Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Eximpedia Export import trade data lets you search trade data and active Exporters, Importers, Buyers, Suppliers, manufacturers exporters from over 209 countries
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Andrew J. FeltonDate: 5/5/2024
This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis and figure production for the study entitled:
"Global estimates of the storage and transit time of water through vegetation"
Please note that 'turnover' and 'transit' are used interchangeably in this project.
Data information:
The data folder contains key data sets used for analysis. In particular:
"data/turnover_from_python/updated/annual/multi_year_average/average_annual_turnover.nc" contains a global array summarizing five year (2016-2020) averages of annual transit, storage, canopy transpiration, and number of months of data. This is the core dataset for the analysis; however, each folder has much more data, including a dataset for each year of the analysis. Data are also available is separate .csv files for each land cover type. Oterh data can be found for the minimum, monthly, and seasonal transit time found in their respective folders. These data were produced using the python code found in the "supporting_code" folder given the ease of working with .nc and EASE grid in the xarray python module. R was used primarily for data visualization purposes. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here.
Python scripts can be found in the "supporting_code" folder.
Each R script in this project has a particular function:
01_start.R: This script loads the R packages used in the analysis, sets thedirectory, and imports custom functions for the project. You can also load in the main transit time (turnover) datasets here using the source()
function.
02_functions.R: This script contains the custom function for this analysis, primarily to work with importing the seasonal transit data. Load this using the source()
function in the 01_start.R script.
03_generate_data.R: This script is not necessary to run and is primarilyfor documentation. The main role of this code was to import and wranglethe data needed to calculate ground-based estimates of aboveground water storage.
04_annual_turnover_storage_import.R: This script imports the annual turnover andstorage data for each landcover type. You load in these data from the 01_start.R scriptusing the source()
function.
05_minimum_turnover_storage_import.R: This script imports the minimum turnover andstorage data for each landcover type. Minimum is defined as the lowest monthlyestimate.You load in these data from the 01_start.R scriptusing the source()
function.
06_figures_tables.R: This is the main workhouse for figure/table production and supporting analyses. This script generates the key figures and summary statistics used in the study that then get saved in the manuscript_figures folder. Note that allmaps were produced using Python code found in the "supporting_code"" folder.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Vezora (From Huggingface) [source]
The Vezora/Tested-188k-Python-Alpaca dataset is a comprehensive collection of functional Python code samples, specifically designed for training and analysis purposes. With 188,000 samples, this dataset offers an extensive range of examples that cater to the research needs of Python programming enthusiasts.
This valuable resource consists of various columns, including input, which represents the input or parameters required for executing the Python code sample. The instruction column describes the task or objective that the Python code sample aims to solve. Additionally, there is an output column that showcases the resulting output generated by running the respective Python code.
By utilizing this dataset, researchers can effectively study and analyze real-world scenarios and applications of Python programming. Whether for educational purposes or development projects, this dataset serves as a reliable reference for individuals seeking practical examples and solutions using Python
The Vezora/Tested-188k-Python-Alpaca dataset is a comprehensive collection of functional Python code samples, containing 188,000 samples in total. This dataset can be a valuable resource for researchers and programmers interested in exploring various aspects of Python programming.
Contents of the Dataset
The dataset consists of several columns:
- output: This column represents the expected output or result that is obtained when executing the corresponding Python code sample.
- instruction: It provides information about the task or instruction that each Python code sample is intended to solve.
- input: The input parameters or values required to execute each Python code sample.
Exploring the Dataset
To make effective use of this dataset, it is essential to understand its structure and content properly. Here are some steps you can follow:
- Importing Data: Load the dataset into your preferred environment for data analysis using appropriate tools like pandas in Python.
import pandas as pd # Load the dataset df = pd.read_csv('train.csv')
- Understanding Column Names: Familiarize yourself with the column names and their meanings by referring to the provided description.
# Display column names print(df.columns)
- Sample Exploration: Get an initial understanding of the data structure by examining a few random samples from different columns.
# Display random samples from 'output' column print(df['output'].sample(5))
- Analyzing Instructions: Analyze different instructions or tasks present in the 'instruction' column to identify specific areas you are interested in studying or learning about.
# Count unique instructions and display top ones with highest occurrences instruction_counts = df['instruction'].value_counts() print(instruction_counts.head(10))
Potential Use Cases
The Vezora/Tested-188k-Python-Alpaca dataset can be utilized in various ways:
- Code Analysis: Analyze the code samples to understand common programming patterns and best practices.
- Code Debugging: Use code samples with known outputs to test and debug your own Python programs.
- Educational Purposes: Utilize the dataset as a teaching tool for Python programming classes or tutorials.
- Machine Learning Applications: Train machine learning models to predict outputs based on given inputs.
Remember that this dataset provides a plethora of diverse Python coding examples, allowing you to explore different
- Code analysis: Researchers and developers can use this dataset to analyze various Python code samples and identify patterns, best practices, and common mistakes. This can help in improving code quality and optimizing performance.
- Language understanding: Natural language processing techniques can be applied to the instruction column of this dataset to develop models that can understand and interpret natural language instructions for programming tasks.
- Code generation: The input column of this dataset contains the required inputs for executing each Python code sample. Researchers can build models that generate Python code based on specific inputs or task requirements using the examples provided in this dataset. This can be useful in automating repetitive programming tasks o...
Dataset Card for Python-DPO
This dataset is the smaller version of Python-DPO-Large dataset and has been created using Argilla.
Load with datasets
To load this dataset with datasets, you'll just need to install datasets as pip install datasets --upgrade and then use the following code: from datasets import load_dataset
ds = load_dataset("NextWealth/Python-DPO")
Data Fields
Each data instance contains:
instruction: The problem description/requirements… See the full description on the dataset page: https://huggingface.co/datasets/NextWealth/Python-DPO.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains Jupyter Notebooks with examples for accessing USGS NWIS data via web services and performing subsequent analysis related to drought with particular focus on sites in Utah and the southwestern United States (could be modified to any USGS sites). The code uses the Python DataRetrieval package. The resource is part of set of materials for hydroinformatics and water data science instruction. Complete learning module materials are found in HydroLearn: Jones, A.S., Horsburgh, J.S., Bastidas Pacheco, C.J. (2022). Hydroinformatics and Water Data Science. HydroLearn. https://edx.hydrolearn.org/courses/course-v1:USU+CEE6110+2022/about.
This resources consists of 6 example notebooks: 1. Example 1: Import and plot daily flow data 2. Example 2: Import and plot instantaneous flow data for multiple sites 3. Example 3: Perform analyses with USGS annual statistics data 4. Example 4: Retrieve data and find daily flow percentiles 3. Example 5: Further examination of drought year flows 6. Coding challenge: Assess drought severity
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This archive reproduces a table titled "Table 3.1 Boone county population size, 1990 and 2000" from Wang and vom Hofe (2007, p.58). The archive provides a Jupyter Notebook that uses Python and can be run in Google Colaboratory. The workflow uses Census API to retrieve data, reproduce the table, and ensure reproducibility for anyone accessing this archive.The Python code was developed in Google Colaboratory, or Google Colab for short, which is an Integrated Development Environment (IDE) of JupyterLab and streamlines package installation, code collaboration and management. The Census API is used to obtain population counts from the 1990 and 2000 Decennial Census (Summary File 1, 100% data). All downloaded data are maintained in the notebook's temporary working directory while in use. The data are also stored separately with this archive.The notebook features extensive explanations, comments, code snippets, and code output. The notebook can be viewed in a PDF format or downloaded and opened in Google Colab. References to external resources are also provided for the various functional components. The notebook features code to perform the following functions:install/import necessary Python packagesintroduce a Census API Querydownload Census data via CensusAPI manipulate Census tabular data calculate absolute change and percent changeformatting numbersexport the table to csvThe notebook can be modified to perform the same operations for any county in the United States by changing the State and County FIPS code parameters for the Census API downloads. The notebook could be adapted for use in other environments (i.e., Jupyter Notebook) as well as reading and writing files to a local or shared drive, or cloud drive (i.e., Google Drive).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Andrew J. Felton
Date: 10/29/2024
This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis, and figure production for the study entitled:
"Global estimates of the storage and transit time of water through vegetation"
Please note that 'turnover' and 'transit' are used interchangeably. Also please note that this R project has been updated multiple times as the analysis has updated.
Data information:
The data folder contains key data sets used for analysis. In particular:
"data/turnover_from_python/updated/august_2024_lc/" contains the core datasets used in this study including global arrays summarizing five year (2016-2020) averages of mean (annual) and minimum (monthly) transit time, storage, canopy transpiration, and number of months of data able as both an array (.nc) or data table (.csv). These data were produced in python using the python scripts found in the "supporting_code" folder. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here. The "supporting_data"" folder also contains annual (2016-2020) MODIS land cover data used in the analysis and contains separate filters containing the original data (.hdf) and then the final process (filtered) data in .nc format. The resulting annual land cover distributions were used in the pre-processing of data in python.
#Code information
Python scripts can be found in the "supporting_code" folder.
Each R script in this project has a role:
"01_start.R": This script sets the working directory, loads in the tidyverse package (the remaining packages in this project are called using the `::` operator), and can run two other scripts: one that loads the customized functions (02_functions.R) and one for importing and processing the key dataset for this analysis (03_import_data.R).
"02_functions.R": This script contains custom functions. Load this using the
`source()` function in the 01_start.R script.
"03_import_data.R": This script imports and processes the .csv transit data. It joins the mean (annual) transit time data with the minimum (monthly) transit data to generate one dataset for analysis: annual_turnover_2. Load this using the
`source()` function in the 01_start.R script.
"04_figures_tables.R": This is the main workhouse for figure/table production and
supporting analyses. This script generates the key figures and summary statistics
used in the study that then get saved in the manuscript_figures folder. Note that all
maps were produced using Python code found in the "supporting_code"" folder.
"supporting_generate_data.R": This script processes supporting data used in the analysis, primarily the varying ground-based datasets of leaf water content.
"supporting_process_land_cover.R": This takes annual MODIS land cover distributions and processes them through a multi-step filtering process so that they can be used in preprocessing of datasets in python.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Large go-around, also referred to as missed approach, data set. The data set is in support of the paper presented at the OpenSky Symposium on November the 10th.
If you use this data for a scientific publication, please consider citing our paper.
The data set contains landings from 176 (mostly) large airports from 44 different countries. The landings are labelled as performing a go-around (GA) or not. In total, the data set contains almost 9 million landings with more than 33000 GAs. The data was collected from OpenSky Network's historical data base for the year 2019. The published data set contains multiple files:
go_arounds_minimal.csv.gz
Compressed CSV containing the minimal data set. It contains a row for each landing and a minimal amount of information about the landing, and if it was a GA. The data is structured in the following way:
Column name
Type
Description
time
date time
UTC time of landing or first GA attempt
icao24
string
Unique 24-bit (hexadecimal number) ICAO identifier of the aircraft concerned
callsign
string
Aircraft identifier in air-ground communications
airport
string
ICAO airport code where the aircraft is landing
runway
string
Runway designator on which the aircraft landed
has_ga
string
"True" if at least one GA was performed, otherwise "False"
n_approaches
integer
Number of approaches identified for this flight
n_rwy_approached
integer
Number of unique runways approached by this flight
The last two columns, n_approaches and n_rwy_approached, are useful to filter out training and calibration flight. These have usually a large number of n_approaches, so an easy way to exclude them is to filter by n_approaches > 2.
go_arounds_augmented.csv.gz
Compressed CSV containing the augmented data set. It contains a row for each landing and additional information about the landing, and if it was a GA. The data is structured in the following way:
Column name
Type
Description
time
date time
UTC time of landing or first GA attempt
icao24
string
Unique 24-bit (hexadecimal number) ICAO identifier of the aircraft concerned
callsign
string
Aircraft identifier in air-ground communications
airport
string
ICAO airport code where the aircraft is landing
runway
string
Runway designator on which the aircraft landed
has_ga
string
"True" if at least one GA was performed, otherwise "False"
n_approaches
integer
Number of approaches identified for this flight
n_rwy_approached
integer
Number of unique runways approached by this flight
registration
string
Aircraft registration
typecode
string
Aircraft ICAO typecode
icaoaircrafttype
string
ICAO aircraft type
wtc
string
ICAO wake turbulence category
glide_slope_angle
float
Angle of the ILS glide slope in degrees
has_intersection
string
Boolean that is true if the runway has an other runway intersecting it, otherwise false
rwy_length
float
Length of the runway in kilometre
airport_country
string
ISO Alpha-3 country code of the airport
airport_region
string
Geographical region of the airport (either Europe, North America, South America, Asia, Africa, or Oceania)
operator_country
string
ISO Alpha-3 country code of the operator
operator_region
string
Geographical region of the operator of the aircraft (either Europe, North America, South America, Asia, Africa, or Oceania)
wind_speed_knts
integer
METAR, surface wind speed in knots
wind_dir_deg
integer
METAR, surface wind direction in degrees
wind_gust_knts
integer
METAR, surface wind gust speed in knots
visibility_m
float
METAR, visibility in m
temperature_deg
integer
METAR, temperature in degrees Celsius
press_sea_level_p
float
METAR, sea level pressure in hPa
press_p
float
METAR, QNH in hPA
weather_intensity
list
METAR, list of present weather codes: qualifier - intensity
weather_precipitation
list
METAR, list of present weather codes: weather phenomena - precipitation
weather_desc
list
METAR, list of present weather codes: qualifier - descriptor
weather_obscuration
list
METAR, list of present weather codes: weather phenomena - obscuration
weather_other
list
METAR, list of present weather codes: weather phenomena - other
This data set is augmented with data from various public data sources. Aircraft related data is mostly from the OpenSky Network's aircraft data base, the METAR information is from the Iowa State University, and the rest is mostly scraped from different web sites. If you need help with the METAR information, you can consult the WMO's Aerodrom Reports and Forecasts handbook.
go_arounds_agg.csv.gz
Compressed CSV containing the aggregated data set. It contains a row for each airport-runway, i.e. every runway at every airport for which data is available. The data is structured in the following way:
Column name
Type
Description
airport
string
ICAO airport code where the aircraft is landing
runway
string
Runway designator on which the aircraft landed
n_landings
integer
Total number of landings observed on this runway in 2019
ga_rate
float
Go-around rate, per 1000 landings
glide_slope_angle
float
Angle of the ILS glide slope in degrees
has_intersection
string
Boolean that is true if the runway has an other runway intersecting it, otherwise false
rwy_length
float
Length of the runway in kilometres
airport_country
string
ISO Alpha-3 country code of the airport
airport_region
string
Geographical region of the airport (either Europe, North America, South America, Asia, Africa, or Oceania)
This aggregated data set is used in the paper for the generalized linear regression model.
Downloading the trajectories
Users of this data set with access to OpenSky Network's Impala shell can download the historical trajectories from the historical data base with a few lines of Python code. For example, you want to get all the go-arounds of the 4th of January 2019 at London City Airport (EGLC). You can use the Traffic library for easy access to the database:
import datetime from tqdm.auto import tqdm import pandas as pd from traffic.data import opensky from traffic.core import Traffic
df = pd.read_csv("go_arounds_minimal.csv.gz", low_memory=False) df["time"] = pd.to_datetime(df["time"])
airport = "EGLC" start = datetime.datetime(year=2019, month=1, day=4).replace( tzinfo=datetime.timezone.utc ) stop = datetime.datetime(year=2019, month=1, day=5).replace( tzinfo=datetime.timezone.utc )
df_selection = df.query("airport==@airport & has_ga & (@start <= time <= @stop)")
flights = [] delta_time = pd.Timedelta(minutes=10) for _, row in tqdm(df_selection.iterrows(), total=df_selection.shape[0]): # take at most 10 minutes before and 10 minutes after the landing or go-around start_time = row["time"] - delta_time stop_time = row["time"] + delta_time
# fetch the data from OpenSky Network
flights.append(
opensky.history(
start=start_time.strftime("%Y-%m-%d %H:%M:%S"),
stop=stop_time.strftime("%Y-%m-%d %H:%M:%S"),
callsign=row["callsign"],
return_flight=True,
)
)
Traffic.from_flights(flights)
Additional files
Additional files are available to check the quality of the classification into GA/not GA and the selection of the landing runway. These are:
validation_table.xlsx: This Excel sheet was manually completed during the review of the samples for each runway in the data set. It provides an estimate of the false positive and false negative rate of the go-around classification. It also provides an estimate of the runway misclassification rate when the airport has two or more parallel runways. The columns with the headers highlighted in red were filled in manually, the rest is generated automatically.
validation_sample.zip: For each runway, 8 batches of 500 randomly selected trajectories (or as many as available, if fewer than 4000) classified as not having a GA and up to 8 batches of 10 random landings, classified as GA, are plotted. This allows the interested user to visually inspect a random sample of the landings and go-arounds easily.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data belongs to an actual printing company . Each record in Excel file Raw Data/Big_Data present an order from customers. In column "ColorMode" ; 4+0 means the order is one sided and 4+4 means it is two-sided. Files in Instances folder correspond to the instances used for computational tests in the article. Each of these instances has two related file with the same characteristics. One with gdx suffix and one with out any file extension. These files are used to import data to the python implementation. The code and relevant description can be found in Read_input.py file.
polyOne Data Set
The data set contains 100 million hypothetical polymers each with 29 predicted properties using machine learning models. We use PSMILES strings to represent polymer structures, see here and here. The polymers are generated by decomposing previously synthesized polymers into unique chemical fragments. Random and enumerative compositions of these fragments yield 100 million hypothetical PSMILES strings. All PSMILES strings are chemically valid polymers but, mostly, have never been synthesized before. More information can be found in the paper. Please note the license agreement in the LICENSE file.
Full data set including the properties
The data files are in Apache Parquet format. The files start with polyOne_*.parquet
.
I recommend using dask (pip install dask
) to load and process the data set. Pandas also works but is slower.
Load sharded data set with dask
python
import dask.dataframe as dd
ddf = dd.read_parquet("*.parquet", engine="pyarrow")
For example, compute the description of data set ```python df_describe = ddf.describe().compute() df_describe
PSMILES strings only
generated_polymer_smiles_train.txt - 80 million PSMILES strings for training polyBERT. One string per line.
generated_polymer_smiles_dev.txt - 20 million PSMILES strings for testing polyBERT. One string per line.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Build a trapezoidal PCHE two channel model using FLUNT software as a unit for processing, simulate by changing different input conditions, obtain corresponding results, export them as CSV files, use Python for data processing, remove unnecessary information columns, and combine certain information from each file to form a snapshot matrix CSV file. After processing the snapshot matrix CSV file in Python, import it into MATLAB for prediction, and finally export the MATLAB results as a result CSV file.
https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
This dataset used to investigate the influence of the unique amount of 3D-Models (Shapes) and Materials (Textures) towards the shape-textures bias, performance and generalization of deep neural network instance segmentation in my bachelor exam.
You can load the images like:
import cv2
image = cv2.imread(img_path)
if image is None:
raise FileNotFoundError(f"Error during data loading: there is no '{img_path}'")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
if len(depth.shape) > 2:
_, depth, _, _ = cv2.split(depth)
mask = cv2.imread(mask_path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE)
For easy use I recommend to use my own code. You can directly use it to train Mask R-CNN or just use the dataloader. Both are shown now:
First: Clone my torch github project into your project
terminal
cd ./path/to/your/project
git clone https://github.com/xXAI-botXx/torch-mask-rcnn-instance-segmentation.git
Second: Install the anaconda env (optional)
terminal
cd ./path/to/your/project
cd ./torch-mask-rcnn-instance-segmentation
conda env create -f conda_env.yml
Third: You are ready to use
Using only the dataloader for your custom project: ```python import os import numpy as np import matplotlib.pyplot as plt import cv2 from torch.utils.data import DataLoader
import sys sys.path.append("./torch-mask-rcnn-instance-segmentation")
from maskrcnn_toolkit import DATA_LOADING_MODE, Dual_Dir_Dataset, collate_fn, extract_and_visualize_mask
data_mode = DATA_LOADING_MODE.ALL
dataset = Dual_Dir_Dataset(img_dir="/path/to/rgb-folder", depth_dir="/path/to/depth-folder", mask_dir="/path/to/mask-folder", transform=None, amount=1, start_idx=0, end_idx=0, image_name="...", data_mode=data_mode, use_mask=True, use_depth=False, log_path="./logs", width=1920, height=1080, should_log=True, should_print=True, should_verify=False) data_loader = DataLoader(dataset, batch_size=5, shuffle=True, num_workers=4, collate_fn=collate_fn)
for data in data_loader: for batch_idx in range(len(data[0])): if len(data) == 3: image = data[0][batch_idx].cpu().unsqueeze(0) masks = data[1][batch_idx]["masks"] masks = masks.cpu() name = data[2][batch_idx] else: image = data[0][batch_idx].cpu().unsqueeze(0) name = data[1][batch_idx]
image = image.cpu().numpy().squeeze(0)
image = np.transpose(image, (1, 2, 0)) # Convert to HWC
# Remove 4.th channel if existing
if image.shape[2] == 4:
depth = image[:, :, 3]
image = image[:, :, :3]
else:
depth = None
masks_gt = masks.cpu().numpy()
masks_gt = np.transpose(masks_gt, (1, 2, 0))
mask = extract_and_visualize_mask(masks_gt, image=None, ax=None, visualize=False, color_map=None, soft_join=False)
# plot
cols = 1
if depth is not None:
cols += 1
if mask is not None:
cols += 1
fig, ax = plt.subplots(nrows=1, ncols=cols, figsize=(20, 15*cols))
fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.05, hspace=0.05)
plot_idx = 0
ax[plot_idx].imshow(image)
ax[plot_idx].set_title("RGB Input Image")
ax[plot_idx].axis("off")
if depth is not None:
plot_idx += 1
ax[plot_idx].imshow(depth, cmap="gray")
ax[plot_idx].set_title("Depth Input Image")
ax[plot_idx].axis("off")
if mask is not None:
plot_idx += 1
ax[plot_idx].imshow(mask)
ax[plot_idx].set_title("Mask Ground Truth")
ax[plot_idx].axis("off")
plt.show()
**Using the whole Mask R-CNN training pipeline:**
```python
import sys
sys.path.append("./torch-mask-rcnn-instance-segmentation")
from maskrcnn_toolkit import DATA_LOADING_MODE, train
# set the vars as you need
WEIGHTS_PATH = None # Path to the model weights file
USE_DEPTH = False # Whether to include depth information -> as rgb and depth on green channel
VERIFY_DATA = False # True is recommended
GROUND_PATH = "D:/3xM"
DATASET_NAME = "3xM_Dataset_80_160"
IMG_DIR = os.path.join(G...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open Context (https://opencontext.org) publishes free and open access research data for archaeology and related disciplines. An open source (but bespoke) Django (Python) application supports these data publishing services. The software repository is here: https://github.com/ekansa/open-context-py
The Open Context team runs ETL (extract, transform, load) workflows to import data contributed by researchers from various source relational databases and spreadsheets. Open Context uses PostgreSQL (https://www.postgresql.org) relational database to manage these imported data in a graph style schema. The Open Context Python application interacts with the PostgreSQL database via the Django Object-Relational-Model (ORM).
This database dump includes all published structured data organized used by Open Context (table names that start with 'oc_all_'). The binary media files referenced by these structured data records are stored elsewhere. Binary media files for some projects, still in preparation, are not yet archived with long term digital repositories.
These data comprehensively reflect the structured data currently published and publicly available on Open Context. Other data (such as user and group information) used to run the Website are not included.
IMPORTANT
This database dump contains data from roughly 190+ different projects. Each project dataset has its own metadata and citation expectations. If you use these data, you must cite each data contributor appropriately, not just this Zenodo archived database dump.
Abstract: Python module for the evaluation of lab experiments. The module implements functions to import meta-data of measurements, filters to search for subsets of them and routines to import and plot data from this meta-data. It works well in its original context but is currently in open alpha since it will be restructured in order to be compatible with new lab environments. TechnicalRemarks: # 🔬️ Experiment Evaluation Python module for the evaluation of lab experiments. The module implements functions to import meta-data of measurements, filters to search for subsets of them and routines to import and plot data from this meta-data. It works well in its original context but is currently in open alpha since it will be restructured in order to be compatible with new lab environments. Examples of its usage in scientific works will soon be published by the author that can be used to reference it. Feel free to use it for your own projects and to ask questions. For now you can cite this repository as source. 💻️ Installation You need a running python3 installation on your OS. The module was written on Debian/GNU-Linux, was tested on Windows and should also run on other OS. It is recommended to work in an virtual environment (see the official python documentation -> from bash: python3 -m venv exp_env source exp_env/bin/activate) or conda installation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The goal of this task is to train a model that can localize and classify each instance of Person and Car as accurately as possible.
from IPython.display import Markdown, display
display(Markdown("../input/Car-Person-v2-Roboflow/README.roboflow.txt"))
In this Notebook, I have processed the images with RoboFlow because in COCO formatted dataset was having different dimensions of image and Also data set was not splitted into different Format. To train a custom YOLOv7 model we need to recognize the objects in the dataset. To do so I have taken the following steps:
Image Credit - jinfagang
!git clone https://github.com/WongKinYiu/yolov7 # Downloading YOLOv7 repository and installing requirements
%cd yolov7
!pip install -qr requirements.txt
!pip install -q roboflow
!wget "https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt"
import os
import glob
import wandb
import torch
from roboflow import Roboflow
from kaggle_secrets import UserSecretsClient
from IPython.display import Image, clear_output, display # to display images
print(f"Setup complete. Using torch {torch._version_} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")
https://camo.githubusercontent.com/dd842f7b0be57140e68b2ab9cb007992acd131c48284eaf6b1aca758bfea358b/68747470733a2f2f692e696d6775722e636f6d2f52557469567a482e706e67">
I will be integrating W&B for visualizations and logging artifacts and comparisons of different models!
try:
user_secrets = UserSecretsClient()
wandb_api_key = user_secrets.get_secret("wandb_api")
wandb.login(key=wandb_api_key)
anonymous = None
except:
wandb.login(anonymous='must')
print('To use your W&B account,
Go to Add-ons -> Secrets and provide your W&B access token. Use the Label name as WANDB.
Get your W&B access token from here: https://wandb.ai/authorize')
wandb.init(project="YOLOvR",name=f"7. YOLOv7-Car-Person-Custom-Run-7")
https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png" alt="">
In order to train our custom model, we need to assemble a dataset of representative images with bounding box annotations around the objects that we want to detect. And we need our dataset to be in YOLOv7 format.
In Roboflow, We can choose between two paths:
https://raw.githubusercontent.com/Owaiskhan9654/Yolo-V7-Custom-Dataset-Train-on-Kaggle/main/Roboflow.PNG" alt="">
user_secrets = UserSecretsClient()
roboflow_api_key = user_secrets.get_secret("roboflow_api")
rf = Roboflow(api_key=roboflow_api_key)
project = rf.workspace("owais-ahmad").project("custom-yolov7-on-kaggle-on-custom-dataset-rakiq")
dataset = project.version(2).download("yolov7")
Here, I am able to pass a number of arguments: - img: define input image size - batch: determine
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.