Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: In Brazil, studies that map electronic healthcare databases in order to assess their suitability for use in pharmacoepidemiologic research are lacking. We aimed to identify, catalogue, and characterize Brazilian data sources for Drug Utilization Research (DUR).Methods: The present study is part of the project entitled, “Publicly Available Data Sources for Drug Utilization Research in Latin American (LatAm) Countries.” A network of Brazilian health experts was assembled to map secondary administrative data from healthcare organizations that might provide information related to medication use. A multi-phase approach including internet search of institutional government websites, traditional bibliographic databases, and experts’ input was used for mapping the data sources. The reviewers searched, screened and selected the data sources independently; disagreements were resolved by consensus. Data sources were grouped into the following categories: 1) automated databases; 2) Electronic Medical Records (EMR); 3) national surveys or datasets; 4) adverse event reporting systems; and 5) others. Each data source was characterized by accessibility, geographic granularity, setting, type of data (aggregate or individual-level), and years of coverage. We also searched for publications related to each data source.Results: A total of 62 data sources were identified and screened; 38 met the eligibility criteria for inclusion and were fully characterized. We grouped 23 (60%) as automated databases, four (11%) as adverse event reporting systems, four (11%) as EMRs, three (8%) as national surveys or datasets, and four (11%) as other types. Eighteen (47%) were classified as publicly and conveniently accessible online; providing information at national level. Most of them offered more than 5 years of comprehensive data coverage, and presented data at both the individual and aggregated levels. No information about population coverage was found. Drug coding is not uniform; each data source has its own coding system, depending on the purpose of the data. At least one scientific publication was found for each publicly available data source.Conclusions: There are several types of data sources for DUR in Brazil, but a uniform system for drug classification and data quality evaluation does not exist. The extent of population covered by year is unknown. Our comprehensive and structured inventory reveals a need for full characterization of these data sources.
This dataset lists various data sources used within the Department of Community Resources & Services for various internal and external reports. This dataset allows individuals and organizations to identify the type of data they are looking for and to which geographical level they are trying to get the data for (i.e. National, State, County, etc.). This dataset will be updated every quarter and should be utilized for research purposes
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data sources for 54 use cases, which were used to identify the impacts to the value creation system by Additive Manufacturing.
Maximize your online sales potential with our e-commerce data and analytics solutions. Our comprehensive suite of data sources includes real-time information on market trends, consumer behavior, and product pricing. With our advanced analytics tools, you can unlock the power of data-driven insights to optimize your online sales strategy, improve customer engagement, and drive revenue growth.
Whether you want to identify new opportunities, streamline your operations, or stay ahead of the competition, our e-commerce data and analytics product can help you achieve your goals.
Sources: Cubus Official COS Boozt BIK BOK AS Royal Design Group Holding AB Bagaren och Kocken AB Rum21 Svenskt Tenn Kökets favoriter lannamobler.se KWA Garden furniture Confident Living Stalands Möbler Trendrum AB Svenssons Nordiska Galleriet Jotex Jollyroom Monki New Bubbleroom Sweden AB Wegot KitchenTime AB Lindex NA-KD.com Olsson & Gerthel Nordic Nest Bonprix Nederland Vero Moda Care of Carl Cervera Zoovillage ARKET Kappahl DesignTorget Mio AB Afound
The information flow of the Hospital Discharge database (SDO flow) is the tool for collecting information relating to all hospitalization episodes provided in public and private hospitals throughout the national territory.
Born for purely administrative purposes of the hospital setting, the SDO, thanks to the wealth of information contained, not only of an administrative but also of a clinical nature, has become an indispensable tool for a wide range of analyzes and elaborations, ranging from areas to support of health planning activities for monitoring the provision of hospital assistance and the Essential Levels of Assistance, for use for proxy analyzes of other levels of assistance as well as for more strictly clinical-epidemiological and outcome analyzes. In this regard, the SDO database is a fundamental element of the National Outcomes Program (PNE).
The information collected includes the patient's personal characteristics (including age, sex, residence, level of education), characteristics of the hospitalization (for example institution and discharge discipline, hospitalization regime, method of discharge, booking date, priority class of hospitalization) and clinical features (e.g. main diagnosis, concomitant diagnoses, diagnostic or therapeutic procedures)
Information relating to drugs administered during hospitalization or adverse reactions to them (subject to other specific information flows) is excluded from the discharge form.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AHRQ's database on Social Determinants of Health (SDOH) was created under a project funded by the Patient Centered Outcomes Research (PCOR) Trust Fund. The purpose of this project is to create easy to use, easily linkable SDOH-focused data to use in PCOR research, inform approaches to address emerging health issues, and ultimately contribute to improved health outcomes.The database was developed to make it easier to find a range of well documented, readily linkable SDOH variables across domains without having to access multiple source files, facilitating SDOH research and analysis.Variables in the files correspond to five key SDOH domains: social context (e.g., age, race/ethnicity, veteran status), economic context (e.g., income, unemployment rate), education, physical infrastructure (e.g, housing, crime, transportation), and healthcare context (e.g., health insurance). The files can be linked to other data by geography (county, ZIP Code, and census tract). The database includes data files and codebooks by year at three levels of geography, as well as a documentation file.The data contained in the SDOH database are drawn from multiple sources and variables may have differing availability, patterns of missing, and methodological considerations across sources, geographies, and years. Users should refer to the data source documentation and codebooks, as well as the original data sources, to help identify these patterns
The U.S. Geological Survey (USGS), in cooperation with the Pennsylvania Department of Environmental Protection (PADEP), conducted an evaluation of data used by the PADEP to identify groundwater sources under the direct influence of surface water (GUDI) in Pennsylvania (Gross and others, 2022). The data used in this evaluation and the processes used to compile them from multiple sources are described and provided herein. Data were compiled primarily but not exclusively from PADEP resources, including (1) source-information for public water-supply systems and Microscopic Particulate Analysis (MPA) results for public water-supply system groundwater sources from the agency’s Pennsylvania Drinking Water Information System (PADWIS) database (Pennsylvania Department of Environmental Protection, 2016), and (2) results associated with MPA testing from the PADEP Bureau of Laboratories (BOL) files and water-quality analyses obtained from the PADEP BOL, Sample Information System (Pennsylvania Department of Environmental Protection, written commun., various dates). Information compiled from sources other than the PADEP includes anthropogenic (land cover and PADEP region) and naturogenic (geologic and physiographic, hydrologic, soil characterization, and topographic) spatial data. Quality control (QC) procedures were applied to the PADWIS database to verify spatial coordinates, verify collection type information, exclude sources not designated as wells, and verify or remove values that were either obvious errors or populated as zero rather than as “no data.” The QC process reduced the original PADWIS dataset to 12,147 public water-supply system wells (hereafter referred to as the PADWIS database). An initial subset of the PADWIS database, termed the PADWIS database subset, was created to include 4,018 public water-supply system community wells that have undergone the Surface Water Identification Protocol (SWIP), a protocol used by the PADEP to classify sources as GUDI or non-GUDI (Gross and others, 2022). A second subset of the PADWIS database, termed the MPA database subset, represents MPA results for 631 community and noncommunity wells and includes water-quality data (alkalinity, chloride, Escherichia coli, fecal coliform, nitrate, pH, sodium, specific conductance, sulfate, total coliform, total dissolved solids, total residue, and turbidity) associated with groundwater-quality samples typically collected concurrently with the MPA sample. The PADWIS database and two subsets (PADWIS database subset and MPA database subset) are compiled in a single data table (DR_2022_Table.xlsx), with the two subsets differentiated using attributes that are defined in the associated metadata table (DR_2022_Metadata_Table_Variables.xlsx). This metadata file (DR_2022_Metadata.xml) describes data resources, data compilation, and QC procedures in greater detail.
The text file "Solar radiation.txt" contains hourly data and associated data-source flag from January 1, 1948, to September 30, 2015. The primary source of the data is the Argonne National Laboratory, Illinois. The first four columns give year, month, day and hour of the observation. Column 5 is the data in Langleys. Column 6 is the three-digit data-source flag to identify the solar radiation data processing and they indicate if the data are original or missing, the method that was used to fill the missing periods, and any other transformations of the data. Bera (2014) describes in detail an addition of a new flag based on the regression analysis of the backup data series at St. Charles (STC) for water years (WY) 2008–10. The user of the data should consult Over and others (2010) and Bera (2014) for the detailed documentation of this hourly data-source flag series. Reference Cited: Over, T.M., Price, T.H., and Ishii, A.L., 2010, Development and analysis of a meteorological database, Argonne National Laboratory, Illinois: U.S. Geological Survey Open File Report 2010-1220, 67 p., http://pubs.usgs.gov/of/2010/1220/. Bera, M., 2014, Watershed Data Management (WDM) database for Salt Creek streamflow simulation, DuPage County, Illinois, water years 2005-11: U.S. Geological Survey Data Series 870, 18 p., http://dx.doi.org/10.3133/ds870.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present a dataset of open source software developed mainly by enterprises rather than volunteers. This can be used to address known generalizability concerns, and, also, to perform research on open source business software development. Based on the premise that an enterprise's employees are likely to contribute to a project developed by their organization using the email account provided by it, we mine domain names associated with enterprises from open data sources as well as through white- and blacklisting, and use them through three heuristics to identify 17,264 enterprise GitHub projects. We provide these as a dataset detailing their provenance and properties. A manual evaluation of a dataset sample shows an identification accuracy of 89%. Through an exploratory data analysis we found that projects are staffed by a plurality of enterprise insiders, who appear to be pulling more than their weight, and that in a small percentage of relatively large projects development happens exclusively through enterprise insiders.
The main dataset is provided as a 17,264 record tab-separated file named enterprise_projects.txt with the following 29 fields.
url: the project's GitHub URL
project_id: the project's GHTorrent identifier
sdtc: true if selected using the same domain top committers heuristic (9,016 records)
mcpc: true if selected using the multiple committers from a valid enterprise heuristic (8,314 records)
mcve: true if selected using the multiple committers from a probable company heuristic (8,015 records),
star_number: number of GitHub watchers
commit_count: number of commits
files: number of files in current main branch
lines: corresponding number of lines in text files
pull_requests: number of pull requests
github_repo_creation: timestamp of the GitHub repository creation
earliest_commit: timestamp of the earliest commit
most_recent_commit: date of the most recent commit
committer_count: number of different committers
author_count: number of different authors
dominant_domain: the projects dominant email domain
dominant_domain_committer_commits: number of commits made by committers whose email matches the project's dominant domain
dominant_domain_author_commits: corresponding number for commit authors
dominant_domain_committers: number of committers whose email matches the project's dominant domain
dominant_domain_authors: corresponding number for commit authors
cik: SEC's EDGAR "central index key"
fg500: true if this is a Fortune Global 500 company (2,233 records)
sec10k: true if the company files SEC 10-K forms (4,180 records)
sec20f: true if the company files SEC 20-F forms (429 records)
project_name: GitHub project name
owner_login: GitHub project's owner login
company_name: company name as derived from the SEC and Fortune 500 data
owner_company: GitHub project's owner company name
license: SPDX license identifier
The file cohost_project_details.txt provides the full set of 311,223 cohort projects that are not part of the enterprise data set, but have comparable quality attributes.
url: the project's GitHub URL
project_id: the project's GHTorrent identifier
stars: number of GitHub watchers
commit_count: number of commits
Empower Your Business With Professional Data Licensing Services
Discover a 360-Degree View of Worldwide Solution Buyers and Their Needs Leverage over 70 insights that will help you make better decisions to manage your sales pipeline, target key accounts with customized messaging, and focus your sales and marketing efforts:
Here are some of the types of Insights, our data licensing services can provide are:
Technology Insights: Discover companies’ technology preferences, including their tech stack for essential investments such as CRM systems, marketing and sales automation, email security and hosting, data analytics, and cloud security and providers.
Departmental Roles and Openings: Access real-time data on the number of roles and job openings across various departments, including IT, Development, Security, Marketing, Sales, and Customer Success. This information helps you gauge the company’s growth trajectory and possible needs.
Funding Insights: Keep updated of the latest funding, dates, types, and lead investors, providing you with a clear understanding of a company’s potential for growth investments.
Mobile Application Insights: Find out if the company has a mobile app or web app, enabling you to tailor your pitch effectively.
Website traffic and advertising spend metrics: Customers can leverage website traffic and advertising data to gain insights into competitor performance, allowing them to refine their marketing strategies and optimize ad spending.
Access unlimited data and improve conversation by 3X
Leverage the data for your Account-Based Marketing (ABM) strategy
Leverage ICP (industry, company size, location etc) to identify high- potential Accounts.
Utilize GTM strategies to deliver personalized marketing experiences through
Multi-channel outreach (email, Cell, social media) that resonate with the
target audience.
Who can leverage our Data:
B2B marketing Teams- Increase marketing leads and enhance conversions.
B2B sales teams- Build a stronger pipeline and increase your deal wins.
Talent sourcing/Staffing companies- Leverage our data to identify and engage top talent, streamlining your recruitment process and finding the best candidates faster.
Research companies/Investors- Insights into the financial investments received by a company, including funding rounds, amounts, and investor details.
Technology companies: Leverage our Technographic data to reveal the technology stack and tools used by companies, helping tailor marketing and sales efforts.
Data Source:
The Database, sourced through multiple sources and validated using proprietary methods on an ongoing basis, is highly customizable. It contains parameters such as employee size, job title, domain, industry, Technography, Ad spends, Funding data, and more, which can be tailored to create segments that perfectly align with your targeting needs. That is exactly why our Database is perfect for licensing!
FAQs
Can licensed data be resold or redistributed? Answer: No, The customer shall not, directly or indirectly, sell, distribute, license, or otherwise make available the licensed data to any third party that intends to resell, sublicense, or redistribute the data. The Customer must take reasonable steps to ensure that any recipient of the licensed data is using it for internal purposes only and not for resale or redistribution. Any breach of this provision shall be considered a material breach of this Order Form and may result in the immediate termination of the Customer's rights under this agreement, as well as any applicable remedies available under law.
What is the duration of the data license and usage terms? Answer: The data license is valid for 12 months (1 year) for unlimited usage. Customers also have the option to license the data for multiple years. At the end of the first year, Customers can renew the license to maintain continued access.
What happens if the customer misuses the data? Answer: The data can be used without limits for a period of one year or multiple years (depending on the contract tenure); however, Thomson Data actively monitors its usage. If any unusual activity is detected, Thomson Data reserves the right to terminate the account.
How frequently is the data updated? Answer: The data is updated on a quarterly basis and fresh records added on a monthly basis
What is the accuracy rate of the data? Answer: Customers can expect 90% accuracy for all data points, with email accuracy ranging between 85% and 90%. Cell phone data accuracy is around 80%.
What types of information are included in the data? Answer: Thomson Data provides over 70+ data points, including contact details (name, job title, LinkedIn profile, cell number, email address, education, certifications, work experience, etc.), company information, department/team sizes, SIC and NAICS codes, industry classification, technographic detai...
The Socio-Economic Panel (SOEP) is one of the largest and longest-running multidisciplinary household surveys worldwide. Every year, approximately 30,000 people in 15,000 households are interviewed for the SOEP study. The SOEP is also a research-driven infrastructure based at DIW Berlin. The SOEP team prepares survey data for use by researchers around the globe, and team members use the data in research on various topics. Studies based on SOEP data examine diverse aspects of societal change. As part of the Leibniz Association, the SOEP receives funding from the Federal Ministry of Education and Research (BMBF) and from Germany’s state (Länder) governments.
This dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development.Data Source Type: ESRI ArcGIS Enterprise GeodatabasePreparation Method: N/APublish Frequency: WeeklyPublish Method: AutomaticData Dictionary
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary of model objectives.
United States agricultural researchers have many options for making their data available online. This dataset aggregates the primary sources of ag-related data and determines where researchers are likely to deposit their agricultural data. These data serve as both a current landscape analysis and also as a baseline for future studies of ag research data. Purpose As sources of agricultural data become more numerous and disparate, and collaboration and open data become more expected if not required, this research provides a landscape inventory of online sources of open agricultural data. An inventory of current agricultural data sharing options will help assess how the Ag Data Commons, a platform for USDA-funded data cataloging and publication, can best support data-intensive and multi-disciplinary research. It will also help agricultural librarians assist their researchers in data management and publication. The goals of this study were to establish where agricultural researchers in the United States-- land grant and USDA researchers, primarily ARS, NRCS, USFS and other agencies -- currently publish their data, including general research data repositories, domain-specific databases, and the top journals compare how much data is in institutional vs. domain-specific vs. federal platforms determine which repositories are recommended by top journals that require or recommend the publication of supporting data ascertain where researchers not affiliated with funding or initiatives possessing a designated open data repository can publish data Approach The National Agricultural Library team focused on Agricultural Research Service (ARS), Natural Resources Conservation Service (NRCS), and United States Forest Service (USFS) style research data, rather than ag economics, statistics, and social sciences data. To find domain-specific, general, institutional, and federal agency repositories and databases that are open to US research submissions and have some amount of ag data, resources including re3data, libguides, and ARS lists were analysed. Primarily environmental or public health databases were not included, but places where ag grantees would publish data were considered. Search methods We first compiled a list of known domain specific USDA / ARS datasets / databases that are represented in the Ag Data Commons, including ARS Image Gallery, ARS Nutrition Databases (sub-components), SoyBase, PeanutBase, National Fungus Collection, i5K Workspace @ NAL, and GRIN. We then searched using search engines such as Bing and Google for non-USDA / federal ag databases, using Boolean variations of “agricultural data” /“ag data” / “scientific data” + NOT + USDA (to filter out the federal / USDA results). Most of these results were domain specific, though some contained a mix of data subjects. We then used search engines such as Bing and Google to find top agricultural university repositories using variations of “agriculture”, “ag data” and “university” to find schools with agriculture programs. Using that list of universities, we searched each university web site to see if their institution had a repository for their unique, independent research data if not apparent in the initial web browser search. We found both ag specific university repositories and general university repositories that housed a portion of agricultural data. Ag specific university repositories are included in the list of domain-specific repositories. Results included Columbia University – International Research Institute for Climate and Society, UC Davis – Cover Crops Database, etc. If a general university repository existed, we determined whether that repository could filter to include only data results after our chosen ag search terms were applied. General university databases that contain ag data included Colorado State University Digital Collections, University of Michigan ICPSR (Inter-university Consortium for Political and Social Research), and University of Minnesota DRUM (Digital Repository of the University of Minnesota). We then split out NCBI (National Center for Biotechnology Information) repositories. Next we searched the internet for open general data repositories using a variety of search engines, and repositories containing a mix of data, journals, books, and other types of records were tested to determine whether that repository could filter for data results after search terms were applied. General subject data repositories include Figshare, Open Science Framework, PANGEA, Protein Data Bank, and Zenodo. Finally, we compared scholarly journal suggestions for data repositories against our list to fill in any missing repositories that might contain agricultural data. Extensive lists of journals were compiled, in which USDA published in 2012 and 2016, combining search results in ARIS, Scopus, and the Forest Service's TreeSearch, plus the USDA web sites Economic Research Service (ERS), National Agricultural Statistics Service (NASS), Natural Resources and Conservation Service (NRCS), Food and Nutrition Service (FNS), Rural Development (RD), and Agricultural Marketing Service (AMS). The top 50 journals' author instructions were consulted to see if they (a) ask or require submitters to provide supplemental data, or (b) require submitters to submit data to open repositories. Data are provided for Journals based on a 2012 and 2016 study of where USDA employees publish their research studies, ranked by number of articles, including 2015/2016 Impact Factor, Author guidelines, Supplemental Data?, Supplemental Data reviewed?, Open Data (Supplemental or in Repository) Required? and Recommended data repositories, as provided in the online author guidelines for each the top 50 journals. Evaluation We ran a series of searches on all resulting general subject databases with the designated search terms. From the results, we noted the total number of datasets in the repository, type of resource searched (datasets, data, images, components, etc.), percentage of the total database that each term comprised, any dataset with a search term that comprised at least 1% and 5% of the total collection, and any search term that returned greater than 100 and greater than 500 results. We compared domain-specific databases and repositories based on parent organization, type of institution, and whether data submissions were dependent on conditions such as funding or affiliation of some kind. Results A summary of the major findings from our data review: Over half of the top 50 ag-related journals from our profile require or encourage open data for their published authors. There are few general repositories that are both large AND contain a significant portion of ag data in their collection. GBIF (Global Biodiversity Information Facility), ICPSR, and ORNL DAAC were among those that had over 500 datasets returned with at least one ag search term and had that result comprise at least 5% of the total collection. Not even one quarter of the domain-specific repositories and datasets reviewed allow open submission by any researcher regardless of funding or affiliation. See included README file for descriptions of each individual data file in this dataset. Resources in this dataset:Resource Title: Journals. File Name: Journals.csvResource Title: Journals - Recommended repositories. File Name: Repos_from_journals.csvResource Title: TDWG presentation. File Name: TDWG_Presentation.pptxResource Title: Domain Specific ag data sources. File Name: domain_specific_ag_databases.csvResource Title: Data Dictionary for Ag Data Repository Inventory. File Name: Ag_Data_Repo_DD.csvResource Title: General repositories containing ag data. File Name: general_repos_1.csvResource Title: README and file inventory. File Name: README_InventoryPublicDBandREepAgData.txt
To monitor the population's knowledge, risk perceptions, preventive behaviors and confidence in the measures adopted during the COVID-19 epidemic in Spain.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
By representing a system of budget shares as an approximate factor model we determine its rank, i.e.?the number of common functional forms or factors, and we estimate a base of the factor space by means of approximate principal components. We assume that the extracted factors span the same space of basic Engel curves representing the fundamental forces driving consumers' behaviour. We identify these curves by imposing statistical independence and by studying their dependence on total expenditure using local linear regressions. We prove consistency of the estimates. Using data from the UK Family Expenditure Survey from 1977 to 2006, we find strong evidence of two common factors and mixed evidence of a third factor. These are identified as decreasing, increasing, and almost constant Engel curves. The household consumption behaviour is therefore driven by two factors respectively related to necessities (e.g.?food), luxuries (e.g.?vehicles), and in some cases by a third factor related to goods to which is allocated the same percentage of total budget both by rich and poor households (e.g.?housing).
NASA has some of the largest and most complex data sources in the world, with data sources ranging from the earth sciences, space sciences, and massive distributed engineering data sets from commercial aircraft and spacecraft. This talk will discuss some of the issues and algorithms developed to analyze and discover patterns in these data sets. We will also provide an overview of a large research program in Integrated Vehicle Health Management. The goal of this program is to develop advanced technologies to automatically detect, diagnose, predict, and mitigate adverse events during the flight of an aircraft. A case study will be presented on a recent data mining analysis performed to support the Flight Readiness Review of the Space Shuttle Mission STS-119.
By Health [source]
The Behavioral Risk Factor Surveillance System (BRFSS) offers an expansive collection of data on the health-related quality of life (HRQOL) from 1993 to 2010. Over this time period, the Health-Related Quality of Life dataset consists of a comprehensive survey reflecting the health and well-being of non-institutionalized US adults aged 18 years or older. The data collected can help track and identify unmet population health needs, recognize trends, identify disparities in healthcare, determine determinants of public health, inform decision making and policy development, as well as evaluate programs within public healthcare services.
The HRQOL surveillance system has developed a compact set of HRQOL measures such as a summary measure indicating unhealthy days which have been validated for population health surveillance purposes and have been widely implemented in practice since 1993. Within this study's dataset you will be able to access information such as year recorded, location abbreviations & descriptions, category & topic overviews, questions asked in surveys and much more detailed information including types & units regarding data values retrieved from respondents along with their sample sizes & geographical locations involved!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset tracks the Health-Related Quality of Life (HRQOL) from 1993 to 2010 using data from the Behavioral Risk Factor Surveillance System (BRFSS). This dataset includes information on the year, location abbreviation, location description, type and unit of data value, sample size, category and topic of survey questions.
Using this dataset on BRFSS: HRQOL data between 1993-2010 will allow for a variety of analyses related to population health needs. The compact set of HRQOL measures can be used to identify trends in population health needs as well as determine disparities among various locations. Additionally, responses to survey questions can be used to inform decision making and program and policy development in public health initiatives.
- Analyzing trends in HRQOL over the years by location to identify disparities in health outcomes between different populations and develop targeted policy interventions.
- Developing new models for predicting HRQOL indicators at a regional level, and using this information to inform medical practice and public health implementation efforts.
- Using the data to understand differences between states in terms of their HRQOL scores and establish best practices for healthcare provision based on that understanding, including areas such as access to care, preventative care services availability, etc
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: rows.csv | Column name | Description | |:-------------------------------|:----------------------------------------------------------| | Year | Year of survey. (Integer) | | LocationAbbr | Abbreviation of location. (String) | | LocationDesc | Description of location. (String) | | Category | Category of survey. (String) | | Topic | Topic of survey. (String) | | Question | Question asked in survey. (String) | | DataSource | Source of data. (String) | | Data_Value_Unit | Unit of data value. (String) | | Data_Value_Type | Type of data value. (String) | | Data_Value_Footnote_Symbol | Footnote symbol for data value. (String) | | Data_Value_Std_Err | Standard error of the data value. (Float) | | Sample_Size | Sample size used in sample. (Integer) | | Break_Out | Break out categories used. (String) | | Break_Out_Category | Type break out assessed. (String) | | **GeoLocation*...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Health messages with examples from training manual and qualitative interviews.
The Conservation Finance Opportunities application is an interactive web-based mapping product intended for use by the Forest Service and partners alike. These maps help the Agency and partners to identify prime locations to apply conservation finance tools in order to explore new partnership models that engage private capital to achieve ecological, social and financial outcomes.The Data Sources and Credits Documentation PDF is a spreadsheet containing descriptions and data sources for each layer used in the analysis of the Conservation Finance Opportunities application; this documentation includes the supporting data layers found in the Explore tab application.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: In Brazil, studies that map electronic healthcare databases in order to assess their suitability for use in pharmacoepidemiologic research are lacking. We aimed to identify, catalogue, and characterize Brazilian data sources for Drug Utilization Research (DUR).Methods: The present study is part of the project entitled, “Publicly Available Data Sources for Drug Utilization Research in Latin American (LatAm) Countries.” A network of Brazilian health experts was assembled to map secondary administrative data from healthcare organizations that might provide information related to medication use. A multi-phase approach including internet search of institutional government websites, traditional bibliographic databases, and experts’ input was used for mapping the data sources. The reviewers searched, screened and selected the data sources independently; disagreements were resolved by consensus. Data sources were grouped into the following categories: 1) automated databases; 2) Electronic Medical Records (EMR); 3) national surveys or datasets; 4) adverse event reporting systems; and 5) others. Each data source was characterized by accessibility, geographic granularity, setting, type of data (aggregate or individual-level), and years of coverage. We also searched for publications related to each data source.Results: A total of 62 data sources were identified and screened; 38 met the eligibility criteria for inclusion and were fully characterized. We grouped 23 (60%) as automated databases, four (11%) as adverse event reporting systems, four (11%) as EMRs, three (8%) as national surveys or datasets, and four (11%) as other types. Eighteen (47%) were classified as publicly and conveniently accessible online; providing information at national level. Most of them offered more than 5 years of comprehensive data coverage, and presented data at both the individual and aggregated levels. No information about population coverage was found. Drug coding is not uniform; each data source has its own coding system, depending on the purpose of the data. At least one scientific publication was found for each publicly available data source.Conclusions: There are several types of data sources for DUR in Brazil, but a uniform system for drug classification and data quality evaluation does not exist. The extent of population covered by year is unknown. Our comprehensive and structured inventory reveals a need for full characterization of these data sources.