The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.
Total number of non-empty WordNet synsets: 21841 Total number of images: 14197122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million
The ImageNet-A dataset consists of real-world, unmodified, and naturally occurring examples that are misclassified by ResNet models.
Tiny ImageNet contains 100000 images of 200 classes (500 for each class) downsized to 64×64 colored images. Each class has 500 training images, 50 validation images and 50 test images.
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
ImageNet-1K serves as the primary dataset for pretraining deep learning models for computer vision tasks. ImageNet-21K dataset, which contains more pictures and classes, is used less frequently for pretraining, mainly due to its complexity, and underestimation of its added value compared to standard ImageNet-1K pretraining. This paper aims to close this gap, and make high-quality efficient pretraining on ImageNet-21K available for everyone. Via a dedicated preprocessing stage, utilizing WordNet hierarchies, and a novel training scheme called semantic softmax, we show that different models, including small mobile-oriented models, significantly benefit from ImageNet-21K pretraining on numerous datasets and tasks. We also show that we outperform previous ImageNet-21K pretraining schemes for prominent new models like ViT. Our proposed pretraining pipeline is efficient, accessible, and leads to SoTA reproducible results, from a publicly available dataset.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
General Information
Title: ImageNet-AB Description: ImageNet-AB is an extended version of the ImageNet-1K training set, enriched with annotation byproducts (AB). In addition to the image and corresponding class labels, this dataset provides a rich history of interactions per input signal per front-end component during the annotation process. They include mouse traces, click locations, annotation times, as well as anonymised worker IDs. Links:
ICCV'23 Paper Main Repository ImageNet… See the full description on the dataset page: https://huggingface.co/datasets/coallaoh/ImageNet-AB.
Dataset Card for Tiny-ImageNet-C
Dataset Details
Dataset Description
In Tiny ImageNet-C, there are 75,109 corrupted images derived from the original Tiny ImageNet dataset. The images are affected by two different corruption types at five severity levels.
License: CC BY 4.0
Dataset Sources
Homepage: https://github.com/hendrycks/robustness Paper: Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common… See the full description on the dataset page: https://huggingface.co/datasets/randall-lab/tiny-imagenet-c.
ImageNet-C is an open source data set that consists of algorithmically generated corruptions (blur, noise) applied to the ImageNet test-set.
ImageNet-A is a set of images labelled with ImageNet labels that were obtained by collecting new data and keeping only those images that ResNet-50 models fail to correctly classify. For more details please refer to the paper.
The label space is the same as that of ImageNet2012. Each example is represented as a dictionary with the following keys:
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('imagenet_a', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/imagenet_a-0.1.0.png" alt="Visualization" width="500px">
This dataset contains ILSVRC-2012 (ImageNet) validation images augmented with a new set of "Re-Assessed" (ReaL) labels from the "Are we done with ImageNet" paper, see https://arxiv.org/abs/2006.07159. These labels are collected using the enhanced protocol, resulting in multi-label and more accurate annotations.
Important note: about 3500 examples contain no label, these should be excluded from the averaging when computing the accuracy. One possible way of doing this is with the following NumPy code:
is_correct = [pred in real_labels[i] for i, pred in enumerate(predictions) if real_labels[i]]
real_accuracy = np.mean(is_correct)
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('imagenet2012_real', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/imagenet2012_real-1.0.0.png" alt="Visualization" width="500px">
The dataset used in the paper is CIFAR-10, CIFAR-100 and Tiny-Imagenet datasets.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
ImageNet-Paste
ImageNet-Paste is created by pasting in small images of different concepts into each image from the ImageNet validation dataset to probe the impact of concept pairs on multimodal task accuracy in natural images.
Each ImageNet validation image is augmented by pasting in a small image of a different concept (accessory_word), and models are tasked with producing the correct ImageNet classification in the presence of the other concept. In our paper, we provide further… See the full description on the dataset page: https://huggingface.co/datasets/helenqu/ImageNet-Paste.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Classification accuracy against PGD-10 attacks on different datasets.
ImageNet-P consists of noise, blur, weather, and digital distortions. The dataset has validation perturbations; has difficulty levels; has CIFAR-10, Tiny ImageNet, ImageNet 64 × 64, standard, and Inception-sized editions; and has been designed for benchmarking not training networks. ImageNet-P departs from ImageNet-C by having perturbation sequences generated from each ImageNet validation image. Each sequence contains more than 30 frames, so to counteract an increase in dataset size and evaluation time only 10 common perturbations are used.
This dataset contains ILSVRC-2012 (ImageNet) validation images annotated with multi-class labels from "Evaluating Machine Accuracy on ImageNet", ICML, 2020. The multi-class labels were reviewed by a panel of experts extensively trained in the intricacies of fine-grained class distinctions in the ImageNet class hierarchy (see paper for more details). Compared to the original labels, these expert-reviewed multi-class labels enable a more semantically coherent evaluation of accuracy.
Version 3.0.0 of this dataset contains more corrected labels from "When does dough become a bagel? Analyzing the remaining mistakes on ImageNet as well as the ImageNet-Major (ImageNet-M) 68-example split under 'imagenet-m'.
Only 20,000 of the 50,000 ImageNet validation images have multi-label
annotations. The set of multi-labels was first generated by a testbed of 67
trained ImageNet models, and then each individual model prediction was manually
annotated by the experts as either correct
(the label is correct for the
image),wrong
(the label is incorrect for the image), or unclear
(no
consensus was reached among the experts).
Additionally, during annotation, the expert panel identified a set of problematic images. An image was problematic if it met any of the below criteria:
The problematic images are included in this dataset but should be ignored when computing multi-label accuracy. Additionally, since the initial set of 20,000 annotations is class-balanced, but the set of problematic images is not, we recommend computing the per-class accuracies and then averaging them. We also recommend counting a prediction as correct if it is marked as correct or unclear (i.e., being lenient with the unclear labels).
One possible way of doing this is with the following NumPy code:
import tensorflow_datasets as tfds
ds = tfds.load('imagenet2012_multilabel', split='validation')
# We assume that predictions is a dictionary from file_name to a class index between 0 and 999
num_correct_per_class = {}
num_images_per_class = {}
for example in ds:
# We ignore all problematic images
if example[‘is_problematic’].numpy():
continue
# The label of the image in ImageNet
cur_class = example['original_label'].numpy()
# If we haven't processed this class yet, set the counters to 0
if cur_class not in num_correct_per_class:
num_correct_per_class[cur_class] = 0
assert cur_class not in num_images_per_class
num_images_per_class[cur_class] = 0
num_images_per_class[cur_class] += 1
# Get the predictions for this image
cur_pred = predictions[example['file_name'].numpy()]
# We count a prediction as correct if it is marked as correct or unclear
# (i.e., we are lenient with the unclear labels)
if cur_pred is in example['correct_multi_labels'].numpy() or cur_pred is in example['unclear_multi_labels'].numpy():
num_correct_per_class[cur_class] += 1
# Check that we have collected accuracy data for each of the 1,000 classes
num_classes = 1000
assert len(num_correct_per_class) == num_classes
assert len(num_images_per_class) == num_classes
# Compute the per-class accuracies and then average them
final_avg = 0
for cid in range(num_classes):
assert cid in num_correct_per_class
assert cid in num_images_per_class
final_avg += num_correct_per_class[cid] / num_images_per_class[cid]
final_avg /= num_classes
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('imagenet2012_multilabel', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/imagenet2012_multilabel-3.0.0.png" alt="Visualization" width="500px">
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A comparison of the proposed method with image classification models on the ImageNet-Hard dataset.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Horikawa, T. & Kamitani, Y. (2017). Generic decoding of seen and imagined objects using hierarchical visual features. Nature Communications 8:15037. https://www.nature.com/articles/ncomms15037
In this study, fMRI data was recorded while subjects were viewing object images (image presentation experiment) or were imagining object images (imagery experiment). The image presentation experiment consisted of two distinct types of sessions: training image sessions and test image sessions. In the training image session, a total of 1,200 images from 150 object categories (8 images from each category) were each presented only once (24 runs). In the test image session, a total of 50 images from 50 object categories (1 image from each category) were presented 35 times each (35 runs). All images were taken from ImageNet (http://www.image-net.org/, Fall 2011 release), a large-scale hierarchical image database. During the image presentation experiment, subjects performed one-back image repetition task (5 trials in each run). In the imagery experiment, subjects were required to visually imagine images from 1 of the 50 categories (20 runs; 25 categories in each run; 10 samples for each category) that were presented in the test image session of the image presentation experiment. fMRI data in the training image sessions were used to train models (decoders) which predict visual features from fMRI patterns, and those in the test image sessions and the imagery experiment were used to evaluate the model performance. Predicted features for the test image sessions and imagery experiment are used to identify seen/imagined object categories from a set of computed features for numerous object images.
Analysis demo code is available at GitHub (KamitaniLab/GenericObjectDecoding).
The present dataset contains fMRI data from five subjects ('sub-01', 'sub-02', 'sub-03', 'sub-04', and 'sub-05'). Each subject data contains three types of MRI data each of which was collected over multiple scanning sessions.
Each scanning session consisted of functional (EPI) and anatomical (inplane T2) data. The functional EPI images covered the entire brain (TR, 3000 ms; TE, 30 ms; flip angle, 80°; voxel size, 3 × 3 × 3 mm; FOV, 192 × 192 mm; number of slices, 50, slice gap, 0 mm) and inplane T2-weighted anatomical images were acquired with the same slices used for the EPI (TR, 7020 ms; TE, 69 ms; flip angle, 160°; voxel size, 0.75 × 0.75 × 3.0 mm; FOV, 192 × 192 mm). The dataset also includes a T1-weighted anatomical reference image for each subject (TR, 2250 ms; TE, 3.06 ms; TI, 900 ms; flip angle, 9°; voxel size, 1.0 × 1.0 × 1.0 mm; FOV, 256 × 256 mm). The T1-weighted images were scanned only once for each subject in a separate scanning session and are stored in 'ses-anatomy' directories. The T1-weighted images were defaced by pydeface (https://pypi.python.org/pypi/pydeface). All DICOM files are converted to Nifti-1 files by mri_convert in FreeSurfer. In addition, the dataset contains mask images of manually defined ROIs for each subject in 'sourcedata' directory (See 'README' in 'sourcedata' for more details).
Task event files (‘sub-*_ses-*_task-*_run-*_events.tsv’) contains recorded event (stimuli presentation, subject responses, etc.) during fMRI runs. In task event files for perception task (‘ses-perceptionTraining' and 'ses-perceptionTest'), each column represents:
The name of a stimulus image file is formatted like as 'n03626115_19498.JPEG' where 'n03626115' is ImageNet/WorNet ID for a synset (category) and '19498' is image ID. Because of copyright, we do not include the stimulus images in the dataset. A script downloading the images from ImageNet is available at https://github.com/KamitaniLab/GenericObjectDecoding. Image features (CNN unit responses, HMAX, GIST, and SIFT) used in the original study are available at http://brainliner.jp/data/brainliner/Generic_Object_Decoding.
In task event files for imagery task ('ses-imageryTest'), each column in represents:
The dataset used in the paper is a mini-imagenet dataset, with 10100 instances, 21168 attributes, and 100 categories. The dataset is used for clustering and evaluation of the proposed method.
ILSVRC 2012, commonly known as 'ImageNet' is an image dataset organized according to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or word phrases, is called a "synonym set" or "synset". There are more than 100,000 synsets in WordNet, majority of them are nouns (80,000+). In ImageNet, we aim to provide on average 1000 images to illustrate each synset. Images of each concept are quality-controlled and human-annotated. In its completion, we hope ImageNet will offer tens of millions of cleanly sorted images for most of the concepts in the WordNet hierarchy.
The test split contains 100K images but no labels because no labels have been publicly released. We provide support for the test split from 2012 with the minor patch released on October 10, 2019. In order to manually download this data, a user must perform the following operations:
The resulting tar-ball may then be processed by TFDS.
To assess the accuracy of a model on the ImageNet test split, one must run inference on all images in the split, export those results to a text file that must be uploaded to the ImageNet evaluation server. The maintainers of the ImageNet evaluation server permits a single user to submit up to 2 submissions per week in order to prevent overfitting.
To evaluate the accuracy on the test split, one must first create an account at image-net.org. This account must be approved by the site administrator. After the account is created, one can submit the results to the test server at https://image-net.org/challenges/LSVRC/eval_server.php The submission consists of several ASCII text files corresponding to multiple tasks. The task of interest is "Classification submission (top-5 cls error)". A sample of an exported text file looks like the following:
771 778 794 387 650
363 691 764 923 427
737 369 430 531 124
755 930 755 59 168
The export format is described in full in "readme.txt" within the 2013 development kit available here: https://image-net.org/data/ILSVRC/2013/ILSVRC2013_devkit.tgz Please see the section entitled "3.3 CLS-LOC submission format". Briefly, the format of the text file is 100,000 lines corresponding to each image in the test split. Each line of integers correspond to the rank-ordered, top 5 predictions for each test image. The integers are 1-indexed corresponding to the line number in the corresponding labels file. See labels.txt.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('imagenet2012', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/imagenet2012-5.1.0.png" alt="Visualization" width="500px">
Dataset used for paper -> "Rethinking Dataset Compression: Shifting Focus From Labels to Images"
Dataset created according to the paper Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale From A New Perspective.
Basic Usage
from datasets import load_dataset dataset = load_dataset("he-yang/2025-rethinkdc-imagenet-sre2l-ipc-50")
For more information, please refer to the Rethinking-Dataset-Compression
The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.
Total number of non-empty WordNet synsets: 21841 Total number of images: 14197122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million