45 datasets found
  1. if the stock market goes down during a recession, you should sell all of...

    • kappasignal.com
    Updated May 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). if the stock market goes down during a recession, you should sell all of your investments to minimize your losses. (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/if-stock-market-goes-down-during.html
    Explore at:
    Dataset updated
    May 6, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    if the stock market goes down during a recession, you should sell all of your investments to minimize your losses.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  2. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  3. How do you predict if a stock will go up or down? (PLTR Stock Prediction)...

    • kappasignal.com
    Updated Nov 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you predict if a stock will go up or down? (PLTR Stock Prediction) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/how-do-you-predict-if-stock-will-go-up_42.html
    Explore at:
    Dataset updated
    Nov 4, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you predict if a stock will go up or down? (PLTR Stock Prediction)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. How do you know when a stock will go up or down? (LON:USA Stock Forecast)...

    • kappasignal.com
    Updated Nov 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you know when a stock will go up or down? (LON:USA Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/how-do-you-know-when-stock-will-go-up_13.html
    Explore at:
    Dataset updated
    Nov 13, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you know when a stock will go up or down? (LON:USA Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. Data from: How do you predict if a stock will go up or down? (PCTY Stock...

    • kappasignal.com
    Updated Nov 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you predict if a stock will go up or down? (PCTY Stock Prediction) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/how-do-you-predict-if-stock-will-go-up_3.html
    Explore at:
    Dataset updated
    Nov 3, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you predict if a stock will go up or down? (PCTY Stock Prediction)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. How do you predict if a stock will go up or down? (LON:HDT Stock Prediction)...

    • kappasignal.com
    Updated Nov 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you predict if a stock will go up or down? (LON:HDT Stock Prediction) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/how-do-you-predict-if-stock-will-go-up_17.html
    Explore at:
    Dataset updated
    Nov 17, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you predict if a stock will go up or down? (LON:HDT Stock Prediction)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. How do you predict if a stock will go up or down? (SLF Stock Prediction)...

    • kappasignal.com
    Updated Nov 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you predict if a stock will go up or down? (SLF Stock Prediction) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/how-do-you-predict-if-stock-will-go-up_15.html
    Explore at:
    Dataset updated
    Nov 3, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you predict if a stock will go up or down? (SLF Stock Prediction)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. e

    Flash Eurobarometer 174 (Small and Medium-sized Enterprises Access to...

    • b2find.eudat.eu
    Updated Oct 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Flash Eurobarometer 174 (Small and Medium-sized Enterprises Access to Finance) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/17f51aad-758a-587c-aa6a-67f816f2a537
    Explore at:
    Dataset updated
    Oct 22, 2023
    Description

    Access to finance of small and medium enterprises. Topics: development of the following indicators in the last six months: turnover, profit, profit margin, level of debt, cash flow, investment, level of exports, research and development, market share; existence of a development plan for the next three years; most important element to ensure the company’s development: better qualified people on the market, social and fiscal regulations more suited to the sector of activity, greater production capacity, easy access to means of financing, stricter regulation regarding competition from outside the EU, advice and support service for the development of the company; use of selected types of financing in the past: overdraft, leasing or renting, discount or factoring, increase in capital dedicated to venture capital funds or to private individuals, loans shorter or longer than a 3-year term, public subsidies; approximate amount of last loan; recent request for a loan less than 25000 €; needs to be met by this loan; assessment of the difficulties to obtain a loan less than 25000 € compared to other forms of company’s financing; most important elements to resort a loan less than 25000 €: lower interest rates, simpler procedures for granting loans, less demanding on guarantee requirements, shorter delays for granting loans; assessment of the current financing of the company as sufficient; institutions contacted to obtain financing: banks, public institutions, private financing companies, leasing or renting companies, venture capital companies, private investors; expectations regarding the increase of the company’s capital within the next years; measures to increase the company’s capital: opening-up capital to private individual investors or to venture capital companies, management buy-out, going on the stock exchange, opening-up capital to the company’s employees; assessment of the access to bank loans as easy; assessment of the development of the impediments to access bank loans compared to a few years ago; reasons that impede obtaining a bank loan compared to a few years ago: interest rates are too high, banks request too much information, loan granting procedures are too long, administrative side of the loan application is very demanding; approval of the following statements: loan is needed to conclude projects, unsuitable offers from banks, risk-averseness of banks, banker understands specifics of the company’s sector, banker sufficiently supports the company in terms of its financing; assessment how the company’s needs regarding financial management are met internally; preferred sources of information on financing. Demography: information about the company: number of employees, development of the number of employees since 2004; company size; main activity of the company; year of company establishment; shareholding of the company; turnover of the company in the own country in the last fiscal year. Additionally coded was: country; respondent ID; language of the interview; weighting factor. Unternehmensfinanzierung. Nutzung von Krediten. Schwierigkeiten bei Kreditaufnahme. Vorgehen von Kreditinstituten in Bezug auf Finanzierungsmöglichkeiten. Finanzierungsberatung. Themen: Finanzielle Situation des Unternehmens; 3-Jahres Plan; wichtigste Maßnahmen zur Festigung des Unternehmens: qualifizierte Mitarbeiter, der Branche angepasstere soziale und steuerliche Bestimmungen, größere Produktionskapazität, einfacher Zugang zu Finanzierungsmitteln, strengere Regulierung der Konkurrenz aus Nicht-EU-Ländern, Beratung und Unterstützung für die Unternehmensentwicklung; Inanspruchnahme finanzieller Leistungen (Dispositionskredit, Leasing/Mieten, Diskont/Factoring, Kapitalerhöhung für Wagniskapitalfonds und für Privatpersonen, (Kurz-)Darlehen, öffentliche Fördermittel); Höhe des letzten Kreditantrags; Verwendungsabsicht für den Kredit; Schwierigkeiten einen Kredit unter 250.000 Euro zu bekommen im Vergleich zu anderen Finanzierungsformen; Gründe für Kreditaufnahme (niedrigere Zinssätze, einfacherer Bewilligungsvorgang, geringere Anforderung auf Kreditsicherheit, kürzere Bearbeitungszeit für Kreditbewilligung); Einschätzung der Unternehmensfinanzierung als ausreichend für Projektrealisierung; primäre Anlaufstellen für den Erhalt von Finanzmitteln; Erschließungsmöglichkeiten für Kapital um finanzielle Bedürfnisse des Unternehmens zu erfüllen; Wege für die Kapitalerschließung des Unternehmens; Einschätzung der Schwierigkeit heutzutage einen Kredit bei Banken zu bekommen im Vergleich zu früher; Gründe, warum es heutzutage schwieriger ist einen Kredit bei einer Bank zu bekommen; Einstellung zu: Kreditabhängigkeit bei Durchführung von Projekten, nicht auf die Belange des Unternehmens zugeschnittene Angebote der Banken; geringe Risikobereitschaft von Banken bei Kreditvergabe; Verständnis für die spezifischen Belange der eigenen Branche durch den zuständigen Bankangestellten; ausreichende Unterstützung bei der Finanzierung durch die Bank; Beurteilung des firmeninternen Finanzmanagements; primäre Anlaufstelle für Finanzierungsberatung. Demographie: Angaben zum Unternehmen: Anzahl der Mitarbeiter, Entwicklung der Anzahl der Beschäftigten seit 2004, Unternehmensgröße, Hauptgeschäftsfeld des Unternehmens, Gründungsjahr, Aktienanteil des Unternehmens; Jahresumsatz des Unternehmens im letzten Geschäftsjahr. Zusätzlich verkodet wurde: Land; Befragten-ID; Interviewsprache; Gewichtungsfaktor.

  9. How do you predict if a stock will go up or down? (AGO Stock Prediction)...

    • kappasignal.com
    Updated Sep 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you predict if a stock will go up or down? (AGO Stock Prediction) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/how-do-you-predict-if-stock-will-go-up_23.html
    Explore at:
    Dataset updated
    Sep 23, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you predict if a stock will go up or down? (AGO Stock Prediction)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. How do you predict if a stock will go up or down? (FIVE Stock Prediction)...

    • kappasignal.com
    Updated Oct 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you predict if a stock will go up or down? (FIVE Stock Prediction) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/how-do-you-predict-if-stock-will-go-up_9.html
    Explore at:
    Dataset updated
    Oct 9, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you predict if a stock will go up or down? (FIVE Stock Prediction)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. How do you know when a stock will go up or down? (LSI Stock Forecast)...

    • kappasignal.com
    Updated Oct 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you know when a stock will go up or down? (LSI Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/how-do-you-know-when-stock-will-go-up_19.html
    Explore at:
    Dataset updated
    Oct 19, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you know when a stock will go up or down? (LSI Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. How do you predict if a stock will go up or down? (RJF Stock Prediction)...

    • kappasignal.com
    Updated Oct 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you predict if a stock will go up or down? (RJF Stock Prediction) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/how-do-you-predict-if-stock-will-go-up_67.html
    Explore at:
    Dataset updated
    Oct 29, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you predict if a stock will go up or down? (RJF Stock Prediction)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. How do you predict if a stock will go up or down? (LON:ORCA Stock...

    • kappasignal.com
    Updated Oct 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you predict if a stock will go up or down? (LON:ORCA Stock Prediction) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/how-do-you-predict-if-stock-will-go-up_31.html
    Explore at:
    Dataset updated
    Oct 29, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you predict if a stock will go up or down? (LON:ORCA Stock Prediction)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. How do you predict if a stock will go up or down? (EVR Stock Prediction)...

    • kappasignal.com
    Updated Nov 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you predict if a stock will go up or down? (EVR Stock Prediction) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/how-do-you-predict-if-stock-will-go-up_47.html
    Explore at:
    Dataset updated
    Nov 13, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you predict if a stock will go up or down? (EVR Stock Prediction)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. How do you know when a stock will go up or down? (ZBRA Stock Forecast)...

    • kappasignal.com
    Updated Oct 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you know when a stock will go up or down? (ZBRA Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/how-do-you-know-when-stock-will-go-up_70.html
    Explore at:
    Dataset updated
    Oct 26, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you know when a stock will go up or down? (ZBRA Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. How do you know when a stock will go up or down? (COO Stock Forecast)...

    • kappasignal.com
    Updated Nov 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you know when a stock will go up or down? (COO Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/how-do-you-know-when-stock-will-go-up_14.html
    Explore at:
    Dataset updated
    Nov 14, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you know when a stock will go up or down? (COO Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. How do you predict if a stock will go up or down? (LDOS Stock Prediction)...

    • kappasignal.com
    Updated Oct 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you predict if a stock will go up or down? (LDOS Stock Prediction) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/how-do-you-predict-if-stock-will-go-up_4.html
    Explore at:
    Dataset updated
    Oct 4, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you predict if a stock will go up or down? (LDOS Stock Prediction)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. T

    Gold - Price Data

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Gold - Price Data [Dataset]. https://tradingeconomics.com/commodity/gold
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1968 - Aug 15, 2025
    Area covered
    World
    Description

    Gold traded flat at 3,335.62 USD/t.oz on August 15, 2025. Over the past month, Gold's price has fallen 0.34%, but it is still 33.01% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on August of 2025.

  19. How do you know when a stock will go up or down? (BEL 20 Index Stock...

    • kappasignal.com
    Updated Sep 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you know when a stock will go up or down? (BEL 20 Index Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/how-do-you-know-when-stock-will-go-up_13.html
    Explore at:
    Dataset updated
    Sep 13, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you know when a stock will go up or down? (BEL 20 Index Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. T

    Philippines Interest Rate

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Philippines Interest Rate [Dataset]. https://tradingeconomics.com/philippines/interest-rate
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1985 - Jul 31, 2025
    Area covered
    Philippines
    Description

    The benchmark interest rate in Philippines was last recorded at 5.25 percent. This dataset provides the latest reported value for - Philippines Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
KappaSignal (2023). if the stock market goes down during a recession, you should sell all of your investments to minimize your losses. (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/if-stock-market-goes-down-during.html
Organization logo

if the stock market goes down during a recession, you should sell all of your investments to minimize your losses. (Forecast)

Explore at:
Dataset updated
May 6, 2023
Dataset authored and provided by
KappaSignal
License

https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

Description

This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

if the stock market goes down during a recession, you should sell all of your investments to minimize your losses.

Financial data:

  • Historical daily stock prices (open, high, low, close, volume)

  • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

  • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

Machine learning features:

  • Feature engineering based on financial data and technical indicators

  • Sentiment analysis data from social media and news articles

  • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

Potential Applications:

  • Stock price prediction

  • Portfolio optimization

  • Algorithmic trading

  • Market sentiment analysis

  • Risk management

Use Cases:

  • Researchers investigating the effectiveness of machine learning in stock market prediction

  • Analysts developing quantitative trading Buy/Sell strategies

  • Individuals interested in building their own stock market prediction models

  • Students learning about machine learning and financial applications

Additional Notes:

  • The dataset may include different levels of granularity (e.g., daily, hourly)

  • Data cleaning and preprocessing are essential before model training

  • Regular updates are recommended to maintain the accuracy and relevance of the data

Search
Clear search
Close search
Google apps
Main menu