sagrei (2Spp islands, Table 1, Table S1). Most analyses pooled the three 1Spp islands and contrasted these with the pooled five 2Spp islands. Two approaches were used to define SNPs with unusually large allele frequency differences between 1Spp and 2Spp islands: 1) comparison of FST values to random permutations and 2) a modified FDIST approach to identify outlier SNPs with large and statistically unlikely FST values. Random Permutations: FST values were calculated in VCFTools (version 4.2, (Danecek et al. 2011)) where the p-value per SNP were defined by comparing FST values to 1,000 random permutations using a custom script (below). Basically, individuals and all their SNPs were randomly assigned to one of eight islands or to 1Spp versus 2Spp groups. The sample sizes (55 for 2Spp and 39 for 1Spp islands) were maintained. FST values were re-calculated for each 1,000 randomizations using VCFTools. Modified FDIST: To identify outlier SNPs with statistically large FST values, a modified FDIST (Beaumont and Nichols 1996) was implemented in Arlequin (Excoffier et al. 2005). This modified approach applies 50,000 coalescent simulations using hierarchical population structure, in which demes are arranged into k groups of d demes and in which migration rates between demes are different within and between groups. Unlike the finite island models, which have led to large frequencies of false positive because populations share different histories (Lotterhos and Whitlock 2014), the hierarchical island model avoids these false positives by avoiding the assumption of similar ancestry (Excoffier et al. 2009). References Beaumont, M. A. and R. A. Nichols. 1996. Evaluating loci for use in the genetic analysis of population structure. P Roy Soc B-Biol Sci 263:1619-1626. Borgstrom, E., S. Lundin, and J. Lundeberg. 2011. Large scale library generation for high throughput sequencing. PLoS One 6:e19119. Bradbury, P. J., Z. Zhang, D. E. Kroon, T. M. Casstevens, Y. Ramdoss, and E. S. Buckler. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635. Cingolani, P., A. Platts, L. Wang le, M. Coon, T. Nguyen, L. Wang, S. J. Land, X. Lu, and D. M. Ruden. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80-92. Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, and G. Genomes Project Analysis. 2011. The variant call format and VCFtools. Bioinformatics 27:2156-2158. Earl, D. A. and B. M. vonHoldt. 2011. Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 4:359-361. Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, E. S. Buckler, and S. E. Mitchell. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611-2620. Excoffier, L., T. Hofer, and M. Foll. 2009. Detecting loci under selection in a hierarchically structured population. Heredity 103:285-298. Excoffier, L., G. Laval, and S. Schneider. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis.

  6. Integrated Building Health Management - Dataset - NASA Open Data Portal

    • data.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Integrated Building Health Management - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/integrated-building-health-management
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Abstract: Building health management is an important part in running an efficient and cost-effective building. Many problems in a building’s system can go undetected for long periods of time, leading to expensive repairs or wasted resources. This project aims to help detect and diagnose the building‘s health with data driven methods throughout the day. Orca and IMS are two state of the art algorithms that observe an array of building health sensors and provide feedback on the overall system’s health as well as localize the problem to one, or possibly two, components. With this level of feedback the hope is to quickly identify problems and provide appropriate maintenance while reducing the number of complaints and service calls. Introduction: To prepare these technologies for the new installation, the proposed methods are being tested on a current system that behaves similarly to the future green building. Building 241 was determined to best resemble the proposed building 232 and therefore was chosen for this study. Building 241 is currently outfitted with 34 sensors that monitor the heating & cooling temperatures for the air and water systems as well as other various subsystem states. The daily sensor recordings were logged and sent to the IDU group for analysis. The period of analysis was focused from July 1st through August 10th 2009. Methodology: The two algorithms used for analysis were Orca and IMS. Both methods look for anomalies using a distanced based scoring approach. Orca has the ability to use a single data set and find outliers within that data set. This tactic was applied to each day. After scoring each time sample throughout a given day the Orca score profiles were compared by computing the correlation against all other days. Days with high overall correlations were considered normal however days with lower overall correlations were more anomalous. IMS, on the other hand, needs a normal set of data to build a model, which can be applied to a set of test data to asses how anomaly the particular data set is. The typical days identified by Orca were used as the reference/training set for IMS, while all the other days were passed through IMS resulting in an anomaly score profile for each day. The mean of the IMS score profile was then calculated for each day to produce a summary IMS score. These summary scores were ranked and the top outliers were identified (see Figure 1). Once the anomalies were identified the contributing parameters were then ranked by the algorithm. Analysis: The contributing parameters identified by IMS were localized to the return air temperature duct system. -7/03/09 (Figure 2 & 3) AHU-1 Return Air Temperature (RAT) Calculated Average Return Air Temperature -7/19/09 (Figure 3 & 4) AHU-2 Return Air Temperature (RAT) Calculated Average Return Air Temperature IMS identified significantly higher temperatures compared to other days during the month of July and August. Conclusion: The proposed algorithms Orca and IMS have shown that they were able to pick up significant anomalies in the building system as well as diagnose the anomaly by identifying the sensor values that were anomalous. In the future these methods can be used on live streaming data and produce a real time anomaly score to help building maintenance with detection and diagnosis of problems.

  7. d

    Integrated Building Health Management

    • catalog.data.gov
    • s.cnmilf.com
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Integrated Building Health Management [Dataset]. https://catalog.data.gov/dataset/integrated-building-health-management
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Abstract: Building health management is an important part in running an efficient and cost-effective building. Many problems in a building’s system can go undetected for long periods of time, leading to expensive repairs or wasted resources. This project aims to help detect and diagnose the building‘s health with data driven methods throughout the day. Orca and IMS are two state of the art algorithms that observe an array of building health sensors and provide feedback on the overall system’s health as well as localize the problem to one, or possibly two, components. With this level of feedback the hope is to quickly identify problems and provide appropriate maintenance while reducing the number of complaints and service calls. Introduction: To prepare these technologies for the new installation, the proposed methods are being tested on a current system that behaves similarly to the future green building. Building 241 was determined to best resemble the proposed building 232 and therefore was chosen for this study. Building 241 is currently outfitted with 34 sensors that monitor the heating & cooling temperatures for the air and water systems as well as other various subsystem states. The daily sensor recordings were logged and sent to the IDU group for analysis. The period of analysis was focused from July 1st through August 10th 2009. Methodology: The two algorithms used for analysis were Orca and IMS. Both methods look for anomalies using a distanced based scoring approach. Orca has the ability to use a single data set and find outliers within that data set. This tactic was applied to each day. After scoring each time sample throughout a given day the Orca score profiles were compared by computing the correlation against all other days. Days with high overall correlations were considered normal however days with lower overall correlations were more anomalous. IMS, on the other hand, needs a normal set of data to build a model, which can be applied to a set of test data to asses how anomaly the particular data set is. The typical days identified by Orca were used as the reference/training set for IMS, while all the other days were passed through IMS resulting in an anomaly score profile for each day. The mean of the IMS score profile was then calculated for each day to produce a summary IMS score. These summary scores were ranked and the top outliers were identified (see Figure 1). Once the anomalies were identified the contributing parameters were then ranked by the algorithm. Analysis: The contributing parameters identified by IMS were localized to the return air temperature duct system. -7/03/09 (Figure 2 & 3) AHU-1 Return Air Temperature (RAT) Calculated Average Return Air Temperature -7/19/09 (Figure 3 & 4) AHU-2 Return Air Temperature (RAT) Calculated Average Return Air Temperature IMS identified significantly higher temperatures compared to other days during the month of July and August. Conclusion: The proposed algorithms Orca and IMS have shown that they were able to pick up significant anomalies in the building system as well as diagnose the anomaly by identifying the sensor values that were anomalous. In the future these methods can be used on live streaming data and produce a real time anomaly score to help building maintenance with detection and diagnosis of problems.

  8. f

    The 12 outliers identified in the Tonga dataset.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Nov 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mayfield, Anderson B.; Dempsey, Alexandra C.; Chen, Chii-Shiarng (2017). The 12 outliers identified in the Tonga dataset. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001760878
    Explore at:
    Dataset updated
    Nov 1, 2017
    Authors
    Mayfield, Anderson B.; Dempsey, Alexandra C.; Chen, Chii-Shiarng
    Area covered
    Tonga
    Description

    Gene expression data have been presented as non-normalized (2-Ct*109) in all but the last six rows; this allows for the back-calculation of the raw threshold cycle (Ct) values so that interested individuals can readily estimate the typical range of expression of each gene. Values representing aberrant levels for a particular parameter (z-score>2.5) have been highlighted in bold. When there was a statistically significant difference (student’s t-test, p<0.05) between the outlier and non-outlier averages for a parameter (instead using normalized gene expression data), the lower of the two values has been underlined. All samples hosted Symbiodinium of clade C only unless noted otherwise. The mean Mahalanobis distance did not differ between Pocillopora damicornis and P. acuta (student’s t-test, p>0.05). SA = surface area. GCP = genome copy proportion. Ma Dis = Mahalanobis distance. “.” = missing data.

  9. f

    Data from: PCP-SAFT Parameters of Pure Substances Using Large Experimental...

    • acs.figshare.com
    zip
    Updated Sep 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timm Esper; Gernot Bauer; Philipp Rehner; Joachim Gross (2023). PCP-SAFT Parameters of Pure Substances Using Large Experimental Databases [Dataset]. http://doi.org/10.1021/acs.iecr.3c02255.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 6, 2023
    Dataset provided by
    ACS Publications
    Authors
    Timm Esper; Gernot Bauer; Philipp Rehner; Joachim Gross
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This work reports pure component parameters for the PCP-SAFT equation of state for 1842 substances using a total of approximately 551 172 experimental data points for vapor pressure and liquid density. We utilize data from commercial and public databases in combination with an automated workflow to assign chemical identifiers to all substances, remove duplicate data sets, and filter unsuited data. The use of raw experimental data, as opposed to pseudoexperimental data from empirical correlations, requires means to identify and remove outliers, especially for vapor pressure data. We apply robust regression using a Huber loss function. For identifying and removing outliers, the empirical Wagner equation for vapor pressure is adjusted to experimental data, because the Wagner equation is mathematically rather flexible and is thus not subject to a systematic model bias. For adjusting model parameters of the PCP-SAFT model, nonpolar, dipolar and associating substances are distinguished. The resulting substance-specific parameters of the PCP-SAFT equation of state yield in a mean absolute relative deviation of the of 2.73% for vapor pressure and 0.52% for liquid densities (2.56% and 0.47% for nonpolar substances, 2.67% and 0.61% for dipolar substances, and 3.24% and 0.54% for associating substances) when evaluated against outlier-removed data. All parameters are provided as JSON and CSV files.

  10. Immigrants becoming US citizens

    • kaggle.com
    zip
    Updated Dec 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Immigrants becoming US citizens [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-naturalizations-statistics
    Explore at:
    zip(43001 bytes)Available download formats
    Dataset updated
    Dec 12, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    US Naturalizations Statistics

    Trends and statistics on US naturalizations from 1999 to 2017

    By Throwback Thursday [source]

    About this dataset

    The dataset US Naturalizations 1999-2017 provides information on the naturalization process of immigrants in the United States during the period from 1999 to 2017. The dataset includes various features or columns, capturing valuable insights into trends and statistics related to immigrants becoming US citizens.

    Firstly, there is a column that specifies the year in which each naturalization case occurred, allowing for analysis and comparison over time. Additionally, there is a column indicating the country of birth of each individual who went through the naturalization process. This information allows for an exploration of patterns and trends based on country of origin.

    The dataset also includes columns providing details about gender and age groups. By examining the distribution of naturalized individuals across different genders and age ranges, one can gain insights into demographic patterns and changes in immigration over time.

    Furthermore, this dataset features columns related to occupation and educational attainment. These variables contribute to understanding the socio-economic characteristics of immigrants who became US citizens. By analyzing occupational trends or educational levels among naturalized individuals, researchers can gain valuable knowledge regarding immigrant integration within various industries or sectors.

    Moreover, this dataset contains data on whether an applicant had previous experience as a lawful permanent resident (LPR) before being granted US citizenship. This variable sheds light on pathways to citizenship among those who have already obtained legal status in the United States.

    Finally, there are columns providing information about processing times for naturalized cases as well as any special exemptions granted under certain circumstances. These details offer insights into administrative aspects related to applicants' journeys towards acquiring US citizenship.

    In summary, this comprehensive dataset offers a wide range of variables that capture important characteristics related to immigrants becoming US citizens between 1999 and 2017. Researchers can use this data to analyze trends based on year, country of origin, gender/age groups, occupation/education levels,and pathways to citizenship such as previous LPR status or special circumstances exemptions

    How to use the dataset

    • Understand the columns: Familiarize yourself with the different columns available in this dataset to comprehend the information it offers. The columns included are:

      • Year: The year of naturalization.
      • United States: The number of individuals naturalized within the United States.
      • Continents:
        • Africa: Number of individuals born in African countries who were naturalized.
        • Asia: Number of individuals born in Asian countries who were naturalized.
        • Europe: Number of individuals born in European countries who were naturalized.
        • North America (excluding Caribbean): Number of individuals born in North American countries (excluding Caribbean nations) who were naturalized.
        • Oceania: Number of individuals born in Oceanian countries who were naturalized, including Australia and New Zealand.
        • South America: Number of individuals born in South American countries who were naturalized.
    • Overview by year: Analyze the total number of people being granted US citizenship over time by examining the United States column. Use statistical methods like mean, median, or mode to understand trends or identify any outliers or significant changes across specific years.

    • Continent-specific analysis:

      a) Identify patterns among continents over time by examining each continent's respective column (Africa, Asia, Europe, etc.). Compare growth rates and determine any regions experiencing higher or lower rates compared to others.

      b) Determine which continent contributes most significantly to overall US immigration by calculating continent-wise percentages based on total immigrants for each year.

    • Identify region-specific trends:

      a) Analyze immigration patterns within individual continents by dividing them further into specific regions or countries. For example, within Asia, you can examine trends for East Asia (China, Japan, South Korea), Southeast Asia (Vietnam, Philippines), or South Asia (India, Bangladesh).

      b) Perform comparative analysis between regions/countries to identify variations in immigration rates or any interesting factors influencing these variances. ...

  11. c

    Coronary heart disease (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Coronary heart disease (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/items/832de0122e4b4bba9ff69cadc1bf53c4
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of coronary heart disease (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to coronary heart disease (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with coronary heart disease was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with coronary heart disease was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with coronary heart disease, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have coronary heart diseaseB) the NUMBER of people within that MSOA who are estimated to have coronary heart diseaseAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have coronary heart disease, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from coronary heart disease, and where those people make up a large percentage of the population, indicating there is a real issue with coronary heart disease within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of coronary heart disease, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of coronary heart disease.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  12. c

    Hypertension (in persons of all ages): England

    • data.catchmentbasedapproach.org
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Hypertension (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/hypertension-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of hypertension (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to hypertension (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with hypertension was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with hypertension was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with hypertension , within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have hypertension B) the NUMBER of people within that MSOA who are estimated to have hypertension An average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have hypertension , compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from hypertension, and where those people make up a large percentage of the population, indicating there is a real issue with hypertension within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of hypertension, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of hypertension .TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  13. c

    Cancer (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Cancer (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/cancer-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  14. Data from: Urbanev: An open benchmark dataset for urban electric vehicle...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Apr 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Han Li; Haohao Qu; Xiaojun Tan; Linlin You; Rui Zhu; Wenqi Fan (2025). Urbanev: An open benchmark dataset for urban electric vehicle charging demand prediction [Dataset]. http://doi.org/10.5061/dryad.np5hqc04z
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 25, 2025
    Dataset provided by
    Sun Yat-sen University
    Institute of High Performance Computing
    Hong Kong Polytechnic University
    Authors
    Han Li; Haohao Qu; Xiaojun Tan; Linlin You; Rui Zhu; Wenqi Fan
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    The recent surge in electric vehicles (EVs), driven by a collective push to enhance global environmental sustainability, has underscored the significance of exploring EV charging prediction. To catalyze further research in this domain, we introduce UrbanEV—an open dataset showcasing EV charging space availability and electricity consumption in a pioneering city for vehicle electrification, namely Shenzhen, China. UrbanEV offers a rich repository of charging data (i.e., charging occupancy, duration, volume, and price) captured at hourly intervals across an extensive six-month span for over 20,000 individual charging stations. Beyond these core attributes, the dataset also encompasses diverse influencing factors like weather conditions and spatial proximity. These factors are thoroughly analyzed qualitatively and quantitatively to reveal their correlations and causal impacts on charging behaviors. Furthermore, comprehensive experiments have been conducted to showcase the predictive capabilities of various models, including statistical, deep learning, and transformer-based approaches, using the UrbanEV dataset. This dataset is poised to propel advancements in EV charging prediction and management, positioning itself as a benchmark resource within this burgeoning field. Methods To build a comprehensive and reliable benchmark dataset, we conduct a series of rigorous processes from data collection to dataset evaluation. The overall workflow sequentially includes data acquisition, data processing, statistical analysis, and prediction assessment. As follows, please see detailed descriptions. Study area and data acquisition

    Shenzhen, a pioneering city in global vehicle electrification, has been selected for this study with the objective of offering valuable insights into electric vehicle (EV) development that can serve as a reference for other urban centers. This study encompasses the entire expanse of Shenzhen, where data on public EV charging stations distributed around the city have been meticulously gathered. Specifically, EV charging data was automatically collected from a mobile platform used by EV drivers to locate public charging stations. Through this platform, users could access real-time information on each charging pile, including its availability (e.g., busy or idle), charging price, and geographic coordinates. Accordingly, we recorded the charging-related data at five-minute intervals from September 1, 2022, to February 28, 2023. This data collection process was fully digital and did not require manual readings. Furthermore, to delve into the correlation between EV charging patterns and environmental elements, weather data for Shenzhen city were acquired from two meteorological observatories situated in the airport and central regions, respectively. These meteorological data are publicly available on the Shenzhen Government Data Open Platform. Thirdly, point of interest (POI) data was extracted through the Application Programming Interface Platform of AMap.com, along with three primary types: food and beverage services, business and residential, and lifestyle services. Lastly, the spatial and static data were organized based on the traffic zones delineated by the sixth Residential Travel Survey of Shenzhen. The collected data contains detailed spatiotemporal information that can be analyzed to provide valuable insights about urban EV charging patterns and their correlations with meteorological conditions.

    Shenzhen, a pioneering city in global vehicle electrification, has been selected for this study with the objective of offering valuable insights into electric vehicle (EV) development that can serve as a reference for other urban centers. This study encompasses the entire expanse of Shenzhen, where data on public EV charging stations distributed around the city have been meticulously gathered. Specifically, a program was employed to extract the status (e.g., busy or idle, charging price, electricity volume, and coordinates) of each charging pile at five-minute intervals from 1 September 2022 to 28 February 2023. Furthermore, to delve into the correlation between EV charging patterns and environmental elements, weather data for Shenzhen city was acquired from two meteorological observatories situated in the airport and central regions, respectively. Thirdly, point of interest (POI) data was extracted, along with three primary types: food and beverage services, business and residential, and lifestyle services. Lastly, the spatial and static data were organized based on the traffic zones delineated by the sixth Residential Travel Survey of Shenzhen. The collected data contains detailed spatiotemporal information that can be analyzed to provide valuable insights about urban EV charging patterns and their correlations with meteorological conditions. Processing raw information into well-structured data To streamline the utilization of the UrbanEV dataset, we harmonize heterogeneous data from various sources into well-structured data with aligned temporal and spatial resolutions. This process can be segmented into two parts: the reorganization of EV charging data and the preparation of other influential factors. EV charging data The raw charging data, obtained from publicly available EV charging services, pertains to charging stations and predominantly comprises string-type records at a 5-minute interval. To transform this raw data into a structured time series tailored for prediction tasks, we implement the following three key measures:

    Initial Extraction. From the string-type records, we extract vital information for each charging pile, such as availability (designated as "busy" or "idle"), rated power, and the corresponding charging and service fees applicable during the observed time periods. First, a charging pile is categorized as "active charging" if its states at two consecutive timestamps are both "busy". Consequently, the occupancy within a charging station can be defined as the count of in-use charging piles, while the charging duration is calculated as the product of the count of in-use piles and the time between the two timestamps (in our case, 5 minutes). Moreover, the charging volume in a station can correspondingly be estimated by multiplying the duration by the piles' rated power. Finally, the average electricity price and service price are calculated for each station in alignment with the same temporal resolution as the three charging variables.

    Error Detection and Imputation. Ensuring data quality is paramount when utilizing charging data for decision-making, advanced analytics, and machine-learning applications. It is crucial to address concerns around data cleanliness, as the presence of inaccuracies and inconsistencies, often referred to as dirty data, can significantly compromise the reliability and validity of any subsequent analysis or modeling efforts. To improve data quality of our charging data, several errors are identified, particularly the negative values for charging fees and the inconsistencies between the counts of occupied, idle, and total charging piles. We remove the records containing these anomalies and treat them as missing data. Besides that, a two-step imputation process was implemented to address missing values. First, forward filling replaced missing values using data from preceding timestamps. Then, backward filling was applied to fill gaps at the start of each time series. Moreover, a certain number of outliers were identified in the dataset, which could significantly impact prediction performance. To address this, the interquartile range (IQR) method was used to detect outliers for metrics including charging volume (v), charging duration (d), and the rate of active charging piles at the charging station (o). To retain more original data and minimize the impact of outlier correction on the overall data distribution, we set the coefficient to 4 instead of the default 1.5. Finally, each outlier was replaced by the mean of its adjacent valid values. This preprocessing pipeline transformed the raw data into a structured and analyzable dataset.

    Aggregation and Filtration. Building upon the station-level charging data that has been extracted and cleansed, we further organize the data into a region-level dataset with an hourly interval providing a new perspective for EV charging behavior analysis. This is achieved by two major processes: aggregation and filtration. First, we aggregate all the charging data from both temporal and spatial views: a. Temporally, we standardize all time-series data to a common time resolution of one hour, as it serves as the least common denominator among the various resolutions. This aims to establish a unified temporal resolution for all time-series data, including pricing schemes, weather records, and charging data, thereby creating a well-structured dataset. Aggregation rules specify that the five-minute charging volume v and duration $(d)$ are summed within each interval (i.e., one hour), whereas the occupancy o, electricity price pe, and service price ps are assigned specific values at certain hours for each charging pile. This distinction arises from the inherent nature of these data types: volume v and duration d are cumulative, while o, pe, and ps are instantaneous variables. Compared to using the mean or median values within each interval, selecting the instantaneous values of o, pe, and ps as representatives preserves the original data patterns more effectively and minimizes the influence of human interpretation. b. Spatially, stations are aggregated based on the traffic zones delineated by the sixth Residential Travel Survey of Shenzhen. After aggregation, our aggregated dataset comprises 331 regions (also called traffic zones) with 4344 timestamps. Second, variance tests and zero-value filtering functions were employed to filter out traffic zones with zero or no change in charging data. Specifically, it means that

  15. a

    Levels of obesity and inactivity related illnesses (physical illnesses):...

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Levels of obesity and inactivity related illnesses (physical illnesses): Summary (England) [Dataset]. https://hub.arcgis.com/datasets/76bef8a953c44f36b569c37d7bdec45e
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of physical illnesses that are linked with obesity and inactivity. Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to:- Asthma (in persons of all ages)- Cancer (in persons of all ages)- Chronic kidney disease (in adults aged 18+)- Coronary heart disease (in persons of all ages)- Diabetes mellitus (in persons aged 17+)- Hypertension (in persons of all ages)- Stroke and transient ischaemic attack (in persons of all ages)This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.For each of the above illnesses, the percentage of each MSOA’s population with that illness was estimated. This was achieved by calculating a weighted average based on:- The percentage of the MSOA area that was covered by each GP practice’s catchment area- Of the GPs that covered part of that MSOA: the percentage of patients registered with each GP that have that illnessThe estimated percentage of each MSOA’s population with each illness was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with each illness, within the relevant age range.For each illness, each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have that illnessB) the NUMBER of people within that MSOA who are estimated to have that illnessAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have that illness, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from an illness, and where those people make up a large percentage of the population, indicating there is a real issue with that illness within the population and the investment of resources to address that issue could have the greatest benefits.The scores for each of the 7 illnesses were added together then converted to a relative score between 1 – 0 (1 = worst, 0 = best), to give an overall score for each MSOA: a score close to 1 would indicate that an area has high predicted levels of all obesity/inactivity-related illnesses, and these are areas where the local population could benefit the most from interventions to address those illnesses. A score close to 0 would indicate very low predicted levels of obesity/inactivity-related illnesses and therefore interventions might not be required.LIMITATIONS1. GPs do not have catchments that are mutually exclusive from each other: they overlap, with some geographic areas being covered by 30+ practices. This dataset should be viewed in combination with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset to identify where there are areas that are covered by multiple GP practices but at least one of those GP practices did not provide data. Results of the analysis in these areas should be interpreted with caution, particularly if the levels of obesity/inactivity-related illnesses appear to be significantly lower than the immediate surrounding areas.2. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).3. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.4. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of obesity/inactivity-related illnesses, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of these illnesses. TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:- Health and wellbeing statistics (GP-level, England): Missing data and potential outliersDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  16. c

    Asthma (in persons of all ages): England

    • data.catchmentbasedapproach.org
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Asthma (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/asthma-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of asthma (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to asthma (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with asthma was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with asthma was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with asthma, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have asthmaB) the NUMBER of people within that MSOA who are estimated to have asthmaAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have asthma, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from asthma, and where those people make up a large percentage of the population, indicating there is a real issue with asthma within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of asthma, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of asthma.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  17. 2

    WAS; Household Assets Survey; HAS

    • datacatalogue.ukdataservice.ac.uk
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics, Social Survey Division (2025). WAS; Household Assets Survey; HAS [Dataset]. http://doi.org/10.5255/UKDA-SN-7215-20
    Explore at:
    Dataset updated
    May 29, 2025
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Office for National Statistics, Social Survey Division
    Area covered
    United Kingdom
    Description

    The Wealth and Assets Survey (WAS) is a longitudinal survey, which aims to address gaps identified in data about the economic well-being of households by gathering information on level of assets, savings and debt; saving for retirement; how wealth is distributed among households or individuals; and factors that affect financial planning. Private households in Great Britain were sampled for the survey (meaning that people in residential institutions, such as retirement homes, nursing homes, prisons, barracks or university halls of residence, and also homeless people were not included).

    The WAS commenced in July 2006, with a first wave of interviews carried out over two years, to June 2008. Interviews were achieved with 30,595 households at Wave 1. Those households were approached again for a Wave 2 interview between July 2008 and June 2010, and 20,170 households took part. Wave 3 covered July 2010 - June 2012, Wave 4 covered July 2012 - June 2014 and Wave 5 covered July 2014 - June 2016. Revisions to previous waves' data mean that small differences may occur between originally published estimates and estimates from the datasets held by the UK Data Service. Data are revised on a wave by wave basis, as a result of backwards imputation from the current wave's data. These revisions are due to improvements in the imputation methodology.

    Note from the WAS team - November 2023:

    “The Office for National Statistics has identified a very small number of outlier cases present in the seventh round of the Wealth and Assets Survey covering the period April 2018 to March 2020. Our current approach is to treat cases where we have reasonable evidence to suggest the values provided for specific variables are outliers. This approach did not occur for two individuals for several variables involved in the estimation of their pension wealth. While we estimate any impacts are very small overall and median pension wealth and median total wealth estimates are unaffected, this will affect the accuracy of the breakdowns of the pension wealth within the wealthiest decile, and data derived from them. We are urging caution in the interpretation of more detailed estimates.”

    Survey Periodicity - "Waves" to "Rounds"
    Due to the survey periodicity moving from “Waves” (July, ending in June two years later) to “Rounds” (April, ending in March two years later), interviews using the ‘Wave 6’ questionnaire started in July 2016 and were conducted for 21 months, finishing in March 2018. Data for round 6 covers the period April 2016 to March 2018. This comprises of the last three months of Wave 5 (April to June 2016) and 21 months of Wave 6 (July 2016 to March 2018). Round 5 and Round 6 datasets are based on a mixture of original wave-based datasets. Each wave of the survey has a unique questionnaire and therefore each of these round-based datasets are based on two questionnaires. While there may be some changes in the questionnaires, the derived variables for the key wealth estimates have not changed over this period. The aim is to collect the same data, though in some cases the exact questions asked may differ slightly. Detailed information on Moving the Wealth and Assets Survey onto a financial years’ basis was published on the ONS website in July 2019.

    A Secure Access version of the WAS, subject to more stringent access conditions, is available under SN 6709; it contains more detailed geographic variables than the EUL version. Users are advised to download the EUL version first (SN 7215) to see if it is suitable for their needs, before considering making an application for the Secure Access version.

    Further information and documentation may be found on the ONS "https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/methodologies/wealthandassetssurveywas" title="Wealth and Assets Survey"> Wealth and Assets Survey webpage. Users are advised to the check the page for updates before commencing analysis.

    Occupation data for 2021 and 2022 data files

    The ONS have identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. For further information on this issue, please see: https://www.ons.gov.uk/news/statementsandletters/occupationaldatainonssurveys.

    The data dictionary for round 8 person file is not available.

    Latest edition information

    For the 20th edition (May 2025), the Round 8 data files were updated to include variables personr7, nounitsr8 and porage1tar8, and derived binary versions of multi-choice questions, their collected equivalents and imputed binary versions of these variables. Also, variables that were only collected for part of the round have been removed. Additional documentation for Round 8 was also added to the study, including an updated variable list and derived variable specifications.

  18. Pakistan House Price dataset

    • kaggle.com
    zip
    Updated May 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jillani SofTech (2023). Pakistan House Price dataset [Dataset]. https://www.kaggle.com/datasets/jillanisofttech/pakistan-house-price-dataset/versions/1
    Explore at:
    zip(8379623 bytes)Available download formats
    Dataset updated
    May 6, 2023
    Authors
    Jillani SofTech
    Area covered
    Pakistan
    Description

    Dataset Description: The dataset contains information about properties. Each property has a unique property ID and is associated with a location ID based on the subcategory of the city. The dataset includes the following attributes:

    Property ID: Unique identifier for each property. Location ID: Unique identifier for each location within a city. Page URL: The URL of the webpage where the property was published. Property Type: Categorization of the property into six types: House, FarmHouse, Upper Portion, Lower Portion, Flat, or Room. Price: The price of the property, which is the dependent feature in this dataset. City: The city where the property is located. The dataset includes five cities: Lahore, Karachi, Faisalabad, Rawalpindi, and Islamabad. Province: The state or province where the city is located. Location: Different types of locations within each city. Latitude and Longitude: Geographic coordinates of the cities. Steps Involved in the Analysis:

    Statistical Analysis:

    Data Types: Determine the data types of the attributes. Level of Measurement: Identify the level of measurement for each attribute. Summary Statistics: Calculate mean, standard deviation, minimum, and maximum values for numerical attributes. Data Cleaning:

    Filling Null Values: Handle missing values in the dataset. Duplicate Values: Remove duplicate records, if any. Correcting Data Types: Ensure the correct data types for each attribute. Outliers Detection: Identify and handle outliers in the data. Exploratory Data Analysis (EDA):

    Visualization: Use libraries such as Seaborn, Matplotlib, and Plotly to visualize the data and gain insights. Model Building:

    Libraries: Utilize libraries like Sklearn and pickle. List of Models: Build models using Linear Regression, Decision Tree, Random Forest, K-Nearest Neighbors (KNN), XG Boost, Gradient Boost, and Ada Boost. Model Saving: Save the selected model into a pickle file for future use. I hope this captures the essence of the provided information. Let me know if you need any further assistance!

  19. Observed to expected or logistic regression to identify hospitals with high...

    • figshare.com
    7z
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Doris Tove Kristoffersen; Jon Helgeland; Jocelyne Clench-Aas; Petter Laake; Marit B. Veierød (2023). Observed to expected or logistic regression to identify hospitals with high or low 30-day mortality? [Dataset]. http://doi.org/10.1371/journal.pone.0195248
    Explore at:
    7zAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Doris Tove Kristoffersen; Jon Helgeland; Jocelyne Clench-Aas; Petter Laake; Marit B. Veierød
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionA common quality indicator for monitoring and comparing hospitals is based on death within 30 days of admission. An important use is to determine whether a hospital has higher or lower mortality than other hospitals. Thus, the ability to identify such outliers correctly is essential. Two approaches for detection are: 1) calculating the ratio of observed to expected number of deaths (OE) per hospital and 2) including all hospitals in a logistic regression (LR) comparing each hospital to a form of average over all hospitals. The aim of this study was to compare OE and LR with respect to correctly identifying 30-day mortality outliers. Modifications of the methods, i.e., variance corrected approach of OE (OE-Faris), bias corrected LR (LR-Firth), and trimmed mean variants of LR and LR-Firth were also studied.Materials and methodsTo study the properties of OE and LR and their variants, we performed a simulation study by generating patient data from hospitals with known outlier status (low mortality, high mortality, non-outlier). Data from simulated scenarios with varying number of hospitals, hospital volume, and mortality outlier status, were analysed by the different methods and compared by level of significance (ability to falsely claim an outlier) and power (ability to reveal an outlier). Moreover, administrative data for patients with acute myocardial infarction (AMI), stroke, and hip fracture from Norwegian hospitals for 2012–2014 were analysed.ResultsNone of the methods achieved the nominal (test) level of significance for both low and high mortality outliers. For low mortality outliers, the levels of significance were increased four- to fivefold for OE and OE-Faris. For high mortality outliers, OE and OE-Faris, LR 25% trimmed and LR-Firth 10% and 25% trimmed maintained approximately the nominal level. The methods agreed with respect to outlier status for 94.1% of the AMI hospitals, 98.0% of the stroke, and 97.8% of the hip fracture hospitals.ConclusionWe recommend, on the balance, LR-Firth 10% or 25% trimmed for detection of both low and high mortality outliers.

  20. c

    Diabetes mellitus (in persons aged 17 and over): England

    • data.catchmentbasedapproach.org
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Diabetes mellitus (in persons aged 17 and over): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/diabetes-mellitus-in-persons-aged-17-and-over-england
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of diabetes mellitus in persons (aged 17+). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to diabetes mellitus in persons (aged 17+).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (aged 17+) with diabetes mellitus was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with diabetes mellitus was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with depression, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have diabetes mellitusB) the NUMBER of people within that MSOA who are estimated to have diabetes mellitusAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have diabetes mellitus, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from diabetes mellitus, and where those people make up a large percentage of the population, indicating there is a real issue with diabetes mellitus within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of diabetes mellitus, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of diabetes mellitus.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center (2021). Outlier classification using autoencoders: application for fluctuation driven flows in fusion plasmas [Dataset]. http://doi.org/10.7910/DVN/SKEHRJ
Organization logo

Outlier classification using autoencoders: application for fluctuation driven flows in fusion plasmas

Explore at:
Dataset updated
Jun 2, 2021
Dataset provided by
Office of Sciencehttp://www.er.doe.gov/
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
Description

Understanding the statistics of fluctuation driven flows in the boundary layer of magnetically confined plasmas is desired to accurately model the lifetime of the vacuum vessel components. Mirror Langmuir probes (MLPs) are a novel diagnostic that uniquely allow us to sample the plasma parameters on a time scale shorter than the characteristic time scale of their fluctuations. Sudden large-amplitude fluctuations in the plasma degrade the precision and accuracy of the plasma parameters reported by MLPs for cases in which the probe bias range is of insufficient amplitude. While some data samples can readily be classified as valid and invalid, we find that such a classification may be ambiguous for up to 40% of data sampled for the plasma parameters and bias voltages considered in this study. In this contribution, we employ an autoencoder (AE) to learn a low-dimensional representation of valid data samples. By definition, the coordinates in this space are the features that mostly characterize valid data. Ambiguous data samples are classified in this space using standard classifiers for vectorial data. In this way, we avoid defining complicated threshold rules to identify outliers, which require strong assumptions and introduce biases in the analysis. By removing the outliers that are identified in the latent low-dimensional space of the AE, we find that the average conductive and convective radial heat fluxes are between approximately 5% and 15% lower as when removing outliers identified by threshold values. For contributions to the radial heat flux due to triple correlations, the difference is up to 40%.

Search
Clear search
Close search
Google apps
Main menu