Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only. Only Chicago residents are included based on the home ZIP Code as provided by the medical provider. If a ZIP was missing or was not valid, it is displayed as "Unknown". Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the week the test specimen was collected. For privacy reasons, until a ZIP Code reaches five cumulative cases, both the weekly and cumulative case counts will be blank. Therefore, summing the “Cases - Weekly” column is not a reliable way to determine case totals. Deaths are those that have occurred among cases based on the week of death. For tests, each test is counted once, based on the week the test specimen was collected. Tests performed prior to 3/1/2020 are not included. Test counts include multiple tests for the same person (a change made on 10/29/2020). PCR and antigen tests reported to Chicago Department of Public Health (CDPH) through electronic lab reporting are included. Electronic lab reporting has taken time to onboard and testing availability has shifted over time, so these counts are likely an underestimate of community infection. The “Percent Tested Positive” columns are calculated by dividing the number of positive tests by the number of total tests . Because of the data limitations for the Tests columns, such as persons being tested multiple times as a requirement for employment, these percentages may vary in either direction from the actual disease prevalence in the ZIP Code. All data are provisional and subject to change. Information is updated as additional details are received. To compare ZIP Codes to Chicago Community Areas, please see http://data.cmap.illinois.gov/opendata/uploads/CKAN/NONCENSUS/ADMINISTRATIVE_POLITICAL_BOUNDARIES/CCAzip.pdf. Both ZIP Codes and Community Areas are also geographic datasets on this data portal. Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, Illinois Vital Records, American Community Survey (2018)
Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only. This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data. All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns. Only Chicago residents are included based on the home address as provided by the medical provider. Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation. Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa). All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH. Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors. Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description Source data: https://www.chicago.gov/city/en/sites/covid-19/home/latest-data.html.
Only Chicago residents are included based on the home ZIP Code as provided by the medical provider. If a ZIP was missing or was not valid, it is displayed as "Unknown".
Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the week the test specimen was collected. For privacy reasons, until a ZIP Code reaches five cumulative cases, both the weekly and cumulative case counts will be blank. Therefore, summing the “Cases - Weekly” column is not a reliable way to determine case totals. Deaths are those that have occurred among cases based on the week of death.
For tests, each test is counted once, based on the week the test specimen was collected. Tests performed prior to 3/1/2020 are not included. Test counts include multiple tests for the same person (a change made on 10/29/2020). PCR and antigen tests reported to Chicago Department of Public Health (CDPH) through electronic lab reporting are included. Electronic lab reporting has taken time to onboard and testing availability has shifted over time, so these counts are likely an underestimate of community infection.
The “Percent Tested Positive” columns are calculated by dividing the number of positive tests by the number of total tests . Because of the data limitations for the Tests columns, such as persons being tested multiple times as a requirement for employment, these percentages may vary in either direction from the actual disease prevalence in the ZIP Code.
All data are provisional and subject to change. Information is updated as additional details are received.
To compare ZIP Codes to Chicago Community Areas, please see http://data.cmap.illinois.gov/opendata/uploads/CKAN/NONCENSUS/ADMINISTRATIVE_POLITICAL_BOUNDARIES/CCAzip.pdf. Both ZIP Codes and Community Areas are also geographic datasets on this data portal.
Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, Illinois Vital Records, American Community Survey (2018)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all the code, notebooks, datasets used in the study conducted to measure the spatial accessibility of COVID-19 healthcare resources with a particular focus on Illinois, USA. Specifically, the dataset measures spatial access for people to hospitals and ICU beds in Illinois. The spatial accessibility is measured by the use of an enhanced two-step floating catchment area (E2FCA) method (Luo & Qi, 2009), which is an outcome of interactions between demands (i.e, # of potential patients; people) and supply (i.e., # of beds or physicians). The result is a map of spatial accessibility to hospital beds. It identifies which regions need more healthcare resources, such as the number of ICU beds and ventilators. This notebook serves as a guideline of which areas need more beds in the fight against COVID-19. ## What's Inside A quick explanation of the components of the zip file * COVID-19Acc.ipynb is a notebook for calculating spatial accessibility and COVID-19Acc.html is an export of the notebook as HTML. * Data contains all of the data necessary for calculations: * Chicago_Network.graphml/Illinois_Network.graphml are GraphML files of the OSMNX street networks for Chicago and Illinois respectively. * GridFile/ has hexagonal gridfiles for Chicago and Illinois * HospitalData/ has shapefiles for the hospitals in Chicago and Illinois * IL_zip_covid19/COVIDZip.json has JSON file which contains COVID cases by zip code from IDPH * PopData/ contains population data for Chicago and Illinois by census tract and zip code. * Result/ is where we write out the results of the spatial accessibility measures * SVI/contains data about the Social Vulnerability Index (SVI) * img/ contains some images and HTML maps of the hospitals (the notebook generates the maps) * README.md is the document you're currently reading! * requirements.txt is a list of Python packages necessary to use the notebook (besides Jupyter/IPython). You can install the packages with python3 -m pip install -r requirements.txt
Facebook
TwitterNOTE: This dataset is historical-only as of 5/10/2023. All data currently in the dataset will remain, but new data will not be added. The recommended alternative dataset for similar data beyond that date is https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u. (This is not a City of Chicago site. Please direct any questions or comments through the contact information on the site.)
During the COVID-19 pandemic, the Chicago Department of Public Health (CDPH) required EMS Region XI (Chicago area) hospitals to report hospital capacity and patient impact metrics related to COVID-19 to CDPH through the statewide EMResource system. This requirement has been lifted as of May 9, 2023, in alignment with the expiration of the national and statewide COVID-19 public health emergency declarations on May 11, 2023. However, all hospitals will still be required by the U.S. Department of Health and Human Services (HHS) to report COVID-19 hospital capacity and utilization metrics into the HHS Protect system through the CDC’s National Healthcare Safety Network until April 30, 2024. Facility-level data from the HHS Protect system can be found at healthdata.gov.
Until May 9, 2023, all Chicago (EMS Region XI) hospitals (n=28) were required to report bed and ventilator capacity, availability, and occupancy to the Chicago Department of Public Health (CDPH) daily. A list of reporting hospitals is included below. All data represent hospital status as of 11:59 pm for that calendar day. Counts include Chicago residents and non-residents.
ICU bed counts include both adult and pediatric ICU beds. Neonatal ICU beds are not included. Capacity refers to all staffed adult and pediatric ICU beds. Availability refers to all available/vacant adult and pediatric ICU beds. Hospitals began reporting COVID-19 confirmed and suspected (PUI) cases in ICU on 03/19/2020. Hospitals began reporting ICU surge capacity as part of total capacity on 5/18/2020.
Acute non-ICU bed counts include burn unit, emergency department, medical/surgery (ward), other, pediatrics (pediatric ward) and psychiatry beds. Burn beds include those approved by the American Burn Association or self-designated. Capacity refers to all staffed acute non-ICU beds. An additional 500 acute/non-ICU beds were added at the McCormick Place Treatment Facility on 4/15/2020. These beds are not included in the total capacity count. The McCormick Place Treatment Facility closed on 05/08/2020. Availability refers to all available/vacant acute non-ICU beds. Hospitals began reporting COVID-19 confirmed and suspected (PUI) cases in acute non-ICU beds on 04/03/2020.
Ventilator counts prior to 04/24/2020 include all full-functioning mechanical ventilators, with ventilators with bilevel positive airway pressure (BiPAP), anesthesia machines, and portable/transport ventilators counted as surge. Beginning 04/24/2020, ventilator counts include all full-functioning mechanical ventilators, BiPAP, anesthesia machines and portable/transport ventilators. Ventilators are counted regardless of ability to staff. Hospitals began reporting COVID-19 confirmed and suspected (PUI) cases on ventilators on 03/19/2020. CDPH has access to additional ventilators from the EAMC (Emergency Asset Management Center) cache. These ventilators are included in the total capacity count.
Chicago (EMS Region 11) hospitals: Advocate Illinois Masonic Medical Center, Advocate Trinity Hospital, AMITA Resurrection Medical Center Chicago, AMITA Saint Joseph Hospital Chicago, AMITA Saints Mary & Elizabeth Medical Center, Ann & Robert H Lurie Children's Hospital, Comer Children's Hospital, Community First Medical Center, Holy Cross Hospital, Jackson Park Hospital & Medical Center, John H. Stroger Jr. Hospital of Cook County, Loretto Hospital, Mercy Hospital and Medical Center, , Mount Sinai Hospital, Northwestern Memorial Hospital, Norwegian American Hospital, Roseland Community Hospital, Rush University Medical Center, Saint Anthony Hospital, Saint Bernard Hospital, South Shore Hospital, Swedish Hospital, Thorek Memorial Hospital, Thorek Hospital Andersonville. University of Chicago Medical Center, University of Illinois Hospital & Health Sciences System, Weiss Memorial Hospital.
Chicago (EMS Region 11) specialty hospitals: Provident Hospital/Cook County, RML Specialty Hospital, Chicago, Montrose Behavioral Health (previously Lakeshore Hospital.) Shirley Ryan AbilityLab (previously RIC), Jesse Brown VA Medical Center, Kindred Chicago – North, Hartgrove Hospital, Kindred Chicago – Lakeshore, Kindred Chicago – Central, Shriners Hospital for Children – Chicago, LaRabida Hospital.
Data Source: Hospitals reporting to CDPH via EMResource (Juvare)
Facebook
TwitterThe dataset analyses the impact of the COVID-19 pandemic in Romania.
The dataset contains 4 columns: * date - the date of each record, starting from 26 February 2020 * cases - the cumulative number of cases reported each day, in the first days of the pandemic there were multiple press releases about the number of cases, but the sum per day is already aggregated * recovered - the cumulative number of recovered cases * deaths - the cumulative number of deaths * tests - number of tests performed by the date, for the dates with no information, the difference split equally in that interval
This data was collected from: * https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Romania * https://www.digi24.ro/stiri/actualitate/informatii-oficiale-despre-coronavirus-in-romania-1266261 * https://stirioficiale.ro/informatii
Other great data souces: * http://www.ms.ro/comunicate/ * http://www.cnscbt.ro/ * https://instnsp.maps.arcgis.com/apps/opsdashboard/index.html#/5eced796595b4ee585bcdba03e30c127
Thank you for the photo: * https://playtech.ro/stiri/o-minciuna-despre-coronavirus-il-va-costa-ani-grei-de-inchisoare-ce-a-facut-un-barbat-din-campia-turzii-95782
Thanks, https://www.kaggle.com/bjoernjostein/corona-virus-in-norway!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe spleen undergoes changes during acute and chronic infections, which may contribute to immune dysregulation and disease aggravation. In fatal cases of COVID-19, pronounced splenic changes are noted. However, the role played by these alterations in patient mortality remains poorly understood. Objectives: We aim to characterize structural alterations and changes in splenic cell populations in fatal COVID-19 cases, as a potential substrate for immune dysfunction associated with bacterial coinfection and mortality in severe infectious diseases.MethodsIn this study, we characterized the histological and cellular changes observed in the spleens of nine patients who died from COVID-19. Spleens from five healthy individuals were used as a reference. Histopathological analysis and immunolabeling techniques were employed to evaluate tissue architecture, cell composition, cytokine production, and cell death.ResultsCOVID-19-associated changes included atrophy of the white pulp (WP), reduced cellular density in the red pulp (RP), and reticular fiber fragmentation. Leukocyte phenotyping revealed substantial lymphocyte depletion across all splenic compartments, accompanied by plasma cell accumulation. These alterations correlated with increased numbers of IL-6- and TNF-producing cells. Additionally, a high density of TUNEL-positive cells indicated widespread cell death in the spleens of COVID-19 patients.ConclusionThese findings suggest that the spleen contributes to the inflammatory response in SARS-CoV-2 infection, acting both as a source of inflammatory cytokines as well as a site of leukocyte, particularly lymphocyte, death both in association with the exacerbated release of IL-6 and TNF.
Facebook
TwitterBackgroundThe SARS-CoV-2 Omicron variant is associated with milder COVID-19 symptoms than previous strains. This study analyzed alterations in natural killer (NK) cell-associated immunity dynamics in mild and moderate COVID-19 cases during the Omicron phase of the COVID-19 pandemic.MethodsWe conducted a retrospective observational cohort study of patients aged ≥16 with confirmed SARS-CoV-2 infection who were hospitalized at Tottori University Hospital between January 2022 and May 2022. A total of 27 patients were included in the analysis. Of these, 11 and 16 were diagnosed with mild and moderate COVID-19, respectively, based on the Japanese COVID-19 clinical practice guideline. Peripheral blood NK cell subsets and surface markers, including the activating receptor NKG2D and the inhibitory receptor TIGIT, as well as serum levels of 24 immunoregulatory markers, such as cytokines and cytotoxic mediators, were measured at admission and recovery. In addition, to explore immune patterns associated with disease severity, differences in 24 serum markers and soluble UL16-binding protein 2 (sULBP2) at the clinically most symptomatic time point during hospitalization were visualized using a volcano plot and analyzed with Spearman’s rank correlation analysis and principal component analysis (PCA).ResultsPatients with mild COVID-19 exhibited expanded subsets of unconventional CD56dimCD16- NK cells with elevated NKG2D expression and lower levels of cytotoxic mediators (granzyme A, granzyme B, and granulysin). In contrast, patients with moderate disease exhibited NK cell exhaustion, characterized by upregulation of TIGIT, along with increased levels of NK cell-associated cytokines and cytotoxic mediators. The volcano plot identified that the patients with moderate COVID-19 exhibited significantly elevated IL-6 and sULBP2 levels. Spearman’s rank correlation analysis revealed that IL-6, IFN-γ, soluble Fas, and CXCL8 were correlated with increased sULBP2. The PCA identified distinct clusters based on disease severity.ConclusionsThe results of study highlight the differences in NK cell-associated immune alterations between mild and moderate COVID-19 cases. Elevated IL-6 and sULBP2 levels, along with their correlations with inflammatory mediators, reflects differences in immune response based on disease severity. These findings provide insight into the immune response to infection caused by the Omicron variant of SARS-CoV-2 and improve our understanding of its immunological features.
Facebook
TwitterEffective April 1, 2022, the Cook County Medical Examiner’s Office no longer takes jurisdiction over hospital, nursing home or hospice COVID-19 deaths unless there is another factor that falls within the Office’s jurisdiction. Data continues to be collected for COVID-19 deaths in Cook County on the Illinois Dept. of Public Health COVID-19 dashboard (https://dph.illinois.gov/covid19/data.html). This contains information about deaths that occurred in Cook County that were under the Medical Examiner’s jurisdiction. Not all deaths that occur in Cook County are reported to the Medical Examiner or fall under the jurisdiction of the Medical Examiner. The Medical Examiner’s Office determines cause and manner of death for those cases that fall under its jurisdiction. Cause of death describes the reason the person died. This dataset includes information from deaths starting in August 2014 to the present, with information updated daily. Changes: December 16, 2022: The Cook County Commissioner District field now reflects the boundaries that went into effect December 5, 2022. September 8, 2023: The Primary Cause field is now a combination of the Primary Cause Line A, Line B, and Line C fields.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundMany COVID-19 patients reveal a marked decrease in their lymphocyte counts, a condition that translates clinically into immunodepression and is common among these patients. Outcomes for infected patients vary depending on their lymphocytopenia status, especially their T-cell counts. Patients are more likely to recover when lymphocytopenia is resolved. When lymphocytopenia persists, severe complications can develop and often lead to death. Similarly, IL-10 concentration is elevated in severe COVID-19 cases and may be associated with the depression observed in T-cell counts. Accordingly, this systematic review and meta-analysis aims to analyze T-cell subsets and IL-10 levels among COVID-19 patients. Understanding the underlying mechanisms of the immunodepression observed in COVID-19, and its consequences, may enable early identification of disease severity and reduction of overall morbidity and mortality.MethodsA systematic search was conducted covering PubMed MEDLINE, Scopus, Web of Science, and EBSCO databases for journal articles published from December 1, 2019 to March 14, 2021. In addition, we reviewed bibliographies of relevant reviews and the medRxiv preprint server for eligible studies. Our search covered published studies reporting laboratory parameters for T-cell subsets (CD4/CD8) and IL-10 among confirmed COVID-19 patients. Six authors carried out the process of data screening, extraction, and quality assessment independently. The DerSimonian-Laird random-effect model was performed for this meta-analysis, and the standardized mean difference (SMD) and 95% confidence interval (CI) were calculated for each parameter.ResultsA total of 52 studies from 11 countries across 3 continents were included in this study. Compared with mild and survivor COVID-19 cases, severe and non-survivor cases had lower counts of CD4/CD8 T-cells and higher levels of IL-10.ConclusionOur findings reveal that the level of CD4/CD8 T-cells and IL-10 are reliable predictors of severity and mortality in COVID-19 patients. The study protocol is registered with the International Prospective Register of Systematic Reviews (PROSPERO); registration number CRD42020218918.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020218918, identifier: CRD42020218918.
Facebook
TwitterABSTRACT Background: Cases of coronavirus disease 2019 (COVID-19) requiring hospitalization continue to appear in vulnerable populations, highlighting the importance of novel treatments. The hyperinflammatory response underlies the severity of the disease, and targeting this pathway may be useful. Herein, we tested whether immunomodulation focusing on interleukin (IL)-6, IL-17, and IL-2, could improve the clinical outcomes of patients admitted with COVID-19. Methods: This multicenter, open-label, prospective, randomized controlled trial was conducted in Brazil. Sixty hospitalized patients with moderate-to-critical COVID-19 received in addition to standard of care (SOC): IL-17 inhibitor (ixekizumab 80 mg SC/week) 1 dose every 4 weeks; low-dose IL-2 (1.5 million IU per day) for 7 days or until discharge; or indirect IL-6 inhibitor (colchicine) orally (0.5 mg) every 8 hours for 3 days, followed by 4 weeks at 0.5 mg 2x/day; or SOC alone. The primary outcome was accessed in the “per protocol” population as the proportion of patients with clinical improvement, defined as a decrease greater or equal to two points on the World Health Organization’s (WHO) seven-category ordinal scale by day 28. Results: All treatments were safe, and the efficacy outcomes did not differ significantly from those of SOC. Interestingly, in the colchicine group, all participants had an improvement of greater or equal to two points on the WHO seven-category ordinal scale and no deaths or patient deterioration were observed. Conclusions: Ixekizumab, colchicine, and IL-2 were demonstrated to be safe but ineffective for COVID-19 treatment. These results must be interpreted cautiously because of the limited sample size.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To gather news articles from the web that discuss the Cochrane Review, we used Altmetric Explorer from Altmetric.com and retrieved articles on August 1, 2023. We selected all articles that were written in English, published in the United States, and had a publication date prior to March 10, 2023 (according to the “Mention Date” on Altmetric.com). This date is significant as it is when Cochrane issued a statement about the "misleading interpretation" of the Cochrane Review. The collection of news articles is presented in the Altmetric_data.csv file. The dataset contains the following data that we exported from Altmetric Explorer: - Publication date of the news article - Title of the news article - Source/publication venue of the news article - URL - Country We manually checked and added the following information: - Whether the article still exists - Whether the article is accessible - Whether the article is from the original source We assigned MAXQDA IDs to the news articles. News articles were assigned the same ID when they were (a) identical or (b) in the case of Article 207, closely paraphrased, paragraph by paragraph. Inaccessible items were assigned a MAXQDA ID based on their "Mention Title". For each article from Altmetric.com, we first tried to use the Web Collector for MAXQDA to download the article from the website and imported it into MAXQDA (version 22.7.0). If an article could not be retrieved using the Web Collector, we either downloaded the .html file or in the case of Article 128, retrieved it from the NewsBank database through the University of Illinois Library. We then manually extracted direct quotations from the articles using MAXQDA. We included surrounding words and sentences, and in one case, a news agency’s commentary, around direct quotations for context where needed. The quotations (with context) are the positions in our analysis. We also identified who was quoted. We excluded quotations when we could not identify who or what was being quoted. We annotated quotations with codes representing groups (government agencies, other organizations, and research publications) and individuals (authors of the Cochrane Review, government agency representatives, journalists, and other experts such as epidemiologists). The MAXQDA_data.csv file contains excerpts from the news articles that contain the direct quotations we identified. For each excerpt, we included the following information: - MAXQDA ID of the document from which the excerpt originates; - The collection date and source of the document; - The code with which the excerpt is annotated; - The code category; - The excerpt itself.
Facebook
TwitterThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is a global health threat with the potential to cause severe disease manifestations in the lungs. Although COVID-19 has been extensively characterized clinically, the factors distinguishing SARS-CoV-2 from other respiratory viruses are unknown. Here, we compared the clinical, histopathological, and immunological characteristics of patients with COVID-19 and pandemic influenza A(H1N1). We observed a higher frequency of respiratory symptoms, increased tissue injury markers, and a histological pattern of alveolar pneumonia in pandemic influenza A(H1N1) patients. Conversely, dry cough, gastrointestinal symptoms and interstitial lung pathology were observed in COVID-19 cases. Pandemic influenza A(H1N1) was characterized by higher levels of IL-1RA, TNF-α, CCL3, G-CSF, APRIL, sTNF-R1, sTNF-R2, sCD30, and sCD163. Meanwhile, COVID-19 displayed an immune profile distinguished by increased Th1 (IL-12, IFN-γ) and Th2 (IL-4, IL-5, IL-10, IL-13) cytokine levels, along with IL-1β, IL-6, CCL11, VEGF, TWEAK, TSLP, MMP-1, and MMP-3. Our data suggest that SARS-CoV-2 induces a dysbalanced polyfunctional inflammatory response that is different from the immune response against pandemic influenza A(H1N1). Furthermore, we demonstrated the diagnostic potential of some clinical and immune factors to differentiate both diseases. These findings might be relevant for the ongoing and future influenza seasons in the Northern Hemisphere, which are historically unique due to their convergence with the COVID-19 pandemic.
Facebook
TwitterThis file contains COVID-19 death counts and rates by month and year of death, jurisdiction of residence (U.S., HHS Region) and demographic characteristics (sex, age, race and Hispanic origin, and age/race and Hispanic origin). United States death counts and rates include the 50 states, plus the District of Columbia. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across jurisdictions. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rate are based on deaths occurring in the specified week and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).
Facebook
TwitterThis study aimed to detect, analyze, and correlate the clinical characteristics, blood coagulation functions, blood calcium levels, and inflammatory factors in patients with mild and severe COVID-19 infections. The enrolled COVID-19 infected patients were from Wuhan Jin Yin-tan Hospital (17 cases, Wuhan, China), Suzhou Infectious Disease Hospital (87 cases, Suzhou, China), and Xuzhou Infectious Disease Hospital (14 cases, Xuzhou, China). After admission, basic information was collected; X-ray and chest CT images were obtained; and data from routine blood tests, liver and kidney function, myocardial enzymes, electrolytes, blood coagulation function, (erythrocyte sedimentation rate) ESR, C-reactive protein (CRP), IL-6, procalcitonin (PCT), calcitonin, and other laboratory tests were obtained. The patients were grouped according to the clinical classification method based on the pneumonia diagnosis and treatment plan for new coronavirus infection (trial version 7) in China. The measurements from mild (56 cases) and severe cases (51 cases) were compared and analyzed. Most COVID-19 patients presented with fever. Chest X-ray and CT images showed multiple patchy and ground glass opacities in the lungs of COVID 19 infected patients, especially in patients with severe cases. Compared with patients with mild infection, patients with severe infection were older (p = 0.023) and had a significant increase in AST and BUN. The levels of CK, LDH, CK-MB, proBNP, and Myo in patients with severe COVID-19 infection were also increased significantly compared to those in patients with mild cases. Patients with severe COVID-19 infections presented coagulation dysfunction and increased D-dimer and fibrin degradation product (FDP) levels. Severe COVID-19 patients had low serum calcium ion (Ca2+) concentrations and high calcitonin and PCT levels and exhibited serious systemic inflammation. Ca2+ in COVID-19 patients was significantly negatively correlated with PCT, calcitonin, D-dimer, PFDP, ESR, CRP and IL-6. D-dimer in COVID-19 patients was a significantly positively correlated with CRP and IL-6. In conclusion, patients with severe COVID-19 infection presented significant metabolic dysfunction and abnormal blood coagulation, a sharp increase in inflammatory factors and calcitonin and procalcitonin levels, and a significant decrease in Ca2+. Decreased Ca2+ and coagulation dysfunction in COVID-19 patients were significantly correlated with each other and with inflammatory factors.
Facebook
TwitterThis dataset is used in the analyses reported in the review entitled "Interleukin (IL)-1 blocking agents for the treatment of COVID-19 A living systematic review" IL-1 blockers are beneficial in inflammation-associated pathologies, such as rheumatoid arthritis (Mertens 2009) and possibly also in the subgroup of patients with severe sepsis where the inflammasome pathway is involved (Shakoory 2016). Similar benefits were reported in children with secondary macrophage activation syndrome, including cases triggered by viral infections (Mehta 2020b). In this review we aimed to assess the effectiveness of IL-1 blocking agents compared to placebo, standard of care or no treatment on outcomes in patients with COVID-19. This review is part of a larger project: the COVID-NMA project. We set-up a platform (https://covid-nma.com) where all our results are made available and updated bi-weekly.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Records of reported Counts of COVID-19 case counts in Israel from 2019-2021. Download is a zipped CSV file with readme.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: Interleukin-6 (IL-6) is known to be detrimental in coronavirus disease 2019 (COVID-19) because of its involvement in driving cytokine storm. This systematic review and meta-analysis aimed to assess the safety and efficacy of anti-IL-6 signaling (anti-IL6/IL-6R/JAK) agents on COVID-19 based on the current evidence.Methods: Studies were identified through systematic searches of PubMed, EMBASE, ISI Web of Science, Cochrane library, ongoing clinical trial registries (clinicaltrials.gov), and preprint servers (medRxiv, ChinaXiv) on August 10, 2020, as well as eligibility checks according to predefined selection criteria. Statistical analysis was performed using Review Manager (version 5.3) and STATA 12.0.Results: Thirty-one studies were included in the pooled analysis of mortality, and 12 studies were identified for the analysis of risk of secondary infections. For mortality analysis, 5630 COVID-19 cases including 2,132 treated patients and 3,498 controls were analyzed. Anti-IL-6 signaling agents plus standard of care (SOC) significantly decreased the mortality rate compared to SOC alone (pooled OR = 0.61, 95% CI 0.45–0.84, p = 0.002). For the analysis of secondary infection risk, 1,624 patients with COVID-19 including 639 treated patients and 985 controls were included, showing that anti-IL-6 signaling agents did not increase the rate of secondary infections (pooled OR = 1.21, 95% CI 0.70–2.08, p = 0.50). By contrast, for patients with critical COVID-19 disease, anti-IL-6 signaling agents failed to reduce mortality compared to SOC alone (pooled OR = 0.75, 95% CI 0.42–1.33, p = 0.33), but they tended to increase the risk of secondary infections (pooled OR = 1.85, 95% CI 0.95–3.61, p = 0.07). A blockade of IL-6 signaling failed to reduce the mechanical ventilation rate, ICU admission rate, or elevate the clinical improvement rate.Conclusion: IL-6 signaling inhibitors reduced the mortality rate without increasing secondary infections in patients with COVID-19 based on current studies. For patients with critical disease, IL-6 signaling inhibitors did not exhibit any benefit.
Facebook
TwitterIntroductionSARS-CoV-2 elicits a hyper-inflammatory response that contributes to increased morbidity and mortality in patients with COVID-19. In the case of HIV infection, despite effective anti-retroviral therapy, people living with HIV (PLWH) experience chronic systemic immune activation, which renders them particularly vulnerable to the life-threatening pulmonary, cardiovascular and other complications of SARS-CoV-2 co-infection. The focus of the study was a comparison of the concentrations of systemic indicators o\f innate immune dysfunction in SARS-CoV-2-PCR-positive patients (n=174) admitted with COVID-19, 37 of whom were co-infected with HIV.MethodsParticipants were recruited from May 2020 to November 2021. Biomarkers included platelet-associated cytokines, chemokines, and growth factors (IL-1β, IL-6, IL-8, MIP-1α, RANTES, PDGF-BB, TGF-β1 and TNF-α) and endothelial associated markers (IL-1β, IL-1Ra, ICAM-1 and VEGF).ResultsPLWH were significantly younger (p=0.002) and more likely to be female (p=0.001); median CD4+ T-cell count was 256 (IQR 115 -388) cells/μL and the median HIV viral load (VL) was 20 (IQR 20 -12,980) copies/mL. Fractional inspired oxygen (FiO2) was high in both groups, but higher in patients without HIV infection (p=0.0165), reflecting a greater need for oxygen supplementation. With the exception of PDGF-BB, the levels of all the biomarkers of innate immune activation were increased in SARS-CoV-2/HIV-co-infected and SARS-CoV-2/HIV-uninfected sub-groups relative to those of a control group of healthy participants. The magnitudes of the increases in the levels of these biomarkers were comparable between the SARS-CoV-2 -infected sub-groups, the one exception being RANTES, which was significantly higher in the sub-group without HIV. After adjusting for age, sex, and diabetes in the multivariable model, only the association between HIV status and VEGF was statistically significant (p=0.034). VEGF was significantly higher in PLWH with a CD4+ T-cell count >200 cells/μL (p=0.040) and those with a suppressed VL (p=0.0077).DiscussionThese findings suggest that HIV co-infection is not associated with increased intensity of the systemic innate inflammatory response during SARS-CoV-2 co-infection, which may underpin the equivalent durations of hospital stay, outcome and mortality rates in the SARS-CoV-2/HIV-infected and -uninfected sub-groups investigated in the current study. The apparent association of increased levels of plasma VEGF with SARS-CoV-2/HIV co-infection does, however, merit further investigation.
Facebook
TwitterIntroductionDysregulated host cytokine responses to SARS-CoV-2 infection are a primary cause of progression to severe disease, whereas early neutralizing antibody responses are considered protective. However, there are gaps in understanding the early temporal dynamics of these immune responses, and the profile of productive immune responses generated by non-hospitalized people with mild infections in the community.MethodsHere we conducted a prospective cohort study of people with suspected infections/exposures in the US state of North Carolina, before vaccine availability. We recruited participants not only in hospitals/clinics, but also in their homes. With serial sampling, we compared virologic and immunologic factors in 258 community cases versus 114 hospital cases of COVID-19 to define factors associated with severity.ResultsWe found that high early neutralizing antibodies were associated with lower nasal viral load, but not protection from hospitalization. Cytokine responses were evaluated in 125 cases, with subsets at first versus second week of illness to assess for time-dependent trajectories. The hospital group demonstrated a higher magnitude of serum IL-6, IL-1R antagonist, IP-10, and MIG; prolonged upregulation of IL-17; and lesser downregulation of GROα, IL-1R antagonist, and MCP1, in comparison to the community group suggesting that these factors may contribute to immunopathology. In the second week of illness, 2-fold increases in IL-6, IL-1R antagonist, and IP-10 were associated with 2.2, 1.8, and 10-fold higher odds of hospitalization respectively, whereas a 2-fold increase in IL-10 was associated with 63% reduction in odds of hospitalization (p<0.05). Moreover, antibody responses at 3-6 months post mild SARS-CoV-2 infections in the community revealed long-lasting antiviral IgM and IgA antibodies as well as a stable set point of neutralizing antibodies that were not waning.DiscussionOur data provide valuable temporal cytokine benchmarks to track the progression of immunopathology in COVID-19 patients and guide improvements in immunotherapies.
Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only. Only Chicago residents are included based on the home ZIP Code as provided by the medical provider. If a ZIP was missing or was not valid, it is displayed as "Unknown". Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the week the test specimen was collected. For privacy reasons, until a ZIP Code reaches five cumulative cases, both the weekly and cumulative case counts will be blank. Therefore, summing the “Cases - Weekly” column is not a reliable way to determine case totals. Deaths are those that have occurred among cases based on the week of death. For tests, each test is counted once, based on the week the test specimen was collected. Tests performed prior to 3/1/2020 are not included. Test counts include multiple tests for the same person (a change made on 10/29/2020). PCR and antigen tests reported to Chicago Department of Public Health (CDPH) through electronic lab reporting are included. Electronic lab reporting has taken time to onboard and testing availability has shifted over time, so these counts are likely an underestimate of community infection. The “Percent Tested Positive” columns are calculated by dividing the number of positive tests by the number of total tests . Because of the data limitations for the Tests columns, such as persons being tested multiple times as a requirement for employment, these percentages may vary in either direction from the actual disease prevalence in the ZIP Code. All data are provisional and subject to change. Information is updated as additional details are received. To compare ZIP Codes to Chicago Community Areas, please see http://data.cmap.illinois.gov/opendata/uploads/CKAN/NONCENSUS/ADMINISTRATIVE_POLITICAL_BOUNDARIES/CCAzip.pdf. Both ZIP Codes and Community Areas are also geographic datasets on this data portal. Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, Illinois Vital Records, American Community Survey (2018)