67 datasets found
  1. T

    imagenet2012

    • tensorflow.org
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imagenet2012 [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet2012
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    ILSVRC 2012, commonly known as 'ImageNet' is an image dataset organized according to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or word phrases, is called a "synonym set" or "synset". There are more than 100,000 synsets in WordNet, majority of them are nouns (80,000+). In ImageNet, we aim to provide on average 1000 images to illustrate each synset. Images of each concept are quality-controlled and human-annotated. In its completion, we hope ImageNet will offer tens of millions of cleanly sorted images for most of the concepts in the WordNet hierarchy.

    The test split contains 100K images but no labels because no labels have been publicly released. We provide support for the test split from 2012 with the minor patch released on October 10, 2019. In order to manually download this data, a user must perform the following operations:

    1. Download the 2012 test split available here.
    2. Download the October 10, 2019 patch. There is a Google Drive link to the patch provided on the same page.
    3. Combine the two tar-balls, manually overwriting any images in the original archive with images from the patch. According to the instructions on image-net.org, this procedure overwrites just a few images.

    The resulting tar-ball may then be processed by TFDS.

    To assess the accuracy of a model on the ImageNet test split, one must run inference on all images in the split, export those results to a text file that must be uploaded to the ImageNet evaluation server. The maintainers of the ImageNet evaluation server permits a single user to submit up to 2 submissions per week in order to prevent overfitting.

    To evaluate the accuracy on the test split, one must first create an account at image-net.org. This account must be approved by the site administrator. After the account is created, one can submit the results to the test server at https://image-net.org/challenges/LSVRC/eval_server.php The submission consists of several ASCII text files corresponding to multiple tasks. The task of interest is "Classification submission (top-5 cls error)". A sample of an exported text file looks like the following:

    771 778 794 387 650
    363 691 764 923 427
    737 369 430 531 124
    755 930 755 59 168
    

    The export format is described in full in "readme.txt" within the 2013 development kit available here: https://image-net.org/data/ILSVRC/2013/ILSVRC2013_devkit.tgz Please see the section entitled "3.3 CLS-LOC submission format". Briefly, the format of the text file is 100,000 lines corresponding to each image in the test split. Each line of integers correspond to the rank-ordered, top 5 predictions for each test image. The integers are 1-indexed corresponding to the line number in the corresponding labels file. See labels.txt.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet2012', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet2012-5.1.0.png" alt="Visualization" width="500px">

  2. h

    tiny-imagenet

    • huggingface.co
    • datasets.activeloop.ai
    Updated Aug 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hao Zheng (2022). tiny-imagenet [Dataset]. https://huggingface.co/datasets/zh-plus/tiny-imagenet
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 12, 2022
    Authors
    Hao Zheng
    License

    https://choosealicense.com/licenses/undefined/https://choosealicense.com/licenses/undefined/

    Description

    Dataset Card for tiny-imagenet

      Dataset Summary
    

    Tiny ImageNet contains 100000 images of 200 classes (500 for each class) downsized to 64×64 colored images. Each class has 500 training images, 50 validation images, and 50 test images.

      Languages
    

    The class labels in the dataset are in English.

      Dataset Structure
    
    
    
    
    
      Data Instances
    

    { 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=64x64 at 0x1A800E8E190, 'label': 15 }… See the full description on the dataset page: https://huggingface.co/datasets/zh-plus/tiny-imagenet.

  3. P

    Tiny ImageNet Dataset

    • paperswithcode.com
    • opendatalab.com
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Le (2021). Tiny ImageNet Dataset [Dataset]. https://paperswithcode.com/dataset/tiny-imagenet
    Explore at:
    Authors
    Le
    Description

    Tiny ImageNet contains 100000 images of 200 classes (500 for each class) downsized to 64×64 colored images. Each class has 500 training images, 50 validation images and 50 test images.

  4. T

    imagenet_a

    • tensorflow.org
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imagenet_a [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet_a
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    ImageNet-A is a set of images labelled with ImageNet labels that were obtained by collecting new data and keeping only those images that ResNet-50 models fail to correctly classify. For more details please refer to the paper.

    The label space is the same as that of ImageNet2012. Each example is represented as a dictionary with the following keys:

    • 'image': The image, a (H, W, 3)-tensor.
    • 'label': An integer in the range [0, 1000).
    • 'file_name': A unique sting identifying the example within the dataset.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet_a', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet_a-0.1.0.png" alt="Visualization" width="500px">

  5. T

    imagenet_lt

    • tensorflow.org
    Updated Dec 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). imagenet_lt [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet_lt
    Explore at:
    Dataset updated
    Dec 10, 2022
    Description

    ImageNet-LT is a subset of original ImageNet ILSVRC 2012 dataset. The training set is subsampled such that the number of images per class follows a long-tailed distribution. The class with the maximum number of images contains 1,280 examples, whereas the class with the minumum number of images contains only 5 examples. The dataset also has a balanced validation set, which is also a subset of the ImageNet ILSVRC 2012 training set and contains 20 images per class. The test set of this dataset is the same as the validation set of the original ImageNet ILSVRC 2012 dataset.

    The original ImageNet ILSVRC 2012 dataset must be downloaded manually, and its path should be set with --manual_dir in order to generate this dataset.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet_lt', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet_lt-1.0.0.png" alt="Visualization" width="500px">

  6. h

    imagenet-1k-32x32

    • huggingface.co
    Updated Sep 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Paine (2024). imagenet-1k-32x32 [Dataset]. https://huggingface.co/datasets/benjamin-paine/imagenet-1k-32x32
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 15, 2024
    Authors
    Benjamin Paine
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Repack Information

    This repository contains a complete repack of ILSVRC/imagenet-1k in Parquet format with the following data transformations:

    Images were center-cropped to square to the minimum height/width dimension. Images were then rescaled to 256x256 using Lanczos resampling. This dataset is available at benjamin-paine/imagenet-1k-256x256 Images were then rescaled to 128x128 using Lanczos resampling. This dataset is available at benjamin-paine/imagenet-1k-128x128. Images were… See the full description on the dataset page: https://huggingface.co/datasets/benjamin-paine/imagenet-1k-32x32.

  7. P

    ImageNet-64 Dataset

    • paperswithcode.com
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patryk Chrabaszcz; Ilya Loshchilov; Frank Hutter (2023). ImageNet-64 Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet-64
    Explore at:
    Dataset updated
    Sep 20, 2023
    Authors
    Patryk Chrabaszcz; Ilya Loshchilov; Frank Hutter
    Description

    Imagenet64 is a massive dataset of small images called the down-sampled version of Imagenet. Imagenet64 comprises 1,281,167 training data and 50,000 test data with 1,000 labels.

  8. T

    imagenet_resized

    • tensorflow.org
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imagenet_resized [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet_resized
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    This dataset consists of the ImageNet dataset resized to fixed size. The images here are the ones provided by Chrabaszcz et. al. using the box resize method.

    For downsampled ImageNet for unsupervised learning see downsampled_imagenet.

    WARNING: The integer labels used are defined by the authors and do not match those from the other ImageNet datasets provided by Tensorflow datasets. See the original label list, and the labels used by this dataset. Additionally, the original authors 1 index there labels which we convert to 0 indexed by subtracting one.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet_resized', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet_resized-8x8-0.1.0.png" alt="Visualization" width="500px">

  9. T

    imagenet2012_real

    • tensorflow.org
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imagenet2012_real [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet2012_real
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    This dataset contains ILSVRC-2012 (ImageNet) validation images augmented with a new set of "Re-Assessed" (ReaL) labels from the "Are we done with ImageNet" paper, see https://arxiv.org/abs/2006.07159. These labels are collected using the enhanced protocol, resulting in multi-label and more accurate annotations.

    Important note: about 3500 examples contain no label, these should be excluded from the averaging when computing the accuracy. One possible way of doing this is with the following NumPy code:

    is_correct = [pred in real_labels[i] for i, pred in enumerate(predictions) if real_labels[i]]
    real_accuracy = np.mean(is_correct)
    

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet2012_real', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet2012_real-1.0.0.png" alt="Visualization" width="500px">

  10. ImageNet 1K TFRecords 256x256

    • kaggle.com
    Updated Sep 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Park (2022). ImageNet 1K TFRecords 256x256 [Dataset]. https://www.kaggle.com/datasets/parkjohnychae/imagenet1k-tfrecords-256x256
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 21, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    John Park
    Description

    "ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns), in which each node of the hierarchy is depicted by hundreds and thousands of images. The project has been instrumental in advancing computer vision and deep learning research. The data is available for free to researchers for non-commercial use." (https://www.image-net.org/index.php)

    I do not hold any copyright to this dataset. This data is just a re-distribution of the data Imagenet.org shared on Kaggle. Please note that some of the ImageNet1K images are under copyright.

    This version of the data is directly sourced from Kaggle, excluding the bounding box annotations. Therefore, only images and class labels are included.

    All images are resized to 256 x 256.

    Integer labels are assigned after ordering the class names alphabetically.

    Please note that anyone using this data abides by the original terms: ``` RESEARCHER_FULLNAME has requested permission to use the ImageNet database (the "Database") at Princeton University and Stanford University. In exchange for such permission, Researcher hereby agrees to the following terms and conditions:

    1. Researcher shall use the Database only for non-commercial research and educational purposes.
    2. Princeton University and Stanford University make no representations or warranties regarding the Database, including but not limited to warranties of non-infringement or fitness for a particular purpose.
    3. Researcher accepts full responsibility for his or her use of the Database and shall defend and indemnify the ImageNet team, Princeton University, and Stanford University, including their employees, Trustees, officers and agents, against any and all claims arising from Researcher's use of the Database, including but not limited to Researcher's use of any copies of copyrighted images that he or she may create from the Database.
    4. Researcher may provide research associates and colleagues with access to the Database provided that they first agree to be bound by these terms and conditions.
    5. Princeton University and Stanford University reserve the right to terminate Researcher's access to the Database at any time.
    6. If Researcher is employed by a for-profit, commercial entity, Researcher's employer shall also be bound by these terms and conditions, and Researcher hereby represents that he or she is fully authorized to enter into this agreement on behalf of such employer.
    7. The law of the State of New Jersey shall apply to all disputes under this agreement.
    
    The images are processed using [TPU VM](https://cloud.google.com/tpu/docs/users-guide-tpu-vm) via the support of Google's [TPU Research Cloud](https://sites.research.google/trc/about/).
    
  11. P

    mini-Imagenet Dataset

    • paperswithcode.com
    Updated Sep 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oriol Vinyals; Charles Blundell; Timothy Lillicrap; Koray Kavukcuoglu; Daan Wierstra (2022). mini-Imagenet Dataset [Dataset]. https://paperswithcode.com/dataset/mini-imagenet
    Explore at:
    Dataset updated
    Sep 3, 2022
    Authors
    Oriol Vinyals; Charles Blundell; Timothy Lillicrap; Koray Kavukcuoglu; Daan Wierstra
    Description

    mini-Imagenet is proposed by Matching Networks for One Shot Learning . In NeurIPS, 2016. This dataset consists of 50000 training images and 10000 testing images, evenly distributed across 100 classes.

  12. h

    imagenet_1k_resized_256

    • huggingface.co
    Updated Feb 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Evan (2025). imagenet_1k_resized_256 [Dataset]. https://huggingface.co/datasets/evanarlian/imagenet_1k_resized_256
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 26, 2025
    Authors
    Evan
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Dataset Card for "imagenet_1k_resized_256"

      Dataset summary
    

    The same ImageNet dataset but all the smaller side resized to 256. A lot of pretraining workflows contain resizing images to 256 and random cropping to 224x224, this is why 256 is chosen. The resized dataset can also be downloaded much faster and consume less space than the original one. See here for detailed readme.

      Dataset Structure
    

    Below is the example of one row of data. Note that the labels in… See the full description on the dataset page: https://huggingface.co/datasets/evanarlian/imagenet_1k_resized_256.

  13. a

    ImageNet21K (Winter 2021 Release)

    • academictorrents.com
    bittorrent
    Updated Jun 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jia Deng and Wei Dong and Richard Socher and Li-Jia Li and Kai Li and Li Fei-Fei (2021). ImageNet21K (Winter 2021 Release) [Dataset]. https://academictorrents.com/details/8ec0d8df0fbb507594557bce993920442f4f6477
    Explore at:
    bittorrent(1185381173159)Available download formats
    Dataset updated
    Jun 28, 2021
    Dataset authored and provided by
    Jia Deng and Wei Dong and Richard Socher and Li-Jia Li and Kai Li and Li Fei-Fei
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    ImageNet is an image dataset organized according to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or word phrases, is called a "synonym set" or "synset". There are more than 100,000 synsets in WordNet, majority of them are nouns (80,000+). In ImageNet, we aim to provide on average 1000 images to illustrate each synset. Images of each concept are quality-controlled and human-annotated. In its completion, we hope ImageNet will offer tens of millions of cleanly sorted images for most of the concepts in the WordNet hierarchy.

  14. h

    imagenet-22k-wds

    • huggingface.co
    Updated Jan 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PyTorch Image Models (2024). imagenet-22k-wds [Dataset]. https://huggingface.co/datasets/timm/imagenet-22k-wds
    Explore at:
    Dataset updated
    Jan 29, 2024
    Dataset authored and provided by
    PyTorch Image Models
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Dataset Summary

    This is a copy of the full ImageNet dataset consisting of all of the original 21841 clases. It also contains labels in a separate field for the '12k' subset described at at (https://github.com/rwightman/imagenet-12k, https://huggingface.co/datasets/timm/imagenet-12k-wds) This dataset is from the original fall11 ImageNet release which has been replaced by the winter21 release which removes close to 3000 synsets containing people, a number of these are of an offensive… See the full description on the dataset page: https://huggingface.co/datasets/timm/imagenet-22k-wds.

  15. h

    mini-imagenet

    • huggingface.co
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PyTorch Image Models (2024). mini-imagenet [Dataset]. https://huggingface.co/datasets/timm/mini-imagenet
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 21, 2024
    Dataset authored and provided by
    PyTorch Image Models
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Dataset Description

    A mini version of ImageNet-1k with 100 of 1000 classes present. Unlike some 'mini' variants this one includes the original images at their original sizes. Many such subsets downsample to 84x84 or other smaller resolutions.

      Data Splits
    
    
    
    
    
      Train
    

    50000 samples from ImageNet-1k train split

      Validation
    

    10000 samples from ImageNet-1k train split

      Test
    

    5000 samples from ImageNet-1k validation split (all 50 samples per class)… See the full description on the dataset page: https://huggingface.co/datasets/timm/mini-imagenet.

  16. a

    Downsampled ImageNet 64x64

    • academictorrents.com
    bittorrent
    Updated Jun 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron van den Oord and Nal Kalchbrenner and Koray Kavukcuoglu (2017). Downsampled ImageNet 64x64 [Dataset]. https://academictorrents.com/details/96816a530ee002254d29bf7a61c0c158d3dedc3b
    Explore at:
    bittorrent(12589844480)Available download formats
    Dataset updated
    Jun 2, 2017
    Dataset authored and provided by
    Aaron van den Oord and Nal Kalchbrenner and Koray Kavukcuoglu
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    This page includes downsampled ImageNet images, which can be used for density estimation and generative modeling experiments. Images come in two resolutions: 32x32 and 64x64, and were introduced in Pixel Recurrent Neural Networks. Please refer to the Pixel RNN paper for more details and results. ![]()

  17. P

    Data from: ImageNet Dataset

    • paperswithcode.com
    Updated Apr 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li (2021). ImageNet Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet
    Explore at:
    Dataset updated
    Apr 15, 2024
    Authors
    Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li
    Description

    The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.

    Total number of non-empty WordNet synsets: 21841 Total number of images: 14197122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million

  18. P

    ImageNet-C Dataset

    • paperswithcode.com
    Updated Feb 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dan Hendrycks; Thomas Dietterich (2021). ImageNet-C Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet-c
    Explore at:
    Dataset updated
    Feb 2, 2021
    Authors
    Dan Hendrycks; Thomas Dietterich
    Description

    ImageNet-C is an open source data set that consists of algorithmically generated corruptions (blur, noise) applied to the ImageNet test-set.

  19. f

    Tiny_Imagenet

    • figshare.com
    application/x-rar
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiujian Hu (2023). Tiny_Imagenet [Dataset]. http://doi.org/10.6084/m9.figshare.22012529.v1
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Xiujian Hu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    iny Imagenet has 200 Classes, each class has 500 traininig images, 50 Validation Images and 50 test images. Label Classes and Bounding Boxes are provided. More details can be found at https://tiny-imagenet.herokuapp.com/",

    This challenge is part of Stanford Class CS 231N

  20. T

    imagenet_r

    • tensorflow.org
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imagenet_r [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet_r
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    ImageNet-R is a set of images labelled with ImageNet labels that were obtained by collecting art, cartoons, deviantart, graffiti, embroidery, graphics, origami, paintings, patterns, plastic objects, plush objects, sculptures, sketches, tattoos, toys, and video game renditions of ImageNet classes. ImageNet-R has renditions of 200 ImageNet classes resulting in 30,000 images. by collecting new data and keeping only those images that ResNet-50 models fail to correctly classify. For more details please refer to the paper.

    The label space is the same as that of ImageNet2012. Each example is represented as a dictionary with the following keys:

    • 'image': The image, a (H, W, 3)-tensor.
    • 'label': An integer in the range [0, 1000).
    • 'file_name': A unique sting identifying the example within the dataset.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet_r', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet_r-0.2.0.png" alt="Visualization" width="500px">

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). imagenet2012 [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet2012

imagenet2012

Related Article
Explore at:
447 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 1, 2024
Description

ILSVRC 2012, commonly known as 'ImageNet' is an image dataset organized according to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or word phrases, is called a "synonym set" or "synset". There are more than 100,000 synsets in WordNet, majority of them are nouns (80,000+). In ImageNet, we aim to provide on average 1000 images to illustrate each synset. Images of each concept are quality-controlled and human-annotated. In its completion, we hope ImageNet will offer tens of millions of cleanly sorted images for most of the concepts in the WordNet hierarchy.

The test split contains 100K images but no labels because no labels have been publicly released. We provide support for the test split from 2012 with the minor patch released on October 10, 2019. In order to manually download this data, a user must perform the following operations:

  1. Download the 2012 test split available here.
  2. Download the October 10, 2019 patch. There is a Google Drive link to the patch provided on the same page.
  3. Combine the two tar-balls, manually overwriting any images in the original archive with images from the patch. According to the instructions on image-net.org, this procedure overwrites just a few images.

The resulting tar-ball may then be processed by TFDS.

To assess the accuracy of a model on the ImageNet test split, one must run inference on all images in the split, export those results to a text file that must be uploaded to the ImageNet evaluation server. The maintainers of the ImageNet evaluation server permits a single user to submit up to 2 submissions per week in order to prevent overfitting.

To evaluate the accuracy on the test split, one must first create an account at image-net.org. This account must be approved by the site administrator. After the account is created, one can submit the results to the test server at https://image-net.org/challenges/LSVRC/eval_server.php The submission consists of several ASCII text files corresponding to multiple tasks. The task of interest is "Classification submission (top-5 cls error)". A sample of an exported text file looks like the following:

771 778 794 387 650
363 691 764 923 427
737 369 430 531 124
755 930 755 59 168

The export format is described in full in "readme.txt" within the 2013 development kit available here: https://image-net.org/data/ILSVRC/2013/ILSVRC2013_devkit.tgz Please see the section entitled "3.3 CLS-LOC submission format". Briefly, the format of the text file is 100,000 lines corresponding to each image in the test split. Each line of integers correspond to the rank-ordered, top 5 predictions for each test image. The integers are 1-indexed corresponding to the line number in the corresponding labels file. See labels.txt.

To use this dataset:

import tensorflow_datasets as tfds

ds = tfds.load('imagenet2012', split='train')
for ex in ds.take(4):
 print(ex)

See the guide for more informations on tensorflow_datasets.

https://storage.googleapis.com/tfds-data/visualization/fig/imagenet2012-5.1.0.png" alt="Visualization" width="500px">

Search
Clear search
Close search
Google apps
Main menu