3 datasets found
  1. RUNNING"calorie:heartrate

    • kaggle.com
    zip
    Updated Jan 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    romechris34 (2022). RUNNING"calorie:heartrate [Dataset]. https://www.kaggle.com/datasets/romechris34/wellness
    Explore at:
    zip(25272804 bytes)Available download formats
    Dataset updated
    Jan 6, 2022
    Authors
    romechris34
    Description

    title: 'BellaBeat Fitbit' author: 'C Romero' date: 'r Sys.Date()' output: html_document: number_sections: true

    toc: true

    ##Installation of the base package for data analysis tool
    install.packages("base")
    
    ##Installation of the ggplot2 package for data analysis tool
    install.packages("ggplot2")
    
    ##install Lubridate is an R package that makes it easier to work with dates and times.
    install.packages("lubridate")
    ```{r}
    
    ##Installation of the tidyverse package for data analysis tool
    install.packages("tidyverse")
    
    ##Installation of the tidyr package for data analysis tool
    install.packages("dplyr")
    
    ##Installation of the readr package for data analysis tool
    install.packages("readr")
    
    ##Installation of the tidyr package for data analysis tool
    install.packages("tidyr")
    

    Importing packages

    metapackage of all tidyverse packages

    library(base) library(lubridate)# make dealing with dates a little easier library(ggplot2)# create elegant data visialtions using the grammar of graphics library(dplyr)# a grammar of data manpulation library(readr)# read rectangular data text library(tidyr)

    
    ## Running code
    
    In a notebook, you can run a single code cell by clicking in the cell and then hitting 
    the blue arrow to the left, or by clicking in the cell and pressing Shift+Enter. In a script, 
    you can run code by highlighting the code you want to run and then clicking the blue arrow
    at the bottom of this window.
    
    ## Reading in files
    
    
    ```{r}
    list.files(path = "../input")
    
    # load the activity and sleep data set
    ```{r}
    dailyActivity <- read_csv("../input/wellness/dailyActivity_merge.csv")
    sleepDay <- read_csv("../input/wellness/sleepDay_merged.csv")
    
    

    check for duplicates and na

    sum(duplicated(dailyActivity)) sum(duplicated(sleepDay)) sum(is.na(dailyActivity)) sum(is.na(sleepDay))

    now we will remove duplicate from sleep & create new dataframe

    sleepy <- sleepDay %>% distinct() head(sleepy) head(dailyActivity)

    count number of id's total sleepy & dailyActivity frames

    n_distinct(dailyActivity$Id) n_distinct(sleepy$Id)

    get total sum steps for each member id

    dailyActivity %>% group_by(Id) %>% summarise(freq = sum(TotalSteps)) %>% arrange(-freq) Tot_dist <- dailyActivity %>% mutate(Id = as.character(dailyActivity$Id)) %>% group_by(Id) %>% summarise(dizzy = sum(TotalDistance)) %>% arrange(-dizzy)

    now get total min sleep & lie in bed

    sleepy %>% group_by(Id) %>% summarise(Msleep = sum(TotalMinutesAsleep)) %>% arrange(Msleep) sleepy %>% group_by(Id) %>% summarise(inBed = sum(TotalTimeInBed)) %>% arrange(inBed)

    plot graph for "inbed and sleep data" & "total steps and distance"

    ggplot(Tot_dist) + 
     geom_count(mapping = aes(y= dizzy, x= Id, color = Id, fill = Id, size = 2)) +
     labs(x = "member id's", title = "distance miles" ) +
     theme(axis.text.x = element_text(angle = 90)) 
     ```
    
  2. f

    Hamilton et al. 2017. Accounting for uncertainty in duplicate identification...

    • auckland.figshare.com
    txt
    Updated Sep 12, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olivia Hamilton; Sophie Kincaid; Rochelle Constantine; Lily Kozmian-Ledward; Cameron Walker; Rachel Fewster (2017). Hamilton et al. 2017. Accounting for uncertainty in duplicate identification and group size judgments in mark-recapture distance sampling [Dataset]. http://doi.org/10.17608/k6.auckland.5395336.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Sep 12, 2017
    Dataset provided by
    The University of Auckland
    Authors
    Olivia Hamilton; Sophie Kincaid; Rochelle Constantine; Lily Kozmian-Ledward; Cameron Walker; Rachel Fewster
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please see the file MRDS-with-uncertain-dups.R for full description and instructions for using the code.

  3. Comparative analysis of viral genome detection via real-time RT-PCR. Mean Cq...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    • +1more
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melina Fischer; Kerstin Wernike; Conrad M. Freuling; Thomas Müller; Orhan Aylan; Bernard Brochier; Florence Cliquet; Sonia Vázquez-Morón; Peter Hostnik; Anita Huovilainen; Mats Isaksson; Engbert A. Kooi; Jean Mooney; Mihai Turcitu; Thomas B. Rasmussen; Sandra Revilla-Fernández; Marcin Smreczak; Anthony R. Fooks; Denise A. Marston; Martin Beer; Bernd Hoffmann (2023). Comparative analysis of viral genome detection via real-time RT-PCR. Mean Cq values from duplicate runs. [Dataset]. http://doi.org/10.1371/journal.pone.0058372.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Melina Fischer; Kerstin Wernike; Conrad M. Freuling; Thomas Müller; Orhan Aylan; Bernard Brochier; Florence Cliquet; Sonia Vázquez-Morón; Peter Hostnik; Anita Huovilainen; Mats Isaksson; Engbert A. Kooi; Jean Mooney; Mihai Turcitu; Thomas B. Rasmussen; Sandra Revilla-Fernández; Marcin Smreczak; Anthony R. Fooks; Denise A. Marston; Martin Beer; Bernd Hoffmann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    RABV: Rabies virus; ;EBLV: European Bat Lyssavirus;neg.: negative control; −: negative result; #: cross-reactivitiy with other Lyssavirus species; ?: doubtful result;*doubtful result was retested; i.h.: in-house assay; dilution series (0), (I), (II), (III); 100, 10−1, 10−2, 10−3; mod.: assay modified; r: RABV-specific detection; e1: EBLV-1 specific; e1+2: EBLV-1+−2 specific; r13, r14, r13/14: R13, R14, duplex R13/14 assay by [17]; fn: false negative results; exp: expected negative results from previous publication; ts: two-step systems; no duplicates for assays D2, D3 and M; 2) Orlowska et al., 2008 [22].

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
romechris34 (2022). RUNNING"calorie:heartrate [Dataset]. https://www.kaggle.com/datasets/romechris34/wellness
Organization logo

RUNNING"calorie:heartrate

Fitness~"Bellbeat"~Tracker

Explore at:
zip(25272804 bytes)Available download formats
Dataset updated
Jan 6, 2022
Authors
romechris34
Description

title: 'BellaBeat Fitbit' author: 'C Romero' date: 'r Sys.Date()' output: html_document: number_sections: true

toc: true

##Installation of the base package for data analysis tool
install.packages("base")
##Installation of the ggplot2 package for data analysis tool
install.packages("ggplot2")
##install Lubridate is an R package that makes it easier to work with dates and times.
install.packages("lubridate")
```{r}

##Installation of the tidyverse package for data analysis tool
install.packages("tidyverse")
##Installation of the tidyr package for data analysis tool
install.packages("dplyr")
##Installation of the readr package for data analysis tool
install.packages("readr")
##Installation of the tidyr package for data analysis tool
install.packages("tidyr")

Importing packages

metapackage of all tidyverse packages

library(base) library(lubridate)# make dealing with dates a little easier library(ggplot2)# create elegant data visialtions using the grammar of graphics library(dplyr)# a grammar of data manpulation library(readr)# read rectangular data text library(tidyr)


## Running code

In a notebook, you can run a single code cell by clicking in the cell and then hitting 
the blue arrow to the left, or by clicking in the cell and pressing Shift+Enter. In a script, 
you can run code by highlighting the code you want to run and then clicking the blue arrow
at the bottom of this window.

## Reading in files


```{r}
list.files(path = "../input")

# load the activity and sleep data set
```{r}
dailyActivity <- read_csv("../input/wellness/dailyActivity_merge.csv")
sleepDay <- read_csv("../input/wellness/sleepDay_merged.csv")

check for duplicates and na

sum(duplicated(dailyActivity)) sum(duplicated(sleepDay)) sum(is.na(dailyActivity)) sum(is.na(sleepDay))

now we will remove duplicate from sleep & create new dataframe

sleepy <- sleepDay %>% distinct() head(sleepy) head(dailyActivity)

count number of id's total sleepy & dailyActivity frames

n_distinct(dailyActivity$Id) n_distinct(sleepy$Id)

get total sum steps for each member id

dailyActivity %>% group_by(Id) %>% summarise(freq = sum(TotalSteps)) %>% arrange(-freq) Tot_dist <- dailyActivity %>% mutate(Id = as.character(dailyActivity$Id)) %>% group_by(Id) %>% summarise(dizzy = sum(TotalDistance)) %>% arrange(-dizzy)

now get total min sleep & lie in bed

sleepy %>% group_by(Id) %>% summarise(Msleep = sum(TotalMinutesAsleep)) %>% arrange(Msleep) sleepy %>% group_by(Id) %>% summarise(inBed = sum(TotalTimeInBed)) %>% arrange(inBed)

plot graph for "inbed and sleep data" & "total steps and distance"

ggplot(Tot_dist) + 
 geom_count(mapping = aes(y= dizzy, x= Id, color = Id, fill = Id, size = 2)) +
 labs(x = "member id's", title = "distance miles" ) +
 theme(axis.text.x = element_text(angle = 90)) 
 ```
Search
Clear search
Close search
Google apps
Main menu