100+ datasets found
  1. P

    Data from: ImageNet Dataset

    • paperswithcode.com
    Updated Apr 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li (2021). ImageNet Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet
    Explore at:
    Dataset updated
    Apr 15, 2024
    Authors
    Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li
    Description

    The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.

    Total number of non-empty WordNet synsets: 21841 Total number of images: 14197122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million

  2. P

    ImageNet-A Dataset

    • paperswithcode.com
    Updated Dec 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dan Hendrycks; Kevin Zhao; Steven Basart; Jacob Steinhardt; Dawn Song (2023). ImageNet-A Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet-a
    Explore at:
    Dataset updated
    Dec 20, 2023
    Authors
    Dan Hendrycks; Kevin Zhao; Steven Basart; Jacob Steinhardt; Dawn Song
    Description

    The ImageNet-A dataset consists of real-world, unmodified, and naturally occurring examples that are misclassified by ResNet models.

  3. P

    Tiny ImageNet Dataset

    • library.toponeai.link
    • paperswithcode.com
    • +1more
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Le (2025). Tiny ImageNet Dataset [Dataset]. https://library.toponeai.link/dataset/tiny-imagenet
    Explore at:
    Dataset updated
    Feb 4, 2025
    Authors
    Le
    Description

    Tiny ImageNet contains 100000 images of 200 classes (500 for each class) downsized to 64×64 colored images. Each class has 500 training images, 50 validation images and 50 test images.

  4. a

    ImageNet-21K-P dataset (processed from fall11_whole.tar)

    • academictorrents.com
    bittorrent
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://arxiv.org/pdf/2104.10972 (2021). ImageNet-21K-P dataset (processed from fall11_whole.tar) [Dataset]. https://academictorrents.com/details/84461687ecb08ce9d0f24b70d0528e4ae5d6966e
    Explore at:
    bittorrent(279013071677)Available download formats
    Dataset updated
    May 4, 2021
    Dataset provided by
    https://arxiv.org/pdf/2104.10972
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    ImageNet-1K serves as the primary dataset for pretraining deep learning models for computer vision tasks. ImageNet-21K dataset, which contains more pictures and classes, is used less frequently for pretraining, mainly due to its complexity, and underestimation of its added value compared to standard ImageNet-1K pretraining. This paper aims to close this gap, and make high-quality efficient pretraining on ImageNet-21K available for everyone. Via a dedicated preprocessing stage, utilizing WordNet hierarchies, and a novel training scheme called semantic softmax, we show that different models, including small mobile-oriented models, significantly benefit from ImageNet-21K pretraining on numerous datasets and tasks. We also show that we outperform previous ImageNet-21K pretraining schemes for prominent new models like ViT. Our proposed pretraining pipeline is efficient, accessible, and leads to SoTA reproducible results, from a publicly available dataset.

  5. h

    ImageNet-AB

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seong Joon Oh, ImageNet-AB [Dataset]. https://huggingface.co/datasets/coallaoh/ImageNet-AB
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Seong Joon Oh
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    General Information

    Title: ImageNet-AB Description: ImageNet-AB is an extended version of the ImageNet-1K training set, enriched with annotation byproducts (AB). In addition to the image and corresponding class labels, this dataset provides a rich history of interactions per input signal per front-end component during the annotation process. They include mouse traces, click locations, annotation times, as well as anonymised worker IDs. Links:

    ICCV'23 Paper Main Repository ImageNet… See the full description on the dataset page: https://huggingface.co/datasets/coallaoh/ImageNet-AB.

  6. h

    tiny-imagenet-c

    • huggingface.co
    Updated Mar 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    randall-lab (2025). tiny-imagenet-c [Dataset]. https://huggingface.co/datasets/randall-lab/tiny-imagenet-c
    Explore at:
    Dataset updated
    Mar 23, 2025
    Dataset authored and provided by
    randall-lab
    Description

    Dataset Card for Tiny-ImageNet-C

      Dataset Details
    
    
    
    
    
      Dataset Description
    

    In Tiny ImageNet-C, there are 75,109 corrupted images derived from the original Tiny ImageNet dataset. The images are affected by two different corruption types at five severity levels.

    License: CC BY 4.0

      Dataset Sources
    

    Homepage: https://github.com/hendrycks/robustness Paper: Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common… See the full description on the dataset page: https://huggingface.co/datasets/randall-lab/tiny-imagenet-c.

  7. P

    ImageNet-C Dataset

    • paperswithcode.com
    Updated Feb 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dan Hendrycks; Thomas Dietterich (2021). ImageNet-C Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet-c
    Explore at:
    Dataset updated
    Feb 2, 2021
    Authors
    Dan Hendrycks; Thomas Dietterich
    Description

    ImageNet-C is an open source data set that consists of algorithmically generated corruptions (blur, noise) applied to the ImageNet test-set.

  8. T

    imagenet_a

    • tensorflow.org
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imagenet_a [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet_a
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    ImageNet-A is a set of images labelled with ImageNet labels that were obtained by collecting new data and keeping only those images that ResNet-50 models fail to correctly classify. For more details please refer to the paper.

    The label space is the same as that of ImageNet2012. Each example is represented as a dictionary with the following keys:

    • 'image': The image, a (H, W, 3)-tensor.
    • 'label': An integer in the range [0, 1000).
    • 'file_name': A unique sting identifying the example within the dataset.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet_a', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet_a-0.1.0.png" alt="Visualization" width="500px">

  9. T

    imagenet2012_real

    • tensorflow.org
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imagenet2012_real [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet2012_real
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    This dataset contains ILSVRC-2012 (ImageNet) validation images augmented with a new set of "Re-Assessed" (ReaL) labels from the "Are we done with ImageNet" paper, see https://arxiv.org/abs/2006.07159. These labels are collected using the enhanced protocol, resulting in multi-label and more accurate annotations.

    Important note: about 3500 examples contain no label, these should be excluded from the averaging when computing the accuracy. One possible way of doing this is with the following NumPy code:

    is_correct = [pred in real_labels[i] for i, pred in enumerate(predictions) if real_labels[i]]
    real_accuracy = np.mean(is_correct)
    

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet2012_real', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet2012_real-1.0.0.png" alt="Visualization" width="500px">

  10. t

    CIFAR-10, CIFAR-100 and Tiny-Imagenet - Dataset - LDM

    • service.tib.eu
    Updated Dec 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). CIFAR-10, CIFAR-100 and Tiny-Imagenet - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/cifar-10--cifar-100-and-tiny-imagenet
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    The dataset used in the paper is CIFAR-10, CIFAR-100 and Tiny-Imagenet datasets.

  11. h

    ImageNet-Paste

    • huggingface.co
    Updated Jul 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Helen Qu (2025). ImageNet-Paste [Dataset]. https://huggingface.co/datasets/helenqu/ImageNet-Paste
    Explore at:
    Dataset updated
    Jul 5, 2025
    Authors
    Helen Qu
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    ImageNet-Paste

    ImageNet-Paste is created by pasting in small images of different concepts into each image from the ImageNet validation dataset to probe the impact of concept pairs on multimodal task accuracy in natural images.

    Each ImageNet validation image is augmented by pasting in a small image of a different concept (accessory_word), and models are tasked with producing the correct ImageNet classification in the presence of the other concept. In our paper, we provide further… See the full description on the dataset page: https://huggingface.co/datasets/helenqu/ImageNet-Paste.

  12. f

    Classification accuracy against PGD-10 attacks on different datasets.

    • plos.figshare.com
    xls
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie-Chao Zhao; Jin Ding; Yong-Zhi Sun; Ping Tan; Ji-En Ma; You-Tong Fang (2025). Classification accuracy against PGD-10 attacks on different datasets. [Dataset]. http://doi.org/10.1371/journal.pone.0317023.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Jie-Chao Zhao; Jin Ding; Yong-Zhi Sun; Ping Tan; Ji-En Ma; You-Tong Fang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Classification accuracy against PGD-10 attacks on different datasets.

  13. P

    ImageNet-P Dataset

    • paperswithcode.com
    • opendatalab.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dan Hendrycks; Thomas Dietterich, ImageNet-P Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet-p
    Explore at:
    Authors
    Dan Hendrycks; Thomas Dietterich
    Description

    ImageNet-P consists of noise, blur, weather, and digital distortions. The dataset has validation perturbations; has difficulty levels; has CIFAR-10, Tiny ImageNet, ImageNet 64 × 64, standard, and Inception-sized editions; and has been designed for benchmarking not training networks. ImageNet-P departs from ImageNet-C by having perturbation sequences generated from each ImageNet validation image. Each sequence contains more than 30 frames, so to counteract an increase in dataset size and evaluation time only 10 common perturbations are used.

  14. t

    CIFAR-10, STL-10, and ImageNet

    • service.tib.eu
    Updated Dec 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). CIFAR-10, STL-10, and ImageNet [Dataset]. https://service.tib.eu/ldmservice/dataset/cifar-10--stl-10--and-imagenet
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    The dataset used in the paper is CIFAR-10, STL-10, and ImageNet.

  15. T

    imagenet2012_multilabel

    • tensorflow.org
    Updated Dec 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). imagenet2012_multilabel [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet2012_multilabel
    Explore at:
    Dataset updated
    Dec 10, 2022
    Description

    This dataset contains ILSVRC-2012 (ImageNet) validation images annotated with multi-class labels from "Evaluating Machine Accuracy on ImageNet", ICML, 2020. The multi-class labels were reviewed by a panel of experts extensively trained in the intricacies of fine-grained class distinctions in the ImageNet class hierarchy (see paper for more details). Compared to the original labels, these expert-reviewed multi-class labels enable a more semantically coherent evaluation of accuracy.

    Version 3.0.0 of this dataset contains more corrected labels from "When does dough become a bagel? Analyzing the remaining mistakes on ImageNet as well as the ImageNet-Major (ImageNet-M) 68-example split under 'imagenet-m'.

    Only 20,000 of the 50,000 ImageNet validation images have multi-label annotations. The set of multi-labels was first generated by a testbed of 67 trained ImageNet models, and then each individual model prediction was manually annotated by the experts as either correct (the label is correct for the image),wrong (the label is incorrect for the image), or unclear (no consensus was reached among the experts).

    Additionally, during annotation, the expert panel identified a set of problematic images. An image was problematic if it met any of the below criteria:

    • The original ImageNet label (top-1 label) was incorrect or unclear
    • Image was a drawing, painting, sketch, cartoon, or computer-rendered
    • Image was excessively edited
    • Image had inappropriate content

    The problematic images are included in this dataset but should be ignored when computing multi-label accuracy. Additionally, since the initial set of 20,000 annotations is class-balanced, but the set of problematic images is not, we recommend computing the per-class accuracies and then averaging them. We also recommend counting a prediction as correct if it is marked as correct or unclear (i.e., being lenient with the unclear labels).

    One possible way of doing this is with the following NumPy code:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet2012_multilabel', split='validation')
    
    # We assume that predictions is a dictionary from file_name to a class index between 0 and 999
    
    num_correct_per_class = {}
    num_images_per_class = {}
    
    for example in ds:
      # We ignore all problematic images
      if example[‘is_problematic’].numpy():
        continue
    
      # The label of the image in ImageNet
      cur_class = example['original_label'].numpy()
    
      # If we haven't processed this class yet, set the counters to 0
      if cur_class not in num_correct_per_class:
        num_correct_per_class[cur_class] = 0
        assert cur_class not in num_images_per_class
        num_images_per_class[cur_class] = 0
    
      num_images_per_class[cur_class] += 1
    
      # Get the predictions for this image
      cur_pred = predictions[example['file_name'].numpy()]
    
      # We count a prediction as correct if it is marked as correct or unclear
      # (i.e., we are lenient with the unclear labels)
      if cur_pred is in example['correct_multi_labels'].numpy() or cur_pred is in example['unclear_multi_labels'].numpy():
        num_correct_per_class[cur_class] += 1
    
    # Check that we have collected accuracy data for each of the 1,000 classes
    num_classes = 1000
    assert len(num_correct_per_class) == num_classes
    assert len(num_images_per_class) == num_classes
    
    # Compute the per-class accuracies and then average them
    final_avg = 0
    for cid in range(num_classes):
     assert cid in num_correct_per_class
     assert cid in num_images_per_class
     final_avg += num_correct_per_class[cid] / num_images_per_class[cid]
    final_avg /= num_classes
    
    

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet2012_multilabel', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet2012_multilabel-3.0.0.png" alt="Visualization" width="500px">

  16. f

    A comparison of the proposed method with image classification models on the...

    • plos.figshare.com
    xls
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ebrahim Parcham; Mansoor Fateh; Vahid Abolghasemi (2025). A comparison of the proposed method with image classification models on the ImageNet-Hard dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0314393.t009
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Ebrahim Parcham; Mansoor Fateh; Vahid Abolghasemi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A comparison of the proposed method with image classification models on the ImageNet-Hard dataset.

  17. Generic Object Decoding (fMRI on ImageNet)

    • openneuro.org
    Updated Sep 10, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomoyasu Horikawa; Yukiyasu Kamitani (2018). Generic Object Decoding (fMRI on ImageNet) [Dataset]. http://doi.org/10.18112/openneuro.ds001246.v1.0.1
    Explore at:
    Dataset updated
    Sep 10, 2018
    Dataset provided by
    OpenNeurohttps://openneuro.org/
    Authors
    Tomoyasu Horikawa; Yukiyasu Kamitani
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Generic Object Decoding (fMRI on ImageNet)

    Original paper

    Horikawa, T. & Kamitani, Y. (2017). Generic decoding of seen and imagined objects using hierarchical visual features. Nature Communications 8:15037. https://www.nature.com/articles/ncomms15037

    Overview

    In this study, fMRI data was recorded while subjects were viewing object images (image presentation experiment) or were imagining object images (imagery experiment). The image presentation experiment consisted of two distinct types of sessions: training image sessions and test image sessions. In the training image session, a total of 1,200 images from 150 object categories (8 images from each category) were each presented only once (24 runs). In the test image session, a total of 50 images from 50 object categories (1 image from each category) were presented 35 times each (35 runs). All images were taken from ImageNet (http://www.image-net.org/, Fall 2011 release), a large-scale hierarchical image database. During the image presentation experiment, subjects performed one-back image repetition task (5 trials in each run). In the imagery experiment, subjects were required to visually imagine images from 1 of the 50 categories (20 runs; 25 categories in each run; 10 samples for each category) that were presented in the test image session of the image presentation experiment. fMRI data in the training image sessions were used to train models (decoders) which predict visual features from fMRI patterns, and those in the test image sessions and the imagery experiment were used to evaluate the model performance. Predicted features for the test image sessions and imagery experiment are used to identify seen/imagined object categories from a set of computed features for numerous object images.

    Analysis demo code is available at GitHub (KamitaniLab/GenericObjectDecoding).

    Dataset

    MRI files

    The present dataset contains fMRI data from five subjects ('sub-01', 'sub-02', 'sub-03', 'sub-04', and 'sub-05'). Each subject data contains three types of MRI data each of which was collected over multiple scanning sessions.

    • 'ses-perceptionTraining': fMRI data from the training image sessions in the image presentation experiment (24 runs; 3-5 scanning sessions)
    • 'ses-perceptionTest': fMRI data from the test image sessions in the image presentation experiment (35 runs; 4-6 scanning sessions)
    • 'ses-imageryTest': fMRI data from the imagery experiment (20 runs; 3-5 scanning sessions)

    Each scanning session consisted of functional (EPI) and anatomical (inplane T2) data. The functional EPI images covered the entire brain (TR, 3000 ms; TE, 30 ms; flip angle, 80°; voxel size, 3 × 3 × 3 mm; FOV, 192 × 192 mm; number of slices, 50, slice gap, 0 mm) and inplane T2-weighted anatomical images were acquired with the same slices used for the EPI (TR, 7020 ms; TE, 69 ms; flip angle, 160°; voxel size, 0.75 × 0.75 × 3.0 mm; FOV, 192 × 192 mm). The dataset also includes a T1-weighted anatomical reference image for each subject (TR, 2250 ms; TE, 3.06 ms; TI, 900 ms; flip angle, 9°; voxel size, 1.0 × 1.0 × 1.0 mm; FOV, 256 × 256 mm). The T1-weighted images were scanned only once for each subject in a separate scanning session and are stored in 'ses-anatomy' directories. The T1-weighted images were defaced by pydeface (https://pypi.python.org/pypi/pydeface). All DICOM files are converted to Nifti-1 files by mri_convert in FreeSurfer. In addition, the dataset contains mask images of manually defined ROIs for each subject in 'sourcedata' directory (See 'README' in 'sourcedata' for more details).

    Task event files

    Task event files (‘sub-*_ses-*_task-*_run-*_events.tsv’) contains recorded event (stimuli presentation, subject responses, etc.) during fMRI runs. In task event files for perception task (‘ses-perceptionTraining' and 'ses-perceptionTest'), each column represents:

    • 'onset': onset time (sec) of an event
    • 'duration': duration (sec) of the event
    • 'trial_no': trial (block) number of the event
    • 'event_type': type of the event ('rest': Rest block without visual stimulus, 'stimulus': Stimulus presentation block)
    • ‘stim_id’: stimulus ID of the image presented in a stimulus block ('n/a' in rest blocks)
    • 'response_time': time of button press at the block, elapsed time (sec) from the beginning of each run ('0' means that a subject did not press the button in the block)

    The name of a stimulus image file is formatted like as 'n03626115_19498.JPEG' where 'n03626115' is ImageNet/WorNet ID for a synset (category) and '19498' is image ID. Because of copyright, we do not include the stimulus images in the dataset. A script downloading the images from ImageNet is available at https://github.com/KamitaniLab/GenericObjectDecoding. Image features (CNN unit responses, HMAX, GIST, and SIFT) used in the original study are available at http://brainliner.jp/data/brainliner/Generic_Object_Decoding.

    In task event files for imagery task ('ses-imageryTest'), each column in represents:

    • 'onset': onset time (sec) of an event
    • 'duration': duration (sec) of the event
    • 'trial_no': trial (block) number of the event
    • 'event_type': type of the event ('rest' and 'inter_rest': rest period, 'cue': cue presentation period, 'imagery': imagery period, 'evaluation': evaluation of imagery quality period)
    • 'category_id': ImageNet/WordNet synset ID of a synset (category) which the subject was instructed to imagine at the block
    • 'response_time': time of button press for imagery quality evaluation at the block, elapsed time (sec) from the beginning of each run
    • 'evaluation': vividness of their mental imagery evaluated by the subject (very vivid, fairly vivid, rather vivid, not vivid, or cannot recognize the target)
  18. t

    Mini-imagenet dataset - Dataset - LDM

    • service.tib.eu
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Mini-imagenet dataset - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/mini-imagenet-dataset
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    The dataset used in the paper is a mini-imagenet dataset, with 10100 instances, 21168 attributes, and 100 categories. The dataset is used for clustering and evaluation of the proposed method.

  19. T

    imagenet2012

    • tensorflow.org
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imagenet2012 [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet2012
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    ILSVRC 2012, commonly known as 'ImageNet' is an image dataset organized according to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or word phrases, is called a "synonym set" or "synset". There are more than 100,000 synsets in WordNet, majority of them are nouns (80,000+). In ImageNet, we aim to provide on average 1000 images to illustrate each synset. Images of each concept are quality-controlled and human-annotated. In its completion, we hope ImageNet will offer tens of millions of cleanly sorted images for most of the concepts in the WordNet hierarchy.

    The test split contains 100K images but no labels because no labels have been publicly released. We provide support for the test split from 2012 with the minor patch released on October 10, 2019. In order to manually download this data, a user must perform the following operations:

    1. Download the 2012 test split available here.
    2. Download the October 10, 2019 patch. There is a Google Drive link to the patch provided on the same page.
    3. Combine the two tar-balls, manually overwriting any images in the original archive with images from the patch. According to the instructions on image-net.org, this procedure overwrites just a few images.

    The resulting tar-ball may then be processed by TFDS.

    To assess the accuracy of a model on the ImageNet test split, one must run inference on all images in the split, export those results to a text file that must be uploaded to the ImageNet evaluation server. The maintainers of the ImageNet evaluation server permits a single user to submit up to 2 submissions per week in order to prevent overfitting.

    To evaluate the accuracy on the test split, one must first create an account at image-net.org. This account must be approved by the site administrator. After the account is created, one can submit the results to the test server at https://image-net.org/challenges/LSVRC/eval_server.php The submission consists of several ASCII text files corresponding to multiple tasks. The task of interest is "Classification submission (top-5 cls error)". A sample of an exported text file looks like the following:

    771 778 794 387 650
    363 691 764 923 427
    737 369 430 531 124
    755 930 755 59 168
    

    The export format is described in full in "readme.txt" within the 2013 development kit available here: https://image-net.org/data/ILSVRC/2013/ILSVRC2013_devkit.tgz Please see the section entitled "3.3 CLS-LOC submission format". Briefly, the format of the text file is 100,000 lines corresponding to each image in the test split. Each line of integers correspond to the rank-ordered, top 5 predictions for each test image. The integers are 1-indexed corresponding to the line number in the corresponding labels file. See labels.txt.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet2012', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet2012-5.1.0.png" alt="Visualization" width="500px">

  20. h

    2025-rethinkdc-imagenet-sre2l-ipc-50

    • huggingface.co
    Updated Feb 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yang He @ CFAR A*STAR (2025). 2025-rethinkdc-imagenet-sre2l-ipc-50 [Dataset]. https://huggingface.co/datasets/he-yang/2025-rethinkdc-imagenet-sre2l-ipc-50
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 11, 2025
    Dataset authored and provided by
    Yang He @ CFAR A*STAR
    Description

    Dataset used for paper -> "Rethinking Dataset Compression: Shifting Focus From Labels to Images"

    Dataset created according to the paper Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale From A New Perspective.

      Basic Usage
    

    from datasets import load_dataset dataset = load_dataset("he-yang/2025-rethinkdc-imagenet-sre2l-ipc-50")

    For more information, please refer to the Rethinking-Dataset-Compression

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li (2021). ImageNet Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet

Data from: ImageNet Dataset

Related Article
Explore at:
31 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 15, 2024
Authors
Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li
Description

The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.

Total number of non-empty WordNet synsets: 21841 Total number of images: 14197122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million

Search
Clear search
Close search
Google apps
Main menu