ImageNet-VidVRD dataset contains 1,000 videos selected from ILVSRC2016-VID dataset based on whether the video contains clear visual relations. It is split into 800 training set and 200 test set, and covers common subject/objects of 35 categories and predicates of 132 categories. Ten people contributed to labeling the dataset, which includes object trajectory labeling and relation labeling. Since the ILVSRC2016-VID dataset has the object trajectory annotation for 30 categories already, we supplemented the annotations by labeling the remaining 5 categories. In order to save the labor of relation labeling, we labeled typical segments of the videos in the training set and the whole of the videos in the test set.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
ImageNet-VidVRD dataset contains 1,000 videos selected from ILVSRC2016-VID dataset based on whether the video contains clear visual relations. It is split into 800 training set and 200 test set, and covers common subject/objects of 35 categories and predicates of 132 categories. Ten people contributed to labeling the dataset, which includes object trajectory labeling and relation labeling. Since the ILVSRC2016-VID dataset has the object trajectory annotation for 30 categories already, we supplemented the annotations by labeling the remaining 5 categories. In order to save the labor of relation labeling, we labeled typical segments of the videos in the training set and the whole of the videos in the test set.