100+ datasets found
  1. DataSheet1_Data Sources for Drug Utilization Research in Brazil—DUR-BRA...

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    xlsx
    Updated Jun 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lisiane Freitas Leal; Claudia Garcia Serpa Osorio-de-Castro; Luiz Júpiter Carneiro de Souza; Felipe Ferre; Daniel Marques Mota; Marcia Ito; Monique Elseviers; Elisangela da Costa Lima; Ivan Ricardo Zimmernan; Izabela Fulone; Monica Da Luz Carvalho-Soares; Luciane Cruz Lopes (2023). DataSheet1_Data Sources for Drug Utilization Research in Brazil—DUR-BRA Study.xlsx [Dataset]. http://doi.org/10.3389/fphar.2021.789872.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Lisiane Freitas Leal; Claudia Garcia Serpa Osorio-de-Castro; Luiz Júpiter Carneiro de Souza; Felipe Ferre; Daniel Marques Mota; Marcia Ito; Monique Elseviers; Elisangela da Costa Lima; Ivan Ricardo Zimmernan; Izabela Fulone; Monica Da Luz Carvalho-Soares; Luciane Cruz Lopes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil
    Description

    Background: In Brazil, studies that map electronic healthcare databases in order to assess their suitability for use in pharmacoepidemiologic research are lacking. We aimed to identify, catalogue, and characterize Brazilian data sources for Drug Utilization Research (DUR).Methods: The present study is part of the project entitled, “Publicly Available Data Sources for Drug Utilization Research in Latin American (LatAm) Countries.” A network of Brazilian health experts was assembled to map secondary administrative data from healthcare organizations that might provide information related to medication use. A multi-phase approach including internet search of institutional government websites, traditional bibliographic databases, and experts’ input was used for mapping the data sources. The reviewers searched, screened and selected the data sources independently; disagreements were resolved by consensus. Data sources were grouped into the following categories: 1) automated databases; 2) Electronic Medical Records (EMR); 3) national surveys or datasets; 4) adverse event reporting systems; and 5) others. Each data source was characterized by accessibility, geographic granularity, setting, type of data (aggregate or individual-level), and years of coverage. We also searched for publications related to each data source.Results: A total of 62 data sources were identified and screened; 38 met the eligibility criteria for inclusion and were fully characterized. We grouped 23 (60%) as automated databases, four (11%) as adverse event reporting systems, four (11%) as EMRs, three (8%) as national surveys or datasets, and four (11%) as other types. Eighteen (47%) were classified as publicly and conveniently accessible online; providing information at national level. Most of them offered more than 5 years of comprehensive data coverage, and presented data at both the individual and aggregated levels. No information about population coverage was found. Drug coding is not uniform; each data source has its own coding system, depending on the purpose of the data. At least one scientific publication was found for each publicly available data source.Conclusions: There are several types of data sources for DUR in Brazil, but a uniform system for drug classification and data quality evaluation does not exist. The extent of population covered by year is unknown. Our comprehensive and structured inventory reveals a need for full characterization of these data sources.

  2. Data from: Inventory of online public databases and repositories holding...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +1more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Inventory of online public databases and repositories holding agricultural data in 2017 [Dataset]. https://catalog.data.gov/dataset/inventory-of-online-public-databases-and-repositories-holding-agricultural-data-in-2017-d4c81
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    United States agricultural researchers have many options for making their data available online. This dataset aggregates the primary sources of ag-related data and determines where researchers are likely to deposit their agricultural data. These data serve as both a current landscape analysis and also as a baseline for future studies of ag research data. Purpose As sources of agricultural data become more numerous and disparate, and collaboration and open data become more expected if not required, this research provides a landscape inventory of online sources of open agricultural data. An inventory of current agricultural data sharing options will help assess how the Ag Data Commons, a platform for USDA-funded data cataloging and publication, can best support data-intensive and multi-disciplinary research. It will also help agricultural librarians assist their researchers in data management and publication. The goals of this study were to establish where agricultural researchers in the United States-- land grant and USDA researchers, primarily ARS, NRCS, USFS and other agencies -- currently publish their data, including general research data repositories, domain-specific databases, and the top journals compare how much data is in institutional vs. domain-specific vs. federal platforms determine which repositories are recommended by top journals that require or recommend the publication of supporting data ascertain where researchers not affiliated with funding or initiatives possessing a designated open data repository can publish data Approach The National Agricultural Library team focused on Agricultural Research Service (ARS), Natural Resources Conservation Service (NRCS), and United States Forest Service (USFS) style research data, rather than ag economics, statistics, and social sciences data. To find domain-specific, general, institutional, and federal agency repositories and databases that are open to US research submissions and have some amount of ag data, resources including re3data, libguides, and ARS lists were analysed. Primarily environmental or public health databases were not included, but places where ag grantees would publish data were considered. Search methods We first compiled a list of known domain specific USDA / ARS datasets / databases that are represented in the Ag Data Commons, including ARS Image Gallery, ARS Nutrition Databases (sub-components), SoyBase, PeanutBase, National Fungus Collection, i5K Workspace @ NAL, and GRIN. We then searched using search engines such as Bing and Google for non-USDA / federal ag databases, using Boolean variations of “agricultural data” /“ag data” / “scientific data” + NOT + USDA (to filter out the federal / USDA results). Most of these results were domain specific, though some contained a mix of data subjects. We then used search engines such as Bing and Google to find top agricultural university repositories using variations of “agriculture”, “ag data” and “university” to find schools with agriculture programs. Using that list of universities, we searched each university web site to see if their institution had a repository for their unique, independent research data if not apparent in the initial web browser search. We found both ag specific university repositories and general university repositories that housed a portion of agricultural data. Ag specific university repositories are included in the list of domain-specific repositories. Results included Columbia University – International Research Institute for Climate and Society, UC Davis – Cover Crops Database, etc. If a general university repository existed, we determined whether that repository could filter to include only data results after our chosen ag search terms were applied. General university databases that contain ag data included Colorado State University Digital Collections, University of Michigan ICPSR (Inter-university Consortium for Political and Social Research), and University of Minnesota DRUM (Digital Repository of the University of Minnesota). We then split out NCBI (National Center for Biotechnology Information) repositories. Next we searched the internet for open general data repositories using a variety of search engines, and repositories containing a mix of data, journals, books, and other types of records were tested to determine whether that repository could filter for data results after search terms were applied. General subject data repositories include Figshare, Open Science Framework, PANGEA, Protein Data Bank, and Zenodo. Finally, we compared scholarly journal suggestions for data repositories against our list to fill in any missing repositories that might contain agricultural data. Extensive lists of journals were compiled, in which USDA published in 2012 and 2016, combining search results in ARIS, Scopus, and the Forest Service's TreeSearch, plus the USDA web sites Economic Research Service (ERS), National Agricultural Statistics Service (NASS), Natural Resources and Conservation Service (NRCS), Food and Nutrition Service (FNS), Rural Development (RD), and Agricultural Marketing Service (AMS). The top 50 journals' author instructions were consulted to see if they (a) ask or require submitters to provide supplemental data, or (b) require submitters to submit data to open repositories. Data are provided for Journals based on a 2012 and 2016 study of where USDA employees publish their research studies, ranked by number of articles, including 2015/2016 Impact Factor, Author guidelines, Supplemental Data?, Supplemental Data reviewed?, Open Data (Supplemental or in Repository) Required? and Recommended data repositories, as provided in the online author guidelines for each the top 50 journals. Evaluation We ran a series of searches on all resulting general subject databases with the designated search terms. From the results, we noted the total number of datasets in the repository, type of resource searched (datasets, data, images, components, etc.), percentage of the total database that each term comprised, any dataset with a search term that comprised at least 1% and 5% of the total collection, and any search term that returned greater than 100 and greater than 500 results. We compared domain-specific databases and repositories based on parent organization, type of institution, and whether data submissions were dependent on conditions such as funding or affiliation of some kind. Results A summary of the major findings from our data review: Over half of the top 50 ag-related journals from our profile require or encourage open data for their published authors. There are few general repositories that are both large AND contain a significant portion of ag data in their collection. GBIF (Global Biodiversity Information Facility), ICPSR, and ORNL DAAC were among those that had over 500 datasets returned with at least one ag search term and had that result comprise at least 5% of the total collection. Not even one quarter of the domain-specific repositories and datasets reviewed allow open submission by any researcher regardless of funding or affiliation. See included README file for descriptions of each individual data file in this dataset. Resources in this dataset:Resource Title: Journals. File Name: Journals.csvResource Title: Journals - Recommended repositories. File Name: Repos_from_journals.csvResource Title: TDWG presentation. File Name: TDWG_Presentation.pptxResource Title: Domain Specific ag data sources. File Name: domain_specific_ag_databases.csvResource Title: Data Dictionary for Ag Data Repository Inventory. File Name: Ag_Data_Repo_DD.csvResource Title: General repositories containing ag data. File Name: general_repos_1.csvResource Title: README and file inventory. File Name: README_InventoryPublicDBandREepAgData.txt

  3. U

    Database used for the evaluation of data used to identify groundwater...

    • data.usgs.gov
    • gimi9.com
    • +1more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eliza Gross, Database used for the evaluation of data used to identify groundwater sources under the direct influence of surface water in Pennsylvania [Dataset]. http://doi.org/10.5066/P9Q0BXH1
    Explore at:
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Eliza Gross
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    1920 - 2016
    Area covered
    Pennsylvania
    Description

    The U.S. Geological Survey (USGS), in cooperation with the Pennsylvania Department of Environmental Protection (PADEP), conducted an evaluation of data used by the PADEP to identify groundwater sources under the direct influence of surface water (GUDI) in Pennsylvania (Gross and others, 2022). The data used in this evaluation and the processes used to compile them from multiple sources are described and provided herein. Data were compiled primarily but not exclusively from PADEP resources, including (1) source-information for public water-supply systems and Microscopic Particulate Analysis (MPA) results for public water-supply system groundwater sources from the agency’s Pennsylvania Drinking Water Information System (PADWIS) database (Pennsylvania Department of Environmental Protection, 2016), and (2) results associated with MPA testing from the PADEP Bureau of Laboratories (BOL) files and water-quality analyses obtained from the PADEP BOL, Sample Information System (Pennsylvania ...

  4. d

    Addresses (Open Data)

    • catalog.data.gov
    • data-academy.tempe.gov
    • +10more
    Updated Feb 7, 2026
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2026). Addresses (Open Data) [Dataset]. https://catalog.data.gov/dataset/addresses-open-data
    Explore at:
    Dataset updated
    Feb 7, 2026
    Dataset provided by
    City of Tempe
    Description

    This dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development. Data Source Type: ESRI ArcGIS Enterprise GeodatabasePreparation Method: N/APublish Frequency: WeeklyPublish Method: AutomaticData Dictionary

  5. v

    Objective assessment of database quality for use in the automotive research...

    • vda.de
    • fat-ev.de
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Objective assessment of database quality for use in the automotive research and development process – Part 2 [Dataset]. https://www.vda.de/de/aktuelles/publikationen/publication/objective-assessment-of-database-quality-for-use-in-the-automotive-research-and-development-process---part-2
    Explore at:
    Dataset updated
    Apr 18, 2023
    Description

    Road traffic accidents remain to be a leading cause of death worldwide with roughly 1.3 million fatalities annually. To develop new safety approaches according to real-world challenges, accurate information is needed. Therefore, road safety experts are constantly looking for real-world data to answer the open challenges and ultimately reach “Vision Zero”.The Global Safety Database (GSD) offers access to an one of its kind up-to-date repository of road traffic accident statistics and databases on a meta-data level for road safety analyses.One main objective is the compilation of international data sources, for which a data management system has been developed. In addition to the inventory of road accident data sources, a questionnaire created by road safety experts is used to check the applicability of data sources for specific questions. Therefore, an automated and dynamic matching process enables comparing variables representing the questions with the existing data source content in the GSD. The results are stored in a result matrix which indicates the proportion of variables that correspond to the variables necessary to answer the research question for each data source investigated. In order to identify similarities and differences in road safety within the countries, a clustering methodology is developed to point out the possibilities and limitations of projecting information from the initial countries to other areas. The assessment of the representativeness of the individual data sources is the basis for the clustering. From a general perspective, the GSD is an essential tool pushing forward the worldwide harmonisation of traffic accident statistics and databases. Knowledge about the real-world accident scenery by bringing important databases together empowers the data-driven development which is eventually a key bringing us one step closer to a road system without casualties, the achievement of the Vision Zero.

  6. Z

    Bibliographic dataset characterizing studies that use online biodiversity...

    • data-staging.niaid.nih.gov
    • portalcientifico.unav.edu
    • +2more
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ball-Damerow, Joan E.; Brenskelle, Laura; Barve, Narayani; LaFrance, Raphael; Soltis, Pamela S.; Sierwald, Petra; Bieler, Rüdiger; Ariño, Arturo; Guralnick, Robert (2020). Bibliographic dataset characterizing studies that use online biodiversity databases [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_2589438
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Florida Museum of Natural History, University of Florida, Gainesville
    Field Museum of Natural History
    Department of Environmental Biology, Universidad de Navarra
    Authors
    Ball-Damerow, Joan E.; Brenskelle, Laura; Barve, Narayani; LaFrance, Raphael; Soltis, Pamela S.; Sierwald, Petra; Bieler, Rüdiger; Ariño, Arturo; Guralnick, Robert
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes bibliographic information for 501 papers that were published from 2010-April 2017 (time of search) and use online biodiversity databases for research purposes. Our overarching goal in this study is to determine how research uses of biodiversity data developed during a time of unprecedented growth of online data resources. We also determine uses with the highest number of citations, how online occurrence data are linked to other data types, and if/how data quality is addressed. Specifically, we address the following questions:

    1.) What primary biodiversity databases have been cited in published research, and which

     databases have been cited most often?
    

    2.) Is the biodiversity research community citing databases appropriately, and are

     the cited databases currently accessible online?
    

    3.) What are the most common uses, general taxa addressed, and data linkages, and how

     have they changed over time?
    

    4.) What uses have the highest impact, as measured through the mean number of citations

     per year?
    

    5.) Are certain uses applied more often for plants/invertebrates/vertebrates?

    6.) Are links to specific data types associated more often with particular uses?

    7.) How often are major data quality issues addressed?

    8.) What data quality issues tend to be addressed for the top uses?

    Relevant papers for this analysis include those that use online and openly accessible primary occurrence records, or those that add data to an online database. Google Scholar (GS) provides full-text indexing, which was important to identify data sources that often appear buried in the methods section of a paper. Our search was therefore restricted to GS. All authors discussed and agreed upon representative search terms, which were relatively broad to capture a variety of databases hosting primary occurrence records. The terms included: “species occurrence” database (8,800 results), “natural history collection” database (634 results), herbarium database (16,500 results), “biodiversity database” (3,350 results), “primary biodiversity data” database (483 results), “museum collection” database (4,480 results), “digital accessible information” database (10 results), and “digital accessible knowledge” database (52 results)--note that quotations are used as part of the search terms where specific phrases are needed in whole. We downloaded all records returned by each search (or the first 500 if there were more) into a Zotero reference management database. About one third of the 2500 papers in the final dataset were relevant. Three of the authors with specialized knowledge of the field characterized relevant papers using a standardized tagging protocol based on a series of key topics of interest. We developed a list of potential tags and descriptions for each topic, including: database(s) used, database accessibility, scale of study, region of study, taxa addressed, research use of data, other data types linked to species occurrence data, data quality issues addressed, authors, institutions, and funding sources. Each tagged paper was thoroughly checked by a second tagger.

    The final dataset of tagged papers allow us to quantify general areas of research made possible by the expansion of online species occurrence databases, and trends over time. Analyses of this data will be published in a separate quantitative review.

  7. a

    GIS Data Sources

    • hub.arcgis.com
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King County (2024). GIS Data Sources [Dataset]. https://hub.arcgis.com/documents/kingcounty::gis-data-sources?uiVersion=content-views
    Explore at:
    Dataset updated
    Apr 2, 2024
    Dataset authored and provided by
    King County
    Area covered
    Description

    This page is an index of all the data sources that the GIS Center has to offer. If you're looking for anything, you'll find it here!

  8. d

    Global Web Data | Web Scraping Data | Job Postings Data | Source: Company...

    • datarade.ai
    .json
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PredictLeads, Global Web Data | Web Scraping Data | Job Postings Data | Source: Company Website | 246M+ Records [Dataset]. https://datarade.ai/data-products/predictleads-web-data-web-scraping-data-job-postings-dat-predictleads
    Explore at:
    .jsonAvailable download formats
    Dataset authored and provided by
    PredictLeads
    Area covered
    Bosnia and Herzegovina, Virgin Islands (British), Northern Mariana Islands, Kosovo, French Guiana, Kuwait, Bonaire, Guadeloupe, Comoros, El Salvador
    Description

    PredictLeads Job Openings Data provides high-quality hiring insights sourced directly from company websites - not job boards. Using advanced web scraping technology, our dataset offers real-time access to job trends, salaries, and skills demand, making it a valuable resource for B2B sales, recruiting, investment analysis, and competitive intelligence.

    Key Features:

    ✅245M+ Job Postings Tracked – Data sourced from 92 Million company websites worldwide. ✅9.3M+ Active Job Openings – Updated in real-time to reflect hiring demand. ✅Salary & Compensation Insights – Extract salary ranges, contract types, and job seniority levels. ✅Technology & Skill Tracking – Identify emerging tech trends and industry demands. ✅Company Data Enrichment – Link job postings to employer domains, firmographics, and growth signals. ✅Web Scraping Precision – Directly sourced from employer websites for unmatched accuracy.

    Primary Attributes:

    • id (string, UUID) – Unique identifier for the job posting.
    • type (string, constant: "job_opening") – Object type.
    • title (string) – Job title.
    • description (string) – Full job description, extracted from the job listing.
    • url (string, URL) – Direct link to the job posting.
    • first_seen_at – Timestamp when the job was first detected.
    • last_seen_at – Timestamp when the job was last detected.
    • last_processed_at – Timestamp when the job data was last processed.

    Job Metadata:

    • contract_types (array of strings) – Type of employment (e.g., "full time", "part time", "contract").
    • categories (array of strings) – Job categories (e.g., "engineering", "marketing").
    • seniority (string) – Seniority level of the job (e.g., "manager", "non_manager").
    • status (string) – Job status (e.g., "open", "closed").
    • language (string) – Language of the job posting.
    • location (string) – Full location details as listed in the job description.
    • Location Data (location_data) (array of objects)
    • city (string, nullable) – City where the job is located.
    • state (string, nullable) – State or region of the job location.
    • zip_code (string, nullable) – Postal/ZIP code.
    • country (string, nullable) – Country where the job is located.
    • region (string, nullable) – Broader geographical region.
    • continent (string, nullable) – Continent name.
    • fuzzy_match (boolean) – Indicates whether the location was inferred.

    Salary Data (salary_data)

    • salary (string) – Salary range extracted from the job listing.
    • salary_low (float, nullable) – Minimum salary in original currency.
    • salary_high (float, nullable) – Maximum salary in original currency.
    • salary_currency (string, nullable) – Currency of the salary (e.g., "USD", "EUR").
    • salary_low_usd (float, nullable) – Converted minimum salary in USD.
    • salary_high_usd (float, nullable) – Converted maximum salary in USD.
    • salary_time_unit (string, nullable) – Time unit for the salary (e.g., "year", "month", "hour").

    Occupational Data (onet_data) (object, nullable)

    • code (string, nullable) – ONET occupation code.
    • family (string, nullable) – Broad occupational family (e.g., "Computer and Mathematical").
    • occupation_name (string, nullable) – Official ONET occupation title.

    Additional Attributes:

    • tags (array of strings, nullable) – Extracted skills and keywords (e.g., "Python", "JavaScript").

    📌 Trusted by enterprises, recruiters, and investors for high-precision job market insights.

    PredictLeads Dataset: https://docs.predictleads.com/v3/guide/job_openings_dataset

  9. Summary of model objectives.

    • plos.figshare.com
    xls
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kate M. Johnson; Boshen Jiao; M. A. Bender; Scott D. Ramsey; Beth Devine; Anirban Basu (2023). Summary of model objectives. [Dataset]. http://doi.org/10.1371/journal.pone.0267448.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Kate M. Johnson; Boshen Jiao; M. A. Bender; Scott D. Ramsey; Beth Devine; Anirban Basu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary of model objectives.

  10. HCUP Nationwide Emergency Department Database (NEDS) Restricted Access File

    • data.virginia.gov
    • healthdata.gov
    • +1more
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agency for Healthcare Research and Quality, Department of Health & Human Services (2023). HCUP Nationwide Emergency Department Database (NEDS) Restricted Access File [Dataset]. https://data.virginia.gov/dataset/hcup-nationwide-emergency-department-database-neds-restricted-access-file
    Explore at:
    Dataset updated
    Jul 26, 2023
    Description

    The Healthcare Cost and Utilization Project (HCUP) Nationwide Emergency Department Sample (NEDS) is the largest all-payer emergency department (ED) database in the United States. yielding national estimates of hospital-owned ED visits. Unweighted, it contains data from over 30 million ED visits each year. Weighted, it estimates roughly 145 million ED visits nationally. Developed through a Federal-State-Industry partnership sponsored by the Agency for Healthcare Research and Quality, HCUP data inform decision making at the national, State, and community levels.

    Sampled from the HCUP State Inpatient Databases (SID) and State Emergency Department Databases (SEDD), the HCUP NEDS can be used to create national and regional estimates of ED care. The SID contain information on patients initially seen in the ED and subsequently admitted to the same hospital. The SEDD capture information on ED visits that do not result in an admission (i.e., treat-and-release visits and transfers to another hospital). Developed through a Federal-State-Industry partnership sponsored by the Agency for Healthcare Research and Quality, HCUP data inform decision making at the national, State, and community levels.

    The NEDS contain information about geographic characteristics, hospital characteristics, patient characteristics, and the nature of visits (e.g., common reasons for ED visits, including injuries). The NEDS contains clinical and resource use information included in a typical discharge abstract, with safeguards to protect the privacy of individual patients, physicians, and hospitals (as required by data sources). It includes ED charge information for over 85% of patients, regardless of expected payer, including but not limited to Medicare, Medicaid, private insurance, self-pay, or those billed as ‘no charge’. The NEDS excludes data elements that could directly or indirectly identify individuals, hospitals, or states.Restricted access data files are available with a data use agreement and brief online security training.

  11. Exploratory Data Analysis (EDA) for COVIND-19

    • kaggle.com
    zip
    Updated Apr 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Badea-Matei Iuliana (2024). Exploratory Data Analysis (EDA) for COVIND-19 [Dataset]. https://www.kaggle.com/datasets/mateiiuliana/exploratory-data-analysis-eda-for-covind-19
    Explore at:
    zip(26972 bytes)Available download formats
    Dataset updated
    Apr 8, 2024
    Authors
    Badea-Matei Iuliana
    Description

    Description: The COVID-19 dataset used for this EDA project encompasses comprehensive data on COVID-19 cases, deaths, and recoveries worldwide. It includes information gathered from authoritative sources such as the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), and national health agencies. The dataset covers global, regional, and national levels, providing a holistic view of the pandemic's impact.

    Purpose: This dataset is instrumental in understanding the multifaceted impact of the COVID-19 pandemic through data exploration. It aligns perfectly with the objectives of the EDA project, aiming to unveil insights, patterns, and trends related to COVID-19. Here are the key objectives: 1. Data Collection and Cleaning: • Gather reliable COVID-19 datasets from authoritative sources (such as WHO, CDC, or national health agencies). • Clean and preprocess the data to ensure accuracy and consistency. 2. Descriptive Statistics: • Summarize key statistics: total cases, recoveries, deaths, and testing rates. • Visualize temporal trends using line charts, bar plots, and heat maps. 3. Geospatial Analysis: • Map COVID-19 cases across countries, regions, or cities. • Identify hotspots and variations in infection rates. 4. Demographic Insights: • Explore how age, gender, and pre-existing conditions impact vulnerability. • Investigate disparities in infection rates among different populations. 5. Healthcare System Impact: • Analyze hospitalization rates, ICU occupancy, and healthcare resource allocation. • Assess the strain on medical facilities. 6. Economic and Social Effects: • Investigate the relationship between lockdown measures, economic indicators, and infection rates. • Explore behavioral changes (e.g., mobility patterns, remote work) during the pandemic. 7. Predictive Modeling (Optional): • If data permits, build simple predictive models (e.g., time series forecasting) to estimate future cases.

    Data Sources: The primary sources of the COVID-19 dataset include the Johns Hopkins CSSE COVID-19 Data Repository, Google Health’s COVID-19 Open Data, and the U.S. Economic Development Administration (EDA). These sources provide reliable and up-to-date information on COVID-19 cases, deaths, testing rates, and other relevant variables. Additionally, GitHub repositories and platforms like Medium host supplementary datasets and analyses, enriching the available data resources.

    Data Format: The dataset is available in various formats, such as CSV and JSON, facilitating easy access and analysis. Before conducting the EDA, the data underwent preprocessing steps to ensure accuracy and consistency. Data cleaning procedures were performed to address missing values, inconsistencies, and outliers, enhancing the quality and reliability of the dataset.

    License: The COVID-19 dataset may be subject to specific usage licenses or restrictions imposed by the original data sources. Proper attribution is essential to acknowledge the contributions of the WHO, CDC, national health agencies, and other entities providing the data. Users should adhere to any licensing terms and usage guidelines associated with the dataset.

    Attribution: We acknowledge the invaluable contributions of the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), national health agencies, and other authoritative sources in compiling and disseminating the COVID-19 data used for this EDA project. Their efforts in collecting, curating, and sharing data have been instrumental in advancing our understanding of the pandemic and guiding public health responses globally.

  12. f

    Data sources used to determine the hazard rates for progression-free...

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Oct 13, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Valant, Jason; Scher, Howard I.; Todd, Mary B.; Solo, Kirk; Mehra, Maneesha (2015). Data sources used to determine the hazard rates for progression-free survival and overall survival associated with each clinical state, and the survival estimates derived from these publications for inclusion into the model. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001903207
    Explore at:
    Dataset updated
    Oct 13, 2015
    Authors
    Valant, Jason; Scher, Howard I.; Todd, Mary B.; Solo, Kirk; Mehra, Maneesha
    Description

    *The distribution of patients flowing from nmCRPC to mCRPC that has not been treated with or not progressed on chemotherapy was determined based on Oudard et al 2009 [23].PSA, prostate-specific antigen; nmCRPC, non-metastatic castration-resistant prostate cancer; mCRPC, metastatic castration-resistant prostate cancer; NA, not applicable.Data sources used to determine the hazard rates for progression-free survival and overall survival associated with each clinical state, and the survival estimates derived from these publications for inclusion into the model.

  13. d

    Doorda UK Vulnerability Data | Location Data | 1.8M Postcodes from 30 Data...

    • datarade.ai
    .csv
    Updated Nov 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Doorda (2024). Doorda UK Vulnerability Data | Location Data | 1.8M Postcodes from 30 Data Sources | Location Intelligence and Analytics [Dataset]. https://datarade.ai/data-products/doorda-uk-vulnerability-data-property-data-34m-addresses-doorda
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Nov 5, 2024
    Dataset authored and provided by
    Doorda
    Area covered
    United Kingdom
    Description

    Doorda's UK Vulnerability Data provides a comprehensive database of over 1.8M postcodes sourced from 30 data sources, offering unparalleled insights for location intelligence and analytics purposes.

    Volume and stats: - 1.8M Postcodes - 5 Vulnerability areas covered - 1-100 Vulnerability rating

    Our Residential Real Estate Data offers a multitude of use cases: - Market Analysis - Identify Vulnerable Consumers - Mitigate Lead Generation Risk - Risk Management - Location Planning

    The key benefits of leveraging our Residential Real Estate Data include: - Data Accuracy - Informed Decision-Making - Competitive Advantage - Efficiency - Single Source

    Covering a wide range of industries and sectors, our data empowers organisations to make informed decisions, uncover market trends, and gain a competitive edge in the UK market.

  14. b

    Data from: Challenges with using names to link digital biodiversity...

    • nde-dev.biothings.io
    • data.niaid.nih.gov
    • +3more
    zip
    Updated May 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David J. Patterson; Dmitry Mozzherin; David Peter Shorthouse; Anne Thessen (2017). Challenges with using names to link digital biodiversity information [Dataset]. http://doi.org/10.5061/dryad.3160r
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 20, 2017
    Authors
    David J. Patterson; Dmitry Mozzherin; David Peter Shorthouse; Anne Thessen
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    The need for a names-based cyber-infrastructure for digital biology is based on the argument that scientific names serve as a standardized metadata system that has been used consistently and near universally for 250 years. As we move towards data-centric biology, name-strings can be called on to discover, index, manage, and analyze accessible digital biodiversity information from multiple sources. Known impediments to the use of scientific names as metadata include synonyms, homonyms, mis-spellings, and the use of other strings as identifiers. We here compare the name-strings in GenBank, Catalogue of Life (CoL), and the Dryad Digital Repository (DRYAD) to assess the effectiveness of the current names-management toolkit developed by Global Names to achieve interoperability among distributed data sources. New tools that have been used here include Parser (to break name-strings into component parts and to promote the use of canonical versions of the names), a modified TaxaMatch fuzzy-matcher (to help manage typographical, transliteration, and OCR errors), and Cross-Mapper (to make comparisons among data sets). The data sources include scientific names at multiple ranks; vernacular (common) names; acronyms; strain identifiers and other surrogates including idiosyncratic abbreviations and concatenations. About 40% of the name-strings in GenBank are scientific names representing about 400,000 species or infraspecies and their synonyms. Of the formally-named terminal taxa (species and lower taxa) represented, about 82% have a match in CoL. Using a subset of content in DRYAD, about 45% of the identifiers are names of species and infraspecies, and of these only about a third have a match in CoL. With simple processing, the extent of matching between DRYAD and CoL can be improved to over 90%. The findings confirm the necessity for name-processing tools and the value of scientific names as a mechanism to interconnect distributed data, and identify specific areas of improvement for taxonomic data sources. Some areas of diversity (bacteria and viruses) are not well represented by conventional scientific names, and they and other forms of strings (acronyms, identifiers, and other surrogates) that are used instead of names need to be managed in reconciliation services (mapping alternative name-strings for the same taxon together). On-line resolution services will bring older scientific names up to date or convert surrogate name-strings to scientific names should such names exist. Examples are given of many of the aberrant forms of ‘names’ that make their way into these databases. The occurrence of scientific names with incorrect authors, such as chresonyms within synonymy lists, is a quality-control issue in need of attention. We propose a future-proofing solution that will empower stakeholders to take advantage of the name-based infrastructure at little cost. This proposed infrastructure includes a standardized system that adopts or creates UUIDs for name-strings, software that can identify name-strings in sources and apply the UUIDs, reconciliation and resolution services to manage the name-strings, and an annotation environment for quality control by users of name-strings.

  15. a

    Data Sources and Credits Documentation - Conservation Finance Opportunities

    • usfs.hub.arcgis.com
    Updated Oct 9, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2019). Data Sources and Credits Documentation - Conservation Finance Opportunities [Dataset]. https://usfs.hub.arcgis.com/documents/dad79cd7737c488cae647b39720d91bb
    Explore at:
    Dataset updated
    Oct 9, 2019
    Dataset authored and provided by
    U.S. Forest Service
    Area covered
    Description

    The Conservation Finance Opportunities application is an interactive web-based mapping product intended for use by the Forest Service and partners alike. These maps help the Agency and partners to identify prime locations to apply conservation finance tools in order to explore new partnership models that engage private capital to achieve ecological, social and financial outcomes.The Data Sources and Credits Documentation PDF is a spreadsheet containing descriptions and data sources for each layer used in the analysis of the Conservation Finance Opportunities application; this documentation includes the supporting data layers found in the Explore tab application.

  16. d

    California Land Ownership

    • catalog.data.gov
    • data.cnra.ca.gov
    • +8more
    Updated Oct 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2025). California Land Ownership [Dataset]. https://catalog.data.gov/dataset/california-land-ownership-b6394
    Explore at:
    Dataset updated
    Oct 23, 2025
    Dataset provided by
    CAL FIRE
    Area covered
    California
    Description

    This dataset was updated May, 2025. This ownership dataset was generated primarily from CPAD data, which already tracks the majority of ownership information in California. CPAD is utilized without any snapping or clipping to FRA/SRA/LRA. CPAD has some important data gaps, so additional data sources are used to supplement the CPAD data. Currently this includes the most currently available data from BIA, DOD, and FWS. Additional sources may be added in subsequent versions. Decision rules were developed to identify priority layers in areas of overlap. Starting in 2022, the ownership dataset was compiled using a new methodology. Previous versions attempted to match federal ownership boundaries to the FRA footprint, and used a manual process for checking and tracking Federal ownership changes within the FRA, with CPAD ownership information only being used for SRA and LRA lands. The manual portion of that process was proving difficult to maintain, and the new method (described below) was developed in order to decrease the manual workload, and increase accountability by using an automated process by which any final ownership designation could be traced back to a specific dataset. The current process for compiling the data sources includes: * Clipping input datasets to the California boundary * Filtering the FWS data on the Primary Interest field to exclude lands that are managed by but not owned by FWS (ex: Leases, Easements, etc) * Supplementing the BIA Pacific Region Surface Trust lands data with the Western Region portion of the LAR dataset which extends into California. * Filtering the BIA data on the Trust Status field to exclude areas that represent mineral rights only. * Filtering the CPAD data on the Ownership Level field to exclude areas that are Privately owned (ex: HOAs) * In the case of overlap, sources were prioritized as follows: FWS > BIA > CPAD > DOD * As an exception to the above, DOD lands on FRA which overlapped with CPAD lands that were incorrectly coded as non-Federal were treated as an override, such that the DOD designation could win out over CPAD. In addition to this ownership dataset, a supplemental _source dataset is available which designates the source that was used to determine the ownership in this dataset. Data Sources: * GreenInfo Network's California Protected Areas Database (CPAD2023a). https://www.calands.org/cpad/; https://www.calands.org/wp-content/uploads/2023/06/CPAD-2023a-Database-Manual.pdf * US Fish and Wildlife Service FWSInterest dataset (updated December, 2023). https://gis-fws.opendata.arcgis.com/datasets/9c49bd03b8dc4b9188a8c84062792cff_0/explore * Department of Defense Military Bases dataset (updated September 2023) https://catalog.data.gov/dataset/military-bases * Bureau of Indian Affairs, Pacific Region, Surface Trust and Pacific Region Office (PRO) land boundaries data (2023) via John Mosley John.Mosley@bia.gov * Bureau of Indian Affairs, Land Area Representations (LAR) and BIA Regions datasets (updated Oct 2019) https://biamaps.doi.gov/bogs/datadownload.html Data Gaps & Changes: Known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. Additionally, any feedback received about missing or inaccurate data can be taken back to the appropriate source data where appropriate, so fixes can occur in the source data, instead of just in this dataset. 25_1: The CPAD Input dataset was amended to merge large gaps in certain areas of the state known to be erroneous, such as Yosemite National Park, and to eliminate overlaps from the original input. The FWS input dataset was updated in February of 2025, and the DOD input dataset was updated in October of 2024. The BIA input dataset was the same as was used for the previous ownership version. 24_1: Input datasets this year included numerous changes since the previous version, particularly the CPAD and DOD inputs. Of particular note was the re-addition of Camp Pendleton to the DOD input dataset, which is reflected in this version of the ownership dataset. We were unable to obtain an updated input for tribral data, so the previous inputs was used for this version. 23_1: A few discrepancies were discovered between data changes that occurred in CPAD when compared with parcel data. These issues will be taken to CPAD for clarification for future updates, but for ownership23_1 it reflects the data as it was coded in CPAD at the time. In addition, there was a change in the DOD input data between last year and this year, with the removal of Camp Pendleton. An inquiry was sent for clarification on this change, but for ownership23_1 it reflects the data per the DOD input dataset. 22_1 : represents an initial version of ownership with a new methodology which was developed under a short timeframe. A comparison with previous versions of ownership highlighted the some data gaps with the current version. Some of these known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. In addition, any topological errors (like overlaps or gaps) that exist in the input datasets may thus carry over to the ownership dataset. Ideally, any feedback received about missing or inaccurate data can be taken back to the relevant source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.

  17. g

    HCUP State Inpatient Databases (SID) - Restricted Access File

    • gimi9.com
    • healthdata.gov
    • +2more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HCUP State Inpatient Databases (SID) - Restricted Access File [Dataset]. https://gimi9.com/dataset/data-gov_hcup-state-inpatient-databases-sid-restricted-access-file
    Explore at:
    Description

    The Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases (SID) are a set of hospital databases that contain the universe of hospital inpatient discharge abstracts from data organizations in participating States. The data are translated into a uniform format to facilitate multi-State comparisons and analyses. The SID are based on data from short term, acute care, nonfederal hospitals. Some States include discharges from specialty facilities, such as acute psychiatric hospitals. The SID include all patients, regardless of payer and contain clinical and resource use information included in a typical discharge abstract, with safeguards to protect the privacy of individual patients, physicians, and hospitals (as required by data sources). Developed through a Federal-State-Industry partnership sponsored by the Agency for Healthcare Research and Quality (AHRQ), HCUP data inform decision making at the national, State, and community levels. The SID contain clinical and resource-use information that is included in a typical discharge abstract, with safeguards to protect the privacy of individual patients, physicians, and hospitals (as required by data sources). Data elements include but are not limited to: diagnoses, procedures, admission and discharge status, patient demographics (e.g., sex, age), total charges, length of stay, and expected payment source, including but not limited to Medicare, Medicaid, private insurance, self-pay, or those billed as ‘no charge’. In addition to the core set of uniform data elements common to all SID, some include State-specific data elements. The SID exclude data elements that could directly or indirectly identify individuals. For some States, hospital and county identifiers are included that permit linkage to the American Hospital Association Annual Survey File and county-level data from the Bureau of Health Professions' Area Resource File except in States that do not allow the release of hospital identifiers. Restricted access data files are available with a data use agreement and brief online security training.

  18. Z

    The Surface Water Chemistry (SWatCh) database

    • data.niaid.nih.gov
    • dataon.kisti.re.kr
    • +1more
    Updated Apr 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rotteveel, Lobke; Heubach, Franz (2022). The Surface Water Chemistry (SWatCh) database [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4559695
    Explore at:
    Dataset updated
    Apr 26, 2022
    Dataset provided by
    Department of Mechanical Engineering, Dalhousie University
    Sterling Hydrology Research Group, Dalhousie University
    Authors
    Rotteveel, Lobke; Heubach, Franz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the dataset presented in the following manuscript: The Surface Water Chemistry (SWatCh) database: A standardized global database of water chemistry to facilitate large-sample hydrological research, which is currently under review at Earth System Science Data.

    Openly accessible global scale surface water chemistry datasets are urgently needed to detect widespread trends and problems, to help identify their possible solutions, and determine critical spatial data gaps where more monitoring is required. Existing datasets are limited in availability, sample size/sampling frequency, and geographic scope. These limitations inhibit the answering of emerging transboundary water chemistry questions, for example, the detection and understanding of delayed recovery from freshwater acidification. Here, we begin to address these limitations by compiling the global surface water chemistry (SWatCh) database. We collect, clean, standardize, and aggregate open access data provided by six national and international agencies to compile a database containing information on sites, methods, and samples, and a GIS shapefile of site locations. We remove poor quality data (for example, values flagged as “suspect” or “rejected”), standardize variable naming conventions and units, and perform other data cleaning steps required for statistical analysis. The database contains water chemistry data for streams, rivers, canals, ponds, lakes, and reservoirs across seven continents, 24 variables, 33,722 sites, and over 5 million samples collected between 1960 and 2022. Similar to prior research, we identify critical spatial data gaps on the African and Asian continents, highlighting the need for more data collection and sharing initiatives in these areas, especially considering freshwater ecosystems in these environs are predicted to be among the most heavily impacted by climate change. We identify the main challenges associated with compiling global databases – limited data availability, dissimilar sample collection and analysis methodology, and reporting ambiguity – and provide recommended solutions. By addressing these challenges and consolidating data from various sources into one standardized, openly available, high quality, and trans-boundary database, SWatCh allows users to conduct powerful and robust statistical analyses of global surface water chemistry.

  19. Business Funding Data in North America ( Techsalerator)

    • datarade.ai
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2024). Business Funding Data in North America ( Techsalerator) [Dataset]. https://datarade.ai/data-products/business-funding-data-in-north-america-techsalerator-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Jul 8, 2024
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Saint Pierre and Miquelon, El Salvador, Bermuda, Canada, Belize, Honduras, Costa Rica, United States of America, Panama, Nicaragua, North America
    Description

    Techsalerator’s Business Funding Data for North America is an extensive and insightful resource designed for businesses, investors, and financial analysts who need a deep understanding of the Asian funding landscape. This dataset meticulously captures and categorizes critical information about the funding activities of companies across the continent, providing valuable insights into the financial health and investment trends within various sectors.

    What the Dataset Includes: Funding Rounds: Detailed records of funding rounds for companies in North America, including the size of the round, the date it occurred, and the stages of investment (Seed, Series A, Series B, etc.).

    Investment Sources: Information on the sources of investment, such as venture capital firms, private equity investors, angel investors, and corporate investors.

    Financial Milestones: Key financial achievements and benchmarks reached by companies, including valuation increases, revenue milestones, and profitability metrics.

    Sector-Specific Data: Insights into how different sectors are performing, with data segmented by industry verticals such as technology, healthcare, finance, and consumer goods.

    Geographic Breakdown: An overview of funding trends and activities specific to each North America country, allowing users to identify regional patterns and opportunities.

    EU Countries Included in the Dataset: Antigua and Barbuda Bahamas Barbados Belize Canada Costa Rica Cuba Dominica Dominican Republic El Salvador Grenada Guatemala Haiti Honduras Jamaica Mexico Nicaragua Panama Saint Kitts and Nevis Saint Lucia Saint Vincent and the Grenadines Trinidad and Tobago United States

    Benefits of the Dataset: Informed Decision-Making: Investors and analysts can use the data to make well-informed investment decisions by understanding funding trends and financial health across different regions and sectors. Strategic Planning: Businesses can leverage the insights to identify potential investors, benchmark against industry peers, and plan their funding strategies effectively. Market Analysis: The dataset helps in analyzing market dynamics, identifying emerging sectors, and spotting investment opportunities across North America. Techsalerator’s Business Funding Data for North America is a vital tool for anyone involved in the financial and investment sectors, offering a granular view of the funding landscape and enabling more strategic and data-driven decisions.

    This description provides a more detailed view of what the dataset offers and highlights the relevance and benefits for various stakeholders.

  20. G

    Social Determinants of Health Data Platforms Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Social Determinants of Health Data Platforms Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/social-determinants-of-health-data-platforms-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Social Determinants of Health Data Platforms Market Outlook



    According to our latest research, the global Social Determinants of Health (SDOH) Data Platforms market size reached USD 3.2 billion in 2024. The market is expected to grow at a robust CAGR of 18.7% during the forecast period, reaching a projected value of USD 15.1 billion by 2033. This significant growth is primarily driven by the increasing recognition of how non-clinical factors—such as economic stability, education, neighborhood, and social context—profoundly impact health outcomes and healthcare costs worldwide.




    One of the most compelling growth factors for the Social Determinants of Health Data Platforms market is the intensifying focus on value-based care and population health management among healthcare stakeholders. As healthcare systems globally transition from traditional fee-for-service models to value-based care, there is a growing need to incorporate SDOH data into clinical workflows, risk stratification, and care coordination. Payers, providers, and government agencies are investing in platforms that aggregate, analyze, and operationalize diverse data sources, including demographic, socioeconomic, and behavioral factors. This integration enables healthcare organizations to identify at-risk populations, personalize interventions, and ultimately reduce costly health disparities, fueling substantial market demand.




    Another pivotal driver is the expanding regulatory and policy support for addressing social determinants in healthcare delivery. Government agencies, especially in North America and Europe, are enacting mandates and incentives to encourage the collection and utilization of SDOH data. For instance, the Centers for Medicare & Medicaid Services (CMS) in the United States has introduced new requirements and payment models that reward the integration of social risk factors into patient assessments and care planning. Similarly, the World Health Organization (WHO) and other international bodies are emphasizing the importance of SDOH in achieving equitable health outcomes. These regulatory tailwinds are prompting healthcare organizations to adopt advanced SDOH data platforms, further accelerating market growth.




    Technological advancements in data analytics, artificial intelligence, and interoperability are also propelling the Social Determinants of Health Data Platforms market forward. Modern SDOH data platforms leverage machine learning algorithms and predictive analytics to derive actionable insights from vast, complex datasets. Enhanced interoperability standards, such as FHIR (Fast Healthcare Interoperability Resources), are making it easier to integrate SDOH data with electronic health records (EHRs) and other health IT systems. These innovations are not only improving the accuracy and timeliness of SDOH data capture but also enabling real-time decision support for clinicians and care managers. As a result, healthcare organizations are increasingly deploying sophisticated SDOH data platforms to gain a competitive edge and improve patient outcomes.




    From a regional perspective, North America currently dominates the Social Determinants of Health Data Platforms market, accounting for the largest share in 2024, followed by Europe and the Asia Pacific. The United States, in particular, is at the forefront due to its advanced healthcare IT infrastructure, proactive regulatory environment, and substantial investments in population health initiatives. However, the Asia Pacific region is expected to register the fastest CAGR during the forecast period, driven by rising healthcare digitization, growing awareness of health disparities, and supportive government policies. Europe is also witnessing steady growth, bolstered by cross-border health data initiatives and strong public health systems. Latin America and the Middle East & Africa are gradually emerging as promising markets as healthcare modernization efforts gain momentum.



    The integration of Social Determinants of Health Analytics AI is becoming increasingly vital in the healthcare industry. By leveraging artificial intelligence, healthcare providers can analyze vast amounts of SDOH data to uncover patterns and insights that were previously unattainable. AI-driven analytics enable the identification of at-risk populations more accurately and efficiently

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Lisiane Freitas Leal; Claudia Garcia Serpa Osorio-de-Castro; Luiz Júpiter Carneiro de Souza; Felipe Ferre; Daniel Marques Mota; Marcia Ito; Monique Elseviers; Elisangela da Costa Lima; Ivan Ricardo Zimmernan; Izabela Fulone; Monica Da Luz Carvalho-Soares; Luciane Cruz Lopes (2023). DataSheet1_Data Sources for Drug Utilization Research in Brazil—DUR-BRA Study.xlsx [Dataset]. http://doi.org/10.3389/fphar.2021.789872.s001
Organization logo

DataSheet1_Data Sources for Drug Utilization Research in Brazil—DUR-BRA Study.xlsx

Related Article
Explore at:
xlsxAvailable download formats
Dataset updated
Jun 15, 2023
Dataset provided by
Frontiers Mediahttp://www.frontiersin.org/
Authors
Lisiane Freitas Leal; Claudia Garcia Serpa Osorio-de-Castro; Luiz Júpiter Carneiro de Souza; Felipe Ferre; Daniel Marques Mota; Marcia Ito; Monique Elseviers; Elisangela da Costa Lima; Ivan Ricardo Zimmernan; Izabela Fulone; Monica Da Luz Carvalho-Soares; Luciane Cruz Lopes
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Brazil
Description

Background: In Brazil, studies that map electronic healthcare databases in order to assess their suitability for use in pharmacoepidemiologic research are lacking. We aimed to identify, catalogue, and characterize Brazilian data sources for Drug Utilization Research (DUR).Methods: The present study is part of the project entitled, “Publicly Available Data Sources for Drug Utilization Research in Latin American (LatAm) Countries.” A network of Brazilian health experts was assembled to map secondary administrative data from healthcare organizations that might provide information related to medication use. A multi-phase approach including internet search of institutional government websites, traditional bibliographic databases, and experts’ input was used for mapping the data sources. The reviewers searched, screened and selected the data sources independently; disagreements were resolved by consensus. Data sources were grouped into the following categories: 1) automated databases; 2) Electronic Medical Records (EMR); 3) national surveys or datasets; 4) adverse event reporting systems; and 5) others. Each data source was characterized by accessibility, geographic granularity, setting, type of data (aggregate or individual-level), and years of coverage. We also searched for publications related to each data source.Results: A total of 62 data sources were identified and screened; 38 met the eligibility criteria for inclusion and were fully characterized. We grouped 23 (60%) as automated databases, four (11%) as adverse event reporting systems, four (11%) as EMRs, three (8%) as national surveys or datasets, and four (11%) as other types. Eighteen (47%) were classified as publicly and conveniently accessible online; providing information at national level. Most of them offered more than 5 years of comprehensive data coverage, and presented data at both the individual and aggregated levels. No information about population coverage was found. Drug coding is not uniform; each data source has its own coding system, depending on the purpose of the data. At least one scientific publication was found for each publicly available data source.Conclusions: There are several types of data sources for DUR in Brazil, but a uniform system for drug classification and data quality evaluation does not exist. The extent of population covered by year is unknown. Our comprehensive and structured inventory reveals a need for full characterization of these data sources.

Search
Clear search
Close search
Google apps
Main menu