6 datasets found
  1. P

    Data from: ImageNet Dataset

    • paperswithcode.com
    Updated Apr 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li (2024). ImageNet Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet
    Explore at:
    Dataset updated
    Apr 15, 2024
    Authors
    Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li
    Description

    The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.

    Total number of non-empty WordNet synsets: 21841 Total number of images: 14197122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million

  2. a

    Tiny ImageNet

    • datasets.activeloop.ai
    • huggingface.co
    deeplake
    Updated Apr 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ya Le and Xuan S. Yang (2022). Tiny ImageNet [Dataset]. https://datasets.activeloop.ai/docs/ml/datasets/tiny-imagenet-dataset/
    Explore at:
    deeplakeAvailable download formats
    Dataset updated
    Apr 2, 2022
    Authors
    Ya Le and Xuan S. Yang
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Tiny ImageNet Dataset is a dataset of 100,000 tiny (64x64) images of objects. It is a popular dataset for image classification and object detection research. The dataset consists of 200 different classes, each of which has 500 images.

  3. R

    Hard Hat Workers Object Detection Dataset - resize-416x416-reflectEdges

    • public.roboflow.com
    zip
    Updated Sep 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Northeastern University - China (2022). Hard Hat Workers Object Detection Dataset - resize-416x416-reflectEdges [Dataset]. https://public.roboflow.com/object-detection/hard-hat-workers/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 30, 2022
    Dataset authored and provided by
    Northeastern University - China
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    Bounding Boxes of Workers
    Description

    Overview

    The Hard Hat dataset is an object detection dataset of workers in workplace settings that require a hard hat. Annotations also include examples of just "person" and "head," for when an individual may be present without a hard hart.

    The original dataset has a 75/25 train-test split.

    Example Image: https://i.imgur.com/7spoIJT.png" alt="Example Image">

    Use Cases

    One could use this dataset to, for example, build a classifier of workers that are abiding safety code within a workplace versus those that may not be. It is also a good general dataset for practice.

    Using this Dataset

    Use the fork or Download this Dataset button to copy this dataset to your own Roboflow account and export it with new preprocessing settings (perhaps resized for your model's desired format or converted to grayscale), or additional augmentations to make your model generalize better. This particular dataset would be very well suited for Roboflow's new advanced Bounding Box Only Augmentations.

    Dataset Versions:

    Image Preprocessing | Image Augmentation | Modify Classes * v1 (resize-416x416-reflect): generated with the original 75/25 train-test split | No augmentations * v2 (raw_75-25_trainTestSplit): generated with the original 75/25 train-test split | These are the raw, original images * v3 (v3): generated with the original 75/25 train-test split | Modify Classes used to drop person class | Preprocessing and Augmentation applied * v5 (raw_HeadHelmetClasses): generated with a 70/20/10 train/valid/test split | Modify Classes used to drop person class * v8 (raw_HelmetClassOnly): generated with a 70/20/10 train/valid/test split | Modify Classes used to drop head and person classes * v9 (raw_PersonClassOnly): generated with a 70/20/10 train/valid/test split | Modify Classes used to drop head and helmet classes * v10 (raw_AllClasses): generated with a 70/20/10 train/valid/test split | These are the raw, original images * v11 (augmented3x-AllClasses-FastModel): generated with a 70/20/10 train/valid/test split | Preprocessing and Augmentation applied | 3x image generation | Trained with Roboflow's Fast Model * v12 (augmented3x-HeadHelmetClasses-FastModel): generated with a 70/20/10 train/valid/test split | Preprocessing and Augmentation applied, Modify Classes used to drop person class | 3x image generation | Trained with Roboflow's Fast Model * v13 (augmented3x-HeadHelmetClasses-AccurateModel): generated with a 70/20/10 train/valid/test split | Preprocessing and Augmentation applied, Modify Classes used to drop person class | 3x image generation | Trained with Roboflow's Accurate Model * v14 (raw_HeadClassOnly): generated with a 70/20/10 train/valid/test split | Modify Classes used to drop person class, and remap/relabel helmet class to head

    Choosing Between Computer Vision Model Sizes | Roboflow Train

    About Roboflow

    Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.

    Developers reduce 50% of their code when using Roboflow's workflow, automate annotation quality assurance, save training time, and increase model reproducibility.

    Roboflow Workmark

  4. P

    Open Images V4 Dataset

    • paperswithcode.com
    • tensorflow.org
    • +1more
    Updated Aug 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alina Kuznetsova; Hassan Rom; Neil Alldrin; Jasper Uijlings; Ivan Krasin; Jordi Pont-Tuset; Shahab Kamali; Stefan Popov; Matteo Malloci; Alexander Kolesnikov; Tom Duerig; Vittorio Ferrari (2021). Open Images V4 Dataset [Dataset]. https://paperswithcode.com/dataset/open-images-v4
    Explore at:
    Dataset updated
    Aug 19, 2021
    Authors
    Alina Kuznetsova; Hassan Rom; Neil Alldrin; Jasper Uijlings; Ivan Krasin; Jordi Pont-Tuset; Shahab Kamali; Stefan Popov; Matteo Malloci; Alexander Kolesnikov; Tom Duerig; Vittorio Ferrari
    Description

    Open Images V4 offers large scale across several dimensions: 30.1M image-level labels for 19.8k concepts, 15.4M bounding boxes for 600 object classes, and 375k visual relationship annotations involving 57 classes. For object detection in particular, 15x more bounding boxes than the next largest datasets (15.4M boxes on 1.9M images) are provided. The images often show complex scenes with several objects (8 annotated objects per image on average). Visual relationships between them are annotated, which support visual relationship detection, an emerging task that requires structured reasoning.

  5. P

    MS COCO Dataset

    • paperswithcode.com
    Updated Apr 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tsung-Yi Lin; Michael Maire; Serge Belongie; Lubomir Bourdev; Ross Girshick; James Hays; Pietro Perona; Deva Ramanan; C. Lawrence Zitnick; Piotr Dollár, MS COCO Dataset [Dataset]. https://paperswithcode.com/dataset/coco
    Explore at:
    Dataset updated
    Apr 15, 2024
    Authors
    Tsung-Yi Lin; Michael Maire; Serge Belongie; Lubomir Bourdev; Ross Girshick; James Hays; Pietro Perona; Deva Ramanan; C. Lawrence Zitnick; Piotr Dollár
    Description

    The MS COCO (Microsoft Common Objects in Context) dataset is a large-scale object detection, segmentation, key-point detection, and captioning dataset. The dataset consists of 328K images.

    Splits: The first version of MS COCO dataset was released in 2014. It contains 164K images split into training (83K), validation (41K) and test (41K) sets. In 2015 additional test set of 81K images was released, including all the previous test images and 40K new images.

    Based on community feedback, in 2017 the training/validation split was changed from 83K/41K to 118K/5K. The new split uses the same images and annotations. The 2017 test set is a subset of 41K images of the 2015 test set. Additionally, the 2017 release contains a new unannotated dataset of 123K images.

    Annotations: The dataset has annotations for

    object detection: bounding boxes and per-instance segmentation masks with 80 object categories, captioning: natural language descriptions of the images (see MS COCO Captions), keypoints detection: containing more than 200,000 images and 250,000 person instances labeled with keypoints (17 possible keypoints, such as left eye, nose, right hip, right ankle), stuff image segmentation – per-pixel segmentation masks with 91 stuff categories, such as grass, wall, sky (see MS COCO Stuff), panoptic: full scene segmentation, with 80 thing categories (such as person, bicycle, elephant) and a subset of 91 stuff categories (grass, sky, road), dense pose: more than 39,000 images and 56,000 person instances labeled with DensePose annotations – each labeled person is annotated with an instance id and a mapping between image pixels that belong to that person body and a template 3D model. The annotations are publicly available only for training and validation images.

  6. h

    stanford-dogs

    • huggingface.co
    • universe.roboflow.com
    • +1more
    Updated Mar 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    stanford-dogs [Dataset]. https://huggingface.co/datasets/maurice-fp/stanford-dogs
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 2, 2025
    Dataset authored and provided by
    Maurice
    Description

    Dataset Card for Stanford Dogs

    The Stanford Dogs dataset contains images of 120 breeds of dogs from around the world. This dataset has been built using images and annotation from ImageNet for the task of fine-grained image categorization. Contents of this dataset:

    Number of categories: 120

    Number of images: 20,580

    Annotations: Class labels, Bounding boxes (not imported to HF)

    Website: http://vision.stanford.edu/aditya86/ImageNetDogs/

    Paper:… See the full description on the dataset page: https://huggingface.co/datasets/maurice-fp/stanford-dogs.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li (2024). ImageNet Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet

Data from: ImageNet Dataset

Related Article
Explore at:
14 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 15, 2024
Authors
Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li
Description

The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.

Total number of non-empty WordNet synsets: 21841 Total number of images: 14197122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million

Search
Clear search
Close search
Google apps
Main menu