An area encompassing all the National Forest System lands administered by an administrative unit. The area encompasses private lands, other governmental agency lands, and may contain National Forest System lands within the proclaimed boundaries of another administrative unit. All National Forest System lands fall within one and only one Administrative Forest Area. This data is intended for read-only use. These data were prepared to describe Forest Service administrative area boundaries. The purpose of the data is to provide display, identification, and analysis tools for determining current boundary information for Forest Service managers, GIS Specialists, and others. The Forest Service has multiple types of boundaries represented by different feature classes (layers): Administrative, Ownership and Proclaimed. 1) ADMINISTRATIVE boundaries (e.g. AdministrativeForest and RangerDistrict feature classes) encompass National Forest System lands managed by an administrative unit. These are dynamic layers that should not be considered "legal" boundaries as they are simply intended to identify the specific organizational units that administer areas. As lands are acquired and disposed, the administrative boundaries are adjusted to expand or shrink accordingly. Please note that ranger districts are sub units of National Forests. An administrative forest boundary can contain one or more Proclaimed National Forests, National Grasslands, Purchase Units, Research and Experimental Areas, Land Utilization Projects and various "Other" Areas. If needed, OWNERSHIP boundaries (e.g. BasicOwnership and SurfaceOwnership feature classes) should be reviewed along with these datasets to determine parcels that are federally managed within the administrative boundaries. 2) OWNERSHIP boundaries (e.g. BasicOwnership and SurfaceOwnership feature classes) represent parcels that are tied to legal transactions of ownership. These are parcels of Federal land managed by the USDA Forest Service. Please note that the BasicOwnership layer is simply a dissolved version of the SurfaceOwnership layer. 3) PROCLAIMED boundaries (e.g. ProclaimedForest and ProclaimedForest_Grassland) encompass areas of National Forest System land that is set aside and reserved from public domain by executive order or proclamation. Please note that the ProclaimedForest layer contains only proclaimed forests while ProclaimedForest_Grassland layer contains both proclaimed forests and proclaimed grasslands. For boundaries that reflect current National Forest System lands managed by an administrative unit, see the ADMINISTRATIVE boundaries (AdministrativeForest and RangerDistrict feature classes). For a visual comparison of the different kinds of USFS boundary datasets maintained by the USFS, see the Forest Service Boundary Comparison map at https://usfs.maps.arcgis.com/apps/CompareAnalysis/index.html?appid=fe7b9f56217949a291356f08cfccb119. USFS boundaries are often referenced in national datasets maintained by other federal agencies. Please note that variations may be found between USFS data and other boundary datasets due to differing update frequencies. PAD-US (Protected Areas Database of the United States), maintained by the U.S. Geological Survey, is a "best available" inventory of protected areas including data provided by managing agencies and organizations including the Forest Service. For more information see https://gapanalysis.usgs.gov/padus/data/metadata/. SMA (Surface Management Agency), maintained by the Bureau of Land Management, depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. It uses data provided by the Forest Service and other agencies, combined with National Regional Offices collection efforts. For more information see https://landscape.blm.gov/geoportal/catalog/search/resource/details.page?uuid=%7B2A8B8906-7711-4AF7-9510-C6C7FD991177%7D.
This layer shows workers by employer type (private sector, government, etc.) in Austin, Texas. This is shown by censustract and place boundaries. Tract data contains the most currently released American Community Survey (ACS) 5-year data for all tracts within Bastrop, Caldwell, Hays, Travis, and Williamson Counties in Texas. Place data contains the most recent ACS 1-year estimate for the City of Austin, Texas. Data contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023 (Tract), 2023 (Place)ACS Table(s): C24060 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 12, 2025National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
(Link to Metadata) The BNDHASH dataset depicts Vermont village, town, county, and Regional Planning Commission (RPC) boundaries. It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary. The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names. BNDHASH includes the following feature classes: 1) BNDHASH_POLY_VILLAGES = Vermont villages 2) BNDHASH_POLY_TOWNS = Vermont towns 3) BNDHASH_POLY_COUNTIES = Vermont counties 4) BNDHASH_POLY_RPCS = Vermont's Regional Planning Commissions 5) BNDHASH_POLY_VTBND = Vermont's state boundary 6) BNDHASH_LINE = Lines on which all POLY feature classes are built The master BNDHASH data is managed as an ESRI geodatabase feature dataset by VCGI. The dataset stores village, town, county, RPC, and state boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors. NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/RPC/state boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the locations of these boundaries. BNDHASH should be used for general mapping purposes only. * Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line feature with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.
This feature class depicts the boundaries of Operable Unit 1 (OU1) within the Carson River Mercury Site (CRMS), including the four Area of Investigation boundaries. NDEP lead an initiative to refine the boundaries shown on maps identifying the Carson River Mercury Superfund Site (CRMS) from the initial site identification and description as the Carson River hydrographic basin beginning in Carson City, NV to its terminal points in Churchill County, NV. This description of the CRMS was used in many of the early site investigation studies and reports and continued to be used in all public education and long-term site management controls until approximately 2012. Using site contaminant fate and transport determinations from the CRMS OU1 Remedial Investigation (RI) and Conceptual Site Model (CSM), it seemed inappropriate to include the much larger area of the hydrographic basin as being potentially impacted by site contaminants of concern (CoC). NDEP created protocols to estimate areas that are likely to have been impacted by CoCs and created maps using these protocols to redraw the CRMS boundary limits. In the development of these protocols, NDEP used: Historic records and documentation of probable source areas; The 2012 archaeological mill site research and field study conducted by Broadbent and Associates to locate the historic source areas; Soil and sediment transport mechanisms identified in the CSM and general soil transport and sedimentology principals to predict areas where CoCs have likely been located at and downstream of the historic sources. The overall area of transport was estimated to be reasonably large to include possible anthropogenic activity as well as historic and future natural events such as flooding and channel migration. Additionally, NDEP added a "buffer” to extend the potential areas beyond the conservatively defined primary areas of potential contamination to further address unknown and future effects. These buffers have been identified separately from the primary areas of concern and labeled as such on maps using these protocols. These revisions were formalized in the 2013 Explanation of Significant Differences to the OU-1 Record of Decision (RoD) to adopt the new site definition and boundaries identified by NDEP as new estimates of the CRMS extents. NDEP identified four geographic areas of prime importance to the CRMS. Originally labeled by NDEP as "Risk Areas”, the intent of this terminology was to indicate these were the areas understood to have the most likely "risk” of contamination. Under consultation with EPA R9 risk assessment staff, the term has been changed to "Area of Investigation” to avoid confusion that any actual quantitative level of human or ecological risk has been determined for these areas. They are only estimates of potential contamination and new or additional information that contradicts these boundaries as being insufficient will be used to adopt new boundaries as appropriate. The four Areas of Investigation have become the foundation for the residential soil sampling program mandated by the OU-1 RoD. Summarized briefly; Investigation Area 1 (IA 1)- This includes all areas in the Carson River drainage basin from about the area of the historic settlement of Empire in Carson City, NV downstream to the existing or historic terminal points of the river at Carson Lake, Carson Sink, Indian Lakes and the Stillwater National Wildlife Refuge that lie outside the buffer zones of the other three Investigation Areas. It is least probable that CRMS CoCs will be located in these areas. It is unlikely that any sampling will be requested on areas developed within IA 1, but it might be requested in special circumstances, especially near and around the source areas of the contamination where historic activities could potentially have caused contamination beyond the typical boundaries as identified by the CSM. Investigation Area 2 (IA 2)- This area is defined as a buffer that lies 100 feet along a normal horizontal to the Investigation Area 3 boundary. For Comstock-era mill sites and isolated tailings piles, this translates to the area between 350 feet and 450 feet from the center point of the historic feature. For the 100-year FEMA floodplain and areas of irrigation, this is the area beginning at the limit of the flood plain boundary or irrigated land along a normal to 100 feet. Investigation Area 3 (IA 3)- This area is defined as a buffer that lies 100 feet along a normal horizontal to the Investigation Area 4 boundary for Comstock-era mills or isolated tailings piles. For Comstock-era mill sites and isolated tailings piles, this translates to the area between 250 feet and 350 feet from the center point of the historic feature. It is also defined as the limits of the FEMA 100-year floodplain or past or current flood irrigation practices. A tributary of the Carson River must have a Comstock-era mill site or tailings pile located along it to be mapped in IA3 and only the portion of the tributary downstream of the historic feature is included, not including the IA3 area and buffer drawn around the historic feature itself. If a tributary does not have FEMA 100-year flood plain defined, then IA3 has been defined as the area 100 feet along a normal to Investigation Area 4 boundary of that tributary. Investigation Area 4 (IA 4)- This area represents the highest likelihood of mercury contamination. Multiple steps were used to define the extent of this area, described below: The area within a 250 feet radius from the center point of a Comstock-era mill Comstock-era tailings pile polygon with a 250 ft buffer The centerline of the current channel of the Carson River enclosed in a polygon 100-feet wide (50 feet either side). Tributaries to the Carson River, where Comstock-era mills and tailings piles were located are enclosed in a polygon 50-feet wide (25 feet either side) from the approximate center of the tributary channel. Irrigation canals are enclosed in a polygon 20 feet wide (10 feet either side) from the approximate center of the ditch.
This digital, geographically referenced data set was developed to identify the county boundaries of the Des Moines 9 County Regional GIS community.This feature class is one many feature classes developed for and maintained by the Des Moines Area Regional GIS for the purpose of performing internal and external functions of the local government it covers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Accuracy assessment is one of the most important components of both applied and research-oriented remote sensing projects. For mapped classes that have sharp and easily identified boundaries, a broad array of accuracy assessment methods has been developed. However, accuracy assessment is in many cases complicated by classes that have fuzzy, indeterminate, or gradational boundaries, a condition which is common in real landscapes; for example, the boundaries of wetlands, many soil map units, and tree crowns. In such circumstances, the conventional approach of treating all reference pixels as equally important, whether located on the map close to the boundary of a class, or in the class center, can lead to misleading results. We therefore propose an accuracy assessment approach that relies on center-weighting map segment area to calculate a variety of common classification metrics including overall accuracy, class user’s and producer’s accuracy, precision, recall, specificity, and the F1 score. This method offers an augmentation of traditional assessment methods, can be used for both binary and multiclass assessment, allows for the calculation of count- and area-based measures, and permits the user to define the impact of distance from map segment edges based on a distance weighting exponent and a saturation threshold distance, after which the weighting ceases to grow. The method is demonstrated using synthetic and real examples, highlighting its use when the accuracy of maps with inherently uncertain class boundaries is evaluated.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Spatial data from field observation points and quantitative plots were used to edit the formation-level maps of Petersburg National Battlefield to better reflect vegetation classes. Using ArcView 3.3, polygon boundaries were revised onscreen over leaf-off photography. Units used to label polygons on the map (i.e. map classes) are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system. Each polygon on the Petersburg National Battlefield map was assigned to one of twenty map classes based on plot data, field observations, aerial photography signatures, and topographic maps. The mapping boundary was based on park boundary data obtained from Petersburg National Battlefield in May 2006. Spatial data depicting the locations of earthworks was obtained from the park and used to identify polygons of the cultural map classes Open Earthworks and Forested Earthworks. One map class used to attribute polygons combines two similar associations that, in some circumstances, are difficult to distinguish in the field. The vegetation map was clipped at the park boundary because areas outside the park were not surveyed or included in the accuracy assessment. Twenty map classes were used in the vegetation map for Petersburg National Battlefield. Map classes are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Aggregate statistics for registered storefronts in Designated Class One properties by identified geographic boundaries (Citywide, Borough, Council District).
Control Point Download Link
Survey and Plat Line Download Link
Subdivision Download Link
Lot and Block Download Link
Record of Survey Download Link
The surveys and plats feature layer includes information related to the following topics.Control Point - The control point dataset represents corner points that have been observed by IDL staff or a licensed surveyor. Corners are points on the surface of the earth, determined by the surveying process, which defines an extremity on a boundary of the public lands. Points are represented by a type to determine the source of the corner. Control points have been gathered from various sources. These points are used to adjust the Parcel Fabric. This allows for a more accurate GIS representation of ground conditions.Survey and Plat Line - A record of survey is a detailed map that documents and identifies the physical land boundaries or property lines for a specific parcel of land. This feature class represents the parcel lines documented in a record of survey. These records of surveys can include subdivision plats and surveys performed by federal entities. The metes and bounds information is stored as attribute values.Subdivision - "Subdivision" means the division of a lot, tract, or parcel of land into two or more lots, plats, sites, or other divisions of land for the purpose, whether immediate or future, of sale or of building development. It includes resubdivision and, when appropriate to the context, relates to the process of subdividing or to the land or territory subdivided.Lots and Blocks - A lot is an individual piece of land which is intended to be conveyed in its entirety to a buyer. A block is generally a group of contiguous lots bounded by streets, such as a city block.Record of Surveys - A record of survey is a detailed map that documents and identifies the physical land boundaries or property lines for a specific parcel of land. This feature class represents the parcels documented in a record of survey. These records of surveys do not include subdivision plats, lots, or blocks.State Surface Ownership - This feature class contains the surface ownership for endowment lands managed by the Idaho Department of Lands. There is also data for other state agencies, but this data is not complete.PLSS Township - Townships are normally a square approximately six miles on a side with cardinal boundaries conforming to meridians and parallels, containing 36 sections of one square mile each.PLSS Section - The first set of divisions for a PLSS Township. Typically 640 acres or 1 square mile.PLSS Subsection - Is a quarter, quarter-quarter, sixteenth, or government lot division of the PLSS.
The BNDHASH dataset depicts Vermont villages, towns, counties, Regional Planning Commissions (RPC), and LEPC (Local Emergency Planning Committee) boundaries. It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary. The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names. BNDHASH includes the following feature classes: 1) VILLAGES = Vermont villages 2) TOWNS = Vermont towns 3) COUNTIES = Vermont counties 4) RPCS = Vermont's Regional Planning Commissions 5) LEPC = Local Emergency Planning Committee boundaries 6) VTBND = Vermont's state boundary The master BNDHASH layer is managed as ESRI geodatabase feature dataset by VCGI. The dataset stores villages, towns, counties, and RPC boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors. NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/rpc boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the location of these boundaries. BNDHASH should be used for general mapping purposes only. * Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line featue with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.
Aggregate statistics for all registered storefront by identified geographic boundaries (Citywide, Borough, Council District, Census Tract)
(Link to Metadata) The BNDHASH dataset depicts Vermont villages, towns, counties, Regional Planning Commissions (RPC), and LEPC (Local Emergency Planning Committee) boundaries. It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary. The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names. BNDHASH includes the following feature classes: 1) VILLAGES = Vermont villages 2) TOWNS = Vermont towns 3) COUNTIES = Vermont counties 4) RPCS = Vermont's Regional Planning Commissions 5) LEPC = Local Emergency Planning Committee boundaries 6) VTBND = Vermont's state boundary The master BNDHASH layer is managed as ESRI geodatabase feature dataset by VCGI. The dataset stores villages, towns, counties, and RPC boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors. NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/rpc boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the location of these boundaries. BNDHASH should be used for general mapping purposes only. * Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line featue with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.
https://vocab.nerc.ac.uk/collection/L08/current/UN/https://vocab.nerc.ac.uk/collection/L08/current/UN/
Standardisation of River Classifications: Framework method for calibrating different biological survey results against ecological quality classifications to be developed for the Water Framework Directive. Problems to be solved: The variety of assessment methods for streams and rivers in Europe provides good opportunities for implementing the Water Framework Directive but their diversity may also result in serious strategic problems. The number of organism groups that will be used to assess Ecological Status, and the number of methods available for doing so are so diverse that inter-calibration and standardisation of methods is crucial. Similarly, protocols need to be devised to integrate the information gathered on the different taxonomic groups. The project aims to derive a detailed picture of which methods are best suited for which circumstances as a basis for standardisation. We propose to develop a standard for determining class boundaries of Ecological Status and another for inter-calibrating existing methods. Scientific objectives and approach: Data will be used to answer the following questions, which form the basis of a conceptual model: 1) How can data resulting from different assessment methods be compared and standardised? 2) Which methods/taxonomic groups are most capable of indicating particular individual stressors? 3) Which method can be used on which scale? 4) Which method is suited for early and late warnings? 5) How are different assessment methods affected by errors? 6) What can be standardised and what should be standardised? For the purposes of this project two 'core streams types' are recognised: small, shallow, upland streams and medium-sized, deeper lowland streams. Besides the evaluation of existing data, a completely new data set is sampled to gain comparable data on macroinvertebrates, phytobenthos, fish and stream morphology taken with a set of different methods from sites representing different stages of degradation. This will be the main source of data for cross-comparisons and the preparation of standards. A number of 'additional stream types' will be investigated in order to extend the range of sites at which field methods and assessment procedures are compared. The participants will be trained in sampling workshops and quality assurance will be implemented through an audit. Using the project database, assessment methods based on benthic macroinvertebrates will be compared and inter-calibrated, particularly in terms of errors, precision, relation to reference conditions and possible class boundaries. The discriminatory power of different organism groups to detect ecological change will be tested through various statistical procedures. Two CEN Workshops will be held during the contracted period. These will result in the formulation of draft standards for circulation, amendment, agreement by participating countries in CEN.STAR will benefit from clustering with the complementary Framework V Project, FAME. Project FAME will develop European fish assessment protocols using existing data. STAR fish sampling will be based on FAME protocols and STAR field data will be used by FAME to test these new protocols. Expected impacts: The project will provide a general concept understanding of how to use different organism groups for stream assessment. The project findings will be implemented through a decision support system. Existing methods based on benthic macroinvertebrates will be inter-calibrated to enable a future comparison of river quality classes throughout Europe. Existing assessment methods will be supplemented by an 'error module'. A matrix of possible class boundaries of grades of 'Ecological Status' associated with different methods and stressors will be developed. Committee drafts for the relevant CEN working group and draft standards on stream assessment methods will be produced. Deliverables: Please see: www.eu-star.at/frameset.htm
The Minnesota Department of Transportation (MnDOT) divides the state into eight administrative zonal areas referred to as construction districts. The boundaries of these districts are used to determine which district is responsible for construction activities on trunk highways, and for reporting purposes.
Construction Districts is a polygon feature class that represents an area that defines the portions of trunk highways and their junctions served by each of the eight districts.
The Minnesota Department of Transportation (MnDOT) divides the state into eight administrative zonal areas called Construction Districts. Some of these Construction Districts have been further sub-divided into Maintenance SubDistricts, which may identify a region for operational or administrative purposes. Maintenance SubDistricts is a polygon feature class that represents this area, and defines the portions of trunk highways and their junctions served by each SubDistrict. They are derived from the SubDistrict attribute field from the Maintenance Subareas feature class.
The Minnesota Department of Transportation (MnDOT) divides the state into eight administrative zonal areas call construction districts. Within each construction district, there are a varying number of maintenance subareas. These subareas represent which facility is responsible for maintenance activities on trunk highways, specifically winter maintenance. Note that summer maintenance activates may deviate substantially from these boundaries. Maintenance Subareas is a polygon feature class that represents the area, and defines the portions of trunk highways and their junctions served by each districts subarea.
Check other metadata records in this package for more information on MnDOT Boundaries
(Link to Metadata) The BNDHASH dataset depicts Vermont villages, towns, counties, Regional Planning Commissions (RPC), and LEPC (Local Emergency Planning Committee) boundaries. It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary. The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names. BNDHASH includes the following feature classes: 1) VILLAGES = Vermont villages 2) TOWNS = Vermont towns 3) COUNTIES = Vermont counties 4) RPCS = Vermont's Regional Planning Commissions 5) LEPC = Local Emergency Planning Committee boundaries 6) VTBND = Vermont's state boundary The master BNDHASH layer is managed as ESRI geodatabase feature dataset by VCGI. The dataset stores villages, towns, counties, and RPC boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors. NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/rpc boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the location of these boundaries. BNDHASH should be used for general mapping purposes only. * Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line featue with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Natural Resources Department of the Atlanta Regional Commission. The dataset contains polygonal hydrographic features including lakes, ponds, reservoirs, swamps, and marshes in the Metropolitan North Georgia Water Planning District.Original data were captured from the NHDWaterbody geospatial data layer included in the High Resolution National Hydrography Dataset Plus (NHDPlus HR). Features in the NHDWaterbody geospatial layer that intersected the Georgia State boundary were selected and spatially joined to Georgia county boundaries and the WBDHU8 geospatial data layer found in the U.S. Geological Survey's Watershed Boundary Dataset. Layers were spatially joined using the Largest Overlap matching method. The spatial join was removed upon calculating values for the COUNTY_FIPS, COUNTY_NAME, HUC8_ID, and HUC8_SUBBASIN attributes. The CLASS attribute was created to identify Lakes equal to or larger than 10 acres as Major and less than 0.5 acres as Minor. Data in the HYDRO_CAT and RESERVOIR_TYPE attributes were sourced from values encoded in the Feature Code (FCode) field of the NHDWaterbody geospatial data layer.Attributes:FEATURE = Type of hydrologic featureCLASS = Class used to identify major and minor waterbodiesGNIS_ID = A permanent, unique number assigned by the Geographic Names Information System (GNIS) to a geographic feature name for the sole purpose of uniquely identifying that name application as a record in any information system database, dataset, file, or documentGNIS_NAME = The Geographic Names Information System (GNIS) assigned proper name, specific term, or expression by which a particular geographic entity is known.HUC8_ID = 8-digit hydrologic unit code used to identify subbasins in the hydrologic unit systemHUC8_SUBBASIN = Subbasin name of the 8-digit hydrologic unit code in the hydrologic unit systemCOUNTY_FIPS = County Federal Information Processing System (FIPS) codeCOUNTY_NAME = County nameHYDRO_CAT = Hydrographic feature categoryRESERVOIR_TYPE = Type of reservoirACRES = Area of the feature in acresELEVATION = The vertical distance from a given datumGlobalID = A type of UUID (Universal Unique Identifier) in which values are automatically assigned by the geodatabase when a row is createdlast_edited_user = User to last edit featurelast_edited_date = Date feature was last editedShape = Feature geometryShape_Length = Length of the feature, which may differ from the field measured length due to differences in calculation. Units are map units.Shape_Area = Area of feature in map units squaredSource: U.S. Geological Survey, National Geospatial ProgramDate: 2023
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
(Link to Metadata) The BNDHASH dataset depicts Vermont village, town, county, and Regional Planning Commission (RPC) boundaries. It is a composite of generally 'best available' boundaries from various data sources (refer to ARC_SRC and SRC_NOTES attributes). However, this dataset DOES NOT attempt to provide a legally definitive boundary. The layer was originally developed from TBHASH, which was the master VGIS town boundary layer prior to the development and release of BNDHASH. By integrating village, town, county, RPC, and state boundaries into a single layer, VCGI has assured vertical integration of these boundaries and simplified maintenance. BNDHASH also includes annotation text for town, county, and RPC names. BNDHASH includes the following feature classes: 1) BNDHASH_POLY_VILLAGES = Vermont villages 2) BNDHASH_POLY_TOWNS = Vermont towns 3) BNDHASH_POLY_COUNTIES = Vermont counties 4) BNDHASH_POLY_RPCS = Vermont's Regional Planning Commissions 5) BNDHASH_POLY_VTBND = Vermont's state boundary 6) BNDHASH_LINE = Lines on which all POLY feature classes are built The master BNDHASH data is managed as an ESRI geodatabase feature dataset by VCGI. The dataset stores village, town, county, RPC, and state boundaries as seperate feature classes with a set of topology rules which binds the features. This arrangement assures vertical integration of the various boundaries. VCGI will update this layer on an annual basis by reviewing records housed in the VT State Archives - Secretary of State's Office. VCGI also welcomes documented information from VGIS users which identify boundary errors. NOTE - VCGI has NOT attempted to create a legally definitive boundary layer. Instead the idea is to maintain an integrated village/town/county/RPC/state boundary layer which provides for a reasonably accurate representation of these boundaries (refer to ARC_SRC and SRC_NOTES). BNDHASH includes all counties, towns, and villages listed in "Population and Local Government - State of Vermont - 2000" published by the Secretary of State. BNDHASH may include changes endorsed by the Legislature since the publication of this document in 2000 (eg: villages merged with towns). Utlimately the Vermont Secratary of State's Office and the VT Legislature are responsible for maintaining information which accurately describes the locations of these boundaries. BNDHASH should be used for general mapping purposes only. * Users who wish to determine which boundaries are different from the original TBHASH boundaries should refer to the ORIG_ARC field in the BOUNDARY_BNDHASH_LINE (line feature with attributes). Also, updates to BNDHASH are tracked by version number (ex: 2003A). The UPDACT field is used to track changes between versions. The UPDACT field is flushed between versions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Natural Resources Department of the Atlanta Regional Commission. The dataset contains polygonal hydrographic features including lakes, ponds, reservoirs, swamps, and marshes. Original data were captured from the NHDWaterbody geospatial data layer included in the High Resolution National Hydrography Dataset Plus (NHDPlus HR). Features in the NHDWaterbody geospatial layer that intersected the Georgia State boundary were selected and spatially joined to Georgia county boundaries and the WBDHU8 geospatial data layer found in the U.S. Geological Survey's Watershed Boundary Dataset. Layers were spatially joined using the Largest Overlap matching method. The spatial join was removed upon calculating values for the COUNTY_FIPS, COUNTY_NAME, HUC8_ID, and HUC8_SUBBASIN attributes. The CLASS attribute was created to identify Lakes equal to or larger than 10 acres as Major and less than 0.5 acres as Minor. Data in the HYDRO_CAT and RESERVOIR_TYPE attributes were sourced from values encoded in the Feature Code (FCode) field of the NHDWaterbody geospatial data layer.Attributes:FEATURE = Type of hydrologic featureCLASS = Class used to identify major and minor waterbodiesGNIS_ID = A permanent, unique number assigned by the Geographic Names Information System (GNIS) to a geographic feature name for the sole purpose of uniquely identifying that name application as a record in any information system database, dataset, file, or documentGNIS_NAME = The Geographic Names Information System (GNIS) assigned proper name, specific term, or expression by which a particular geographic entity is known.HUC8_ID = 8-digit hydrologic unit code used to identify subbasins in the hydrologic unit systemHUC8_SUBBASIN = Subbasin name of the 8-digit hydrologic unit code in the hydrologic unit systemCOUNTY_FIPS = County Federal Information Processing System (FIPS) codeCOUNTY_NAME = County nameHYDRO_CAT = Hydrographic feature categoryRESERVOIR_TYPE = Type of reservoirACRES = Area of the feature in acresELEVATION = The vertical distance from a given datumGlobalID = A type of UUID (Universal Unique Identifier) in which values are automatically assigned by the geodatabase when a row is createdlast_edited_user = User to last edit featurelast_edited_date = Date feature was last editedShape = Feature geometryShape_Length = Length of the feature, which may differ from the field measured length due to differences in calculation. Units are map units.Shape_Area = Area of feature in map units squaredSource: U.S. Geological Survey, National Geospatial ProgramDate: 2023
NOTE: A more current version of the Protected Areas Database of the United States (PAD-US) is available: PAD-US 2.1 https://doi.org/10.5066/P92QM3NT. The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastre Theme (https://communities.geoplatform.gov/ngda-cadastre/). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all public and nonprofit lands and waters. Most are public lands owned in fee; however, long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g. 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of public land and other protected areas, compiling “best available” data provided by managing agencies and organizations. The PAD-US geodatabase maps and describes areas with over twenty-five attributes in nine feature classes to support data management, queries, web mapping services, and analyses. NOTE: A more current version of the Protected Areas Database of the United States (PAD-US) is available: PAD-US 2.1 https://doi.org/10.5066/P92QM3NT This PAD-US Version 2.0 dataset includes a variety of updates and changes from the previous Version 1.4 dataset. The following list summarizes major updates and changes: 1) Expanded database structure with new layers: the geodatabase feature class structure now includes nine feature classes separating fee owned lands, conservation (and other) easements, management designations overlapping fee lands, marine areas, proclamation boundaries and various 'Combined' feature classes (e.g. 'Fee' + 'Easement' + 'Designation' feature classes); 2) Major update of the Federal estate including data from 8 agencies, developed in collaboration with the Federal Geographic Data Committee (FGDC) Federal Lands Working Group (FLWG, https://communities.geoplatform.gov/ngda-govunits/federal-lands-workgroup/); 3) Major updates to 30 States and limited additions to 16 other States; 4) Integration of The Nature Conservancy's (TNC) Secured Lands geodatabase; 5) Integration of Ducks Unlimited's (DU) Conservation and Recreation Lands (CARL) database; 6) Integration of The Trust for Public Land's (TPL) Conservation Almanac database; 7) The Nature Conservancy (TNC) Lands database update: the national source of lands owned in fee or managed by TNC; 8) National Conservation Easement Database (NCED) update: complete update of non-sensitive (suitable for publication in the public domain) easements; 9) Complete National Marine Protected Areas (MPA) update: from the NOAA MPA Inventory, including conservation measure ('GAP Status Code', 'IUCN Category') review by NOAA; 10) First integration of Bureau of Energy Ocean Management (BOEM) managed marine lands: BOEM submitted Outer Continental Shelf Area lands managed for natural resources (minerals, oil and gas), a significant and new addition to PAD-US; 11) Fee boundary overlap assessment: topology overlaps in the PAD-US 2.0 'Fee' feature class have been identified and are available for user and data-steward reference (See Logical_Consistency_Report Section). For more information regarding the PAD-US dataset please visit, https://usgs.gov/gapanalysis/PAD-US/. For more information about data aggregation please review the “Data Manual for PAD-US” available at https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-manual .
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada and northeastern California during the winter season, and is a surrogate for habitat conditions during periods of cold and snow. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution and created using ArcGIS 10.2.2) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Winter included telemetry locations (n = 4862) from November to March. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated for each subregion using R software (v 3.13) and using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the spring season. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. HABITAT CATEGORIZATION: Using the same ecoregion boundaries described above, the habitat classification dataset (an independent data set comprising 10% of the total telemetry location sample) was split into locations falling within respective north and south regions. HSI values from the composite and relativized statewide HSI surface were then extracted to each classification dataset location within the north and south region. The distribution of these values were used to identify class break values corresponding to 0.5 (high), 1.0 (moderate), and 1.5 (low) standard deviations (SD) from the mean HSI. These class breaks were used to classify the HSI surface into four discrete categories of habitat suitability: High, Moderate, Low, and Non-Habitat. In terms of percentiles, High habitat comprised greater than 30.9 % of the HSI values, Moderate comprised 15 – 30.9%, Low comprised 6.7 – 15%, and Non-Habitat comprised less than 6.7%.The classified north and south regions were then clipped by the boundary layer and mosaicked to create a statewide categorical surface for habitat selection . Each habitat suitability category was converted to a vector output where gaps within polygons less than 1.2 million square meters were eliminated, polygons within 500 meters of each other were connected to create corridors and polygons less than 1.2 million square meters in one category were incorporated to the adjacent category. The final step was to mask major roads that were buffered by 50m (Census, 2014), lakes (Peterson, 2008) and urban areas, and place those masked areas into the non-habitat category. The existing urban layer (Census 2010) was not sufficient for our needs because it excluded towns with a population lower than 1,500. Hence, we masked smaller towns (populations of 100 to 1500) and development with Census Block polygons (Census 2015) that had at least 50% urban development within their boundaries when viewed with reference imagery (ArcGIS World Imagery Service Layer). REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014
An area encompassing all the National Forest System lands administered by an administrative unit. The area encompasses private lands, other governmental agency lands, and may contain National Forest System lands within the proclaimed boundaries of another administrative unit. All National Forest System lands fall within one and only one Administrative Forest Area. This data is intended for read-only use. These data were prepared to describe Forest Service administrative area boundaries. The purpose of the data is to provide display, identification, and analysis tools for determining current boundary information for Forest Service managers, GIS Specialists, and others. The Forest Service has multiple types of boundaries represented by different feature classes (layers): Administrative, Ownership and Proclaimed. 1) ADMINISTRATIVE boundaries (e.g. AdministrativeForest and RangerDistrict feature classes) encompass National Forest System lands managed by an administrative unit. These are dynamic layers that should not be considered "legal" boundaries as they are simply intended to identify the specific organizational units that administer areas. As lands are acquired and disposed, the administrative boundaries are adjusted to expand or shrink accordingly. Please note that ranger districts are sub units of National Forests. An administrative forest boundary can contain one or more Proclaimed National Forests, National Grasslands, Purchase Units, Research and Experimental Areas, Land Utilization Projects and various "Other" Areas. If needed, OWNERSHIP boundaries (e.g. BasicOwnership and SurfaceOwnership feature classes) should be reviewed along with these datasets to determine parcels that are federally managed within the administrative boundaries. 2) OWNERSHIP boundaries (e.g. BasicOwnership and SurfaceOwnership feature classes) represent parcels that are tied to legal transactions of ownership. These are parcels of Federal land managed by the USDA Forest Service. Please note that the BasicOwnership layer is simply a dissolved version of the SurfaceOwnership layer. 3) PROCLAIMED boundaries (e.g. ProclaimedForest and ProclaimedForest_Grassland) encompass areas of National Forest System land that is set aside and reserved from public domain by executive order or proclamation. Please note that the ProclaimedForest layer contains only proclaimed forests while ProclaimedForest_Grassland layer contains both proclaimed forests and proclaimed grasslands. For boundaries that reflect current National Forest System lands managed by an administrative unit, see the ADMINISTRATIVE boundaries (AdministrativeForest and RangerDistrict feature classes). For a visual comparison of the different kinds of USFS boundary datasets maintained by the USFS, see the Forest Service Boundary Comparison map at https://usfs.maps.arcgis.com/apps/CompareAnalysis/index.html?appid=fe7b9f56217949a291356f08cfccb119. USFS boundaries are often referenced in national datasets maintained by other federal agencies. Please note that variations may be found between USFS data and other boundary datasets due to differing update frequencies. PAD-US (Protected Areas Database of the United States), maintained by the U.S. Geological Survey, is a "best available" inventory of protected areas including data provided by managing agencies and organizations including the Forest Service. For more information see https://gapanalysis.usgs.gov/padus/data/metadata/. SMA (Surface Management Agency), maintained by the Bureau of Land Management, depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. It uses data provided by the Forest Service and other agencies, combined with National Regional Offices collection efforts. For more information see https://landscape.blm.gov/geoportal/catalog/search/resource/details.page?uuid=%7B2A8B8906-7711-4AF7-9510-C6C7FD991177%7D.