8 datasets found
  1. V

    Video Annotation Service for Machine Learning Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Video Annotation Service for Machine Learning Report [Dataset]. https://www.datainsightsmarket.com/reports/video-annotation-service-for-machine-learning-523831
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The booming video annotation service market for machine learning is projected to reach $10B+ by 2033, driven by AI adoption and the need for accurate training data. Explore market trends, key players (iMerit, HabileData, etc.), and growth opportunities in this comprehensive analysis.

  2. R

    Data Labeling as a Service Market Research Report 2033

    • researchintelo.com
    csv, pdf, pptx
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Intelo (2025). Data Labeling as a Service Market Research Report 2033 [Dataset]. https://researchintelo.com/report/data-labeling-as-a-service-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Oct 2, 2025
    Dataset authored and provided by
    Research Intelo
    License

    https://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy

    Time period covered
    2024 - 2033
    Area covered
    Global
    Description

    Data Labeling as a Service Market Outlook



    According to our latest research, the Global Data Labeling as a Service market size was valued at $1.2 billion in 2024 and is projected to reach $7.8 billion by 2033, expanding at a robust CAGR of 23.6% during the forecast period of 2025–2033. The primary growth driver for this market is the exponential increase in the adoption of artificial intelligence (AI) and machine learning (ML) applications across diverse industries, which demand high-quality, accurately labeled datasets for training sophisticated algorithms. As organizations accelerate their digital transformation journeys, the need for scalable, efficient, and cost-effective data labeling solutions has become critical, positioning Data Labeling as a Service (DLaaS) as an essential component of the AI development lifecycle.



    Regional Outlook



    North America holds the largest share of the global Data Labeling as a Service market, accounting for over 38% of the global revenue in 2024. This dominance is attributed to the region’s mature ecosystem of technology giants, advanced infrastructure, and the presence of a large number of AI-focused enterprises. The United States, in particular, has seen major investments in AI research and development, which fuels the demand for high-quality labeled data. Favorable policies supporting innovation, a robust network of data centers, and early adoption of cloud-based solutions further consolidate North America’s leadership. Moreover, industry verticals such as healthcare, finance, and automotive in this region are increasingly leveraging data labeling services to enhance automation and predictive analytics capabilities, driving sustained market growth.



    The Asia Pacific region is projected to experience the fastest growth in the Data Labeling as a Service market, with a forecasted CAGR of 27.4% from 2025 to 2033. Rapid digitalization, increasing investments in AI startups, and government initiatives aimed at fostering innovation are key growth catalysts in countries like China, India, Japan, and South Korea. The burgeoning e-commerce, automotive, and IT sectors are aggressively adopting AI-powered solutions, which in turn escalates the demand for labeled data. Moreover, the region’s expanding pool of skilled workforce and cost advantages for outsourcing data labeling tasks make Asia Pacific a global hub for data annotation services. Strategic collaborations between local and international players are further accelerating market penetration and technological advancements.



    Emerging economies in Latin America and the Middle East & Africa are gradually entering the Data Labeling as a Service market, though growth is somewhat tempered by infrastructural limitations and a shortage of specialized talent. However, increasing awareness of AI’s transformative potential and supportive government policies are fostering localized demand for data annotation in sectors such as healthcare, agriculture, and public administration. Challenges such as data privacy regulations and limited access to advanced cloud infrastructure persist, but ongoing investments in digital infrastructure and capacity building are expected to unlock significant growth opportunities over the coming years. These regions are poised to become important contributors to the global market as adoption rates rise and barriers are progressively addressed.



    Report Scope





    Attributes Details
    Report Title Data Labeling as a Service Market Research Report 2033
    By Component Software, Services
    By Data Type Text, Image/Video, Audio
    By Labeling Type Manual Labeling, Semi-Automated Labeling, Automated Labeling
    By Application Machine Learning, Computer Vision, Natural Language Proces

  3. D

    Annotation Workforce Management Software Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Annotation Workforce Management Software Market Research Report 2033 [Dataset]. https://dataintelo.com/report/annotation-workforce-management-software-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Annotation Workforce Management Software Market Outlook



    According to our latest research, the global annotation workforce management software market size reached USD 1.21 billion in 2024, reflecting robust adoption across diverse industries. The market is poised for remarkable expansion, with a projected CAGR of 18.4% from 2025 to 2033. By the end of 2033, the annotation workforce management software market is forecasted to attain a value of USD 6.33 billion. This impressive growth is primarily driven by the increasing demand for high-quality annotated datasets to fuel artificial intelligence (AI) and machine learning (ML) solutions, as well as the growing complexity of data-driven projects across sectors such as healthcare, automotive, BFSI, and retail.



    One of the primary growth factors propelling the annotation workforce management software market is the exponential rise in AI and ML applications across industries. As organizations increasingly leverage AI for automation, predictive analytics, and intelligent decision-making, the need for meticulously annotated data has surged. Annotation workforce management software streamlines the process of assigning, tracking, and managing annotation tasks, ensuring accuracy and efficiency in large-scale data labeling projects. This has become particularly critical for sectors such as healthcare, where annotated medical images and records are vital for diagnostic algorithms, and in autonomous driving, where annotated video and sensor data underpin vehicle perception models. The software’s ability to optimize resource allocation, monitor workforce productivity, and maintain data quality standards is central to its growing adoption.



    Another significant driver is the ongoing digital transformation and the shift toward remote and distributed workforces. The annotation workforce management software market is experiencing heightened demand as organizations seek to coordinate global teams of annotators with varying skill sets and backgrounds. Cloud-based solutions have become especially attractive, offering scalability, real-time collaboration, and seamless integration with other data management platforms. These solutions enable enterprises to efficiently manage annotation projects regardless of geographic barriers, thereby accelerating project timelines and reducing operational costs. The rising complexity of annotation tasks—ranging from image and video labeling to text and audio annotation—necessitates robust management tools that can handle diverse workflows, track performance metrics, and ensure regulatory compliance.



    Furthermore, the market is benefiting from increased regulatory scrutiny and the need for data privacy and security, especially in sensitive sectors such as BFSI and healthcare. Annotation workforce management software solutions are evolving to incorporate advanced security features, role-based access controls, and audit trails to ensure compliance with global data protection regulations such as GDPR and HIPAA. This focus on compliance not only mitigates organizational risk but also enhances trust among clients and stakeholders. Additionally, the integration of AI-driven quality assurance mechanisms within these platforms is helping organizations maintain high annotation standards, further fueling market growth.



    Regionally, North America continues to dominate the annotation workforce management software market, accounting for the largest revenue share in 2024. This dominance is attributed to the early adoption of AI technologies, a mature IT infrastructure, and the presence of leading technology companies and startups. However, the Asia Pacific region is anticipated to witness the fastest growth over the forecast period, driven by rapid digitalization, expanding IT and BPO sectors, and increased investments in AI research and development. Europe also maintains a significant market share, bolstered by stringent data privacy regulations and a growing emphasis on ethical AI deployment. Latin America and the Middle East & Africa are emerging markets, showing steady progress as organizations in these regions embrace digital transformation and AI-powered solutions.



    Component Analysis



    The annotation workforce management software market is segmented by component into software and services, with each segment playing a pivotal role in the overall market landscape. The software segment is the dominant force, accounting for the majority of the market share in 2024. This segment encompasses a range of so

  4. c

    Data Collection and Labeling market size was USD 2.41 Billion in 2022!

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Data Collection and Labeling market size was USD 2.41 Billion in 2022! [Dataset]. https://www.cognitivemarketresearch.com/data-collection-and-labeling-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    The Data Collection and Labeling market is poised for explosive growth, fundamentally driven by the escalating demand for high-quality data to train artificial intelligence (AI) and machine learning (ML) models. As industries from automotive and healthcare to retail and finance increasingly adopt AI, the need for accurately annotated datasets has become a critical bottleneck and a significant market opportunity. This market encompasses the collection of raw data and the subsequent process of adding informative labels or tags, making it understandable for machine learning algorithms. The global expansion is marked by intense innovation in automation and a burgeoning ecosystem of service providers. Regional dynamics show Asia-Pacific leading in market size, while North America remains a hub for technological advancement. The market's trajectory is directly tied to the advancement of AI, with challenges around data privacy, cost, and quality shaping its future.

    Key strategic insights from our comprehensive analysis reveal:

    The market is in a hyper-growth phase, with a global CAGR of over 27%, indicating a massive, industry-wide shift towards data-centric AI development. This presents a significant opportunity for first-movers and innovators to establish market dominance.
    Asia-Pacific is the dominant region, acting as both a major service provider and a rapidly growing consumer of data labeling services. Its leadership is fueled by a combination of a large tech workforce, government initiatives in AI, and burgeoning technology sectors in countries like China and India.
    The increasing complexity of AI models, especially in fields like autonomous driving and medical diagnostics, is driving a demand for higher-quality, more nuanced, and specialized data labeling, shifting the focus from quantity to quality and expertise.
    

    Global Market Overview & Dynamics of Data Collection And Labeling Market Analysis The global Data Collection and Labeling market is on a trajectory of unprecedented expansion, projected to grow from $1,418.38 million in 2021 to $25,367.2 million by 2033, at a compound annual growth rate (CAGR) of 27.167%. This surge is a direct consequence of the AI revolution, where the performance of machine learning models is fundamentally dependent on the quality and volume of the training data. The market is evolving from manual, labor-intensive processes to more sophisticated, AI-assisted, and automated platforms to meet the scale and complexity required by modern applications. This shift is creating opportunities across the entire value chain, from data sourcing and annotation to quality assurance and platform development.

    Global Data Collection And Labeling Market Drivers

    Proliferation of AI and Machine Learning: The increasing integration of AI/ML technologies across various sectors such as automotive (autonomous vehicles), healthcare (medical imaging analysis), retail (e-commerce personalization), and finance (fraud detection) is the primary driver demanding vast quantities of labeled data.
    Demand for High-Quality Training Data: The accuracy and reliability of AI models are directly correlated with the quality of the data they are trained on. This necessitates precise and contextually rich data labeling, pushing organizations to invest in professional data collection and labeling services.
    Growth of Big Data and IoT: The explosion of data generated from IoT devices, social media, and other digital platforms has created a massive pool of unstructured data (images, text, videos) that requires labeling to be utilized for machine learning applications.
    

    Global Data Collection And Labeling Market Trends

    Rise of Automation and AI-assisted Labeling: To enhance efficiency and reduce costs, companies are increasingly adopting automated and semi-automated labeling tools that use AI to pre-label data, leaving human annotators to perform verification and correction tasks.
    Synthetic Data Generation: The trend of generating artificial, algorithmically-created data is gaining traction. This helps overcome challenges related to data scarcity, privacy concerns, and the need to train models on rare edge cases not present in real-world datasets.
    Emergence of Data-as-a-Service (DaaS) Platforms: There is a growing trend towards platforms offering pre-labeled, off-the-shelf datasets for common use cases, allowing companies to accelerate their AI development without undertaking the entire data...
    
  5. R

    Data Labeling Platform Market Research Report 2033

    • researchintelo.com
    csv, pdf, pptx
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Intelo (2025). Data Labeling Platform Market Research Report 2033 [Dataset]. https://researchintelo.com/report/data-labeling-platform-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Research Intelo
    License

    https://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy

    Time period covered
    2024 - 2033
    Area covered
    Global
    Description

    Data Labeling Platform Market Outlook



    According to our latest research, the Global Data Labeling Platform market size was valued at $2.1 billion in 2024 and is projected to reach $10.8 billion by 2033, expanding at a CAGR of 20.1% during 2024–2033. The primary driver for this remarkable growth trajectory is the surging adoption of artificial intelligence (AI) and machine learning (ML) applications across industries, which demand high-quality labeled data to train sophisticated algorithms. As organizations increasingly leverage data-driven insights for automation, personalization, and predictive analytics, the need for scalable, efficient, and accurate data labeling platforms has become paramount. This demand is further accentuated by the proliferation of unstructured data in formats like text, image, video, and audio, necessitating robust solutions that can streamline and automate the data annotation process for diverse use cases.



    Regional Outlook



    North America currently holds the largest share of the global Data Labeling Platform market, accounting for over 37% of total revenue in 2024. This dominance is attributed to the region’s mature technology ecosystem, early adoption of AI and ML across sectors, and the presence of major data-centric enterprises and platform providers. The United States, in particular, benefits from robust investments in AI research, a highly skilled workforce, and favorable regulatory frameworks that encourage innovation. Additionally, the region is home to leading cloud service providers and tech giants that are both consumers and developers of advanced data labeling solutions. Initiatives supporting AI development, such as government-backed research and public-private partnerships, further solidify North America’s leadership in this market.



    The Asia Pacific region is projected to be the fastest-growing market for data labeling platforms, with a forecasted CAGR of 24.5% from 2024 to 2033. This rapid expansion is fueled by the digital transformation of industries, increasing penetration of internet and mobile devices, and the exponential growth of data generated by consumers and enterprises. Countries like China, India, Japan, and South Korea are making significant investments in AI infrastructure, fostering a conducive environment for the adoption of data labeling solutions. Local startups and global players are establishing partnerships and R&D centers to tap into the region’s vast data resources and cost-effective talent pools. As a result, Asia Pacific is expected to contribute substantially to the overall market growth, particularly in sectors such as automotive, healthcare, and e-commerce.



    Emerging economies in Latin America and the Middle East & Africa are also witnessing a gradual uptake of data labeling platforms, albeit at a slower pace compared to established markets. The primary challenges in these regions include limited technical expertise, infrastructural constraints, and lower awareness about the strategic importance of data annotation for AI initiatives. However, increasing government focus on digitalization, growing adoption of cloud technologies, and the entry of global platform providers are slowly bridging these gaps. Localized demand is primarily driven by sectors such as BFSI, government, and healthcare, where regulatory compliance and data privacy requirements are shaping the adoption curve. While these markets currently represent a smaller share, their long-term potential remains promising as digital transformation initiatives gain momentum.



    Report Scope





    Attributes Details
    Report Title Data Labeling Platform Market Research Report 2033
    By Component Software, Services
    By Data Type Text, Image/Video, Audio
    By Deployment Mode Cloud, On-Premises
    By End-User IT & Telecommunications, Healthcare, Automotive, Retail & E-commerce,

  6. D

    Data Collection and Labelling Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Collection and Labelling Report [Dataset]. https://www.marketresearchforecast.com/reports/data-collection-and-labelling-33030
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data collection and labeling market is experiencing robust growth, fueled by the escalating demand for high-quality training data in artificial intelligence (AI) and machine learning (ML) applications. The market, estimated at $15 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 25% over the forecast period (2025-2033), reaching approximately $75 billion by 2033. This expansion is primarily driven by the increasing adoption of AI across diverse sectors, including healthcare (medical image analysis, drug discovery), automotive (autonomous driving systems), finance (fraud detection, risk assessment), and retail (personalized recommendations, inventory management). The rising complexity of AI models and the need for more diverse and nuanced datasets are significant contributing factors to this growth. Furthermore, advancements in data annotation tools and techniques, such as active learning and synthetic data generation, are streamlining the data labeling process and making it more cost-effective. However, challenges remain. Data privacy concerns and regulations like GDPR necessitate robust data security measures, adding to the cost and complexity of data collection and labeling. The shortage of skilled data annotators also hinders market growth, necessitating investments in training and upskilling programs. Despite these restraints, the market’s inherent potential, coupled with ongoing technological advancements and increased industry investments, ensures sustained expansion in the coming years. Geographic distribution shows strong concentration in North America and Europe initially, but Asia-Pacific is poised for rapid growth due to increasing AI adoption and the availability of a large workforce. This makes strategic partnerships and global expansion crucial for market players aiming for long-term success.

  7. R

    Ppe For Workplace Dataset

    • universe.roboflow.com
    zip
    Updated Jan 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SiaBar (2024). Ppe For Workplace Dataset [Dataset]. https://universe.roboflow.com/siabar/ppe-dataset-for-workplace
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 19, 2024
    Dataset authored and provided by
    SiaBar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Boots EarProtection Glass Glove Bounding Boxes
    Description

    PPE Dataset for Workplace Safety

    Overview

    The "PPE Dataset" is a robust and diverse collection of images designed for the development and enhancement of machine learning models in the realm of workplace safety. This dataset focuses on the detection and classification of various types of personal protective equipment (PPE) typically used in industrial and construction environments. The goal is to facilitate automated monitoring systems that ensure adherence to safety protocols, thereby contributing to the prevention of workplace accidents and injuries.

    Class Types

    The dataset comprises annotated images spanning four primary PPE categories:

    Boots: Safety footwear, including steel-toe and insulated boots. Helmet: Various types of safety helmets and hard hats. Person: Individuals, both with and without PPE, to enhance person detection alongside PPE recognition. Vest: High-visibility vests, reflective safety gear for visibility in low-light conditions. Ear-protection: adding images Mask: Respiratory masks adding images Glass: Safety glasses adding images Glove: Safety Gloves adding images Safety cones: to be added Each class is annotated to provide precise bounding boxes, ensuring high-quality data for model training.

    Current Status and Timeline

    Phase 1 - Collection: Gathering images from diverse sources, focusing on different environments, lighting conditions, and angles. Phase 2 - Annotation: Ongoing process of labeling the images with accurate bounding boxes. Phase 3 - Model Training: Scheduled to commence post-annotation, targeting advanced object detection models like YOLOv8 & YOLO-NAS.

    Contribution and Labeling Guidelines We welcome contributions from the community! If you wish to contribute images or assist with annotations:

    Image Contributions: Please ensure images are high-resolution and showcase clear instances of PPE usage. Annotation Guidelines: Follow the standard annotation format as per Roboflow's Annotation Guide. Your contributions will play a vital role in enhancing workplace safety through AI-driven solutions.

  8. Data Sheet 1_Evaluating diversity and stereotypes amongst AI generated...

    • frontiersin.figshare.com
    pdf
    Updated Apr 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anjali Agrawal; Gauri Gupta; Anushri Agrawal; Himanshu Gupta (2025). Data Sheet 1_Evaluating diversity and stereotypes amongst AI generated representations of healthcare providers.pdf [Dataset]. http://doi.org/10.3389/fdgth.2025.1537907.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Apr 25, 2025
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Anjali Agrawal; Gauri Gupta; Anushri Agrawal; Himanshu Gupta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionGenerative artificial intelligence (AI) can simulate existing societal data, which led us to explore diversity and stereotypes among AI-generated representations of healthcare providers.MethodsWe used DALL-E 3, a text-to-image generator, to generate 360 images from healthcare profession terms tagged with specific race and sex identifiers. These images were evaluated for sex and race diversity using consensus scoring. To explore stereotypes present in the images, we employed Google Vision to label objects, actions, and backgrounds in the images.ResultsWe found modest levels of sex diversity (3.2) and race diversity (2.8) on a 5-point scale, where 5 indicates maximum diversity. These findings align with existing workforce statistics, suggesting that Generative AI reflects real-world diversity patterns. The analysis of Google Vision image labels revealed sex and race-linked stereotypes related to appearance, facial expressions, and attire.DiscussionThis study is the first of its kind to provide a ML-based framework for quantifying diversity and biases amongst generated AI images of healthcare providers. These insights can guide policy decisions involving the use of Generative AI in healthcare workforce training and recruitment.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Data Insights Market (2025). Video Annotation Service for Machine Learning Report [Dataset]. https://www.datainsightsmarket.com/reports/video-annotation-service-for-machine-learning-523831

Video Annotation Service for Machine Learning Report

Explore at:
pdf, ppt, docAvailable download formats
Dataset updated
Jun 19, 2025
Dataset authored and provided by
Data Insights Market
License

https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

The booming video annotation service market for machine learning is projected to reach $10B+ by 2033, driven by AI adoption and the need for accurate training data. Explore market trends, key players (iMerit, HabileData, etc.), and growth opportunities in this comprehensive analysis.

Search
Clear search
Close search
Google apps
Main menu