2 datasets found
  1. P

    Data from: ImageNet Dataset

    • paperswithcode.com
    Updated Apr 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li (2024). ImageNet Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet
    Explore at:
    Dataset updated
    Apr 15, 2024
    Authors
    Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li
    Description

    The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.

    Total number of non-empty WordNet synsets: 21841 Total number of images: 14197122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million

  2. Error rates of large-scale visual recognition challenge 2010-2017

    • statista.com
    Updated Feb 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Error rates of large-scale visual recognition challenge 2010-2017 [Dataset]. https://www.statista.com/statistics/808190/worldwide-large-scale-visual-recognition-challenge-error-rates/
    Explore at:
    Dataset updated
    Feb 8, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The statistic shows the best classification error rate achieved by computer vision algorithms tested on a large-scale visual recognition challenge, from 2010 to 2017. In 2015, the winning algorithm became the first to surpass the average human classification error rate of five percent, and by 2017 machine learning algorithms were able to achieve a classification error rate of 2.3 percent, making fewer than half the number of classification errors as a human.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li (2024). ImageNet Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet

Data from: ImageNet Dataset

Related Article
Explore at:
Dataset updated
Apr 15, 2024
Authors
Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li
Description

The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.

Total number of non-empty WordNet synsets: 21841 Total number of images: 14197122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million

Search
Clear search
Close search
Google apps
Main menu