Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Querying BigQuery tables You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.github_repos.[TABLENAME].
If you're using Python, you can start with this code:
import pandas as pd
from bq_helper import BigQueryHelper
bq_assistant = BigQueryHelper("bigquery-public-data", "utility_us")
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset generated by respondents to a distributed survey via Amazon Mechanical Turk between 03.12.2016-05.12.2016. Thirty eligible Fitbit users consented to the submission of personal tracker data, including minute-level output for physical activity, heart rate, and sleep monitoring. Individual reports can be parsed by export session ID (column A) or timestamp (column B). Variation between output represents use of different types of Fitbit trackers and individual tracking behaviors / preferences.
This is the list of manipulations performed on the original dataset, published by Möbius.
All the cleaning process and rearrangements were performed in BigQuery, using SQL functions.
1) After I took a closer look at the source dataset, I realized that for my case study, I did not need some of the tables contained in the original archive. Therefore, I decided not to import
- dailyCalories_merged.csv,
- dailyIntensities_merged.csv,
- dailySteps_merged.csv.
as they proved redundant, their content could be found in the dailyActivity_merged.csv file.
In addition, the files
- minutesCaloriesWide_merged.csv,
- minutesIntensitiesWide_merged.csv,
- minuteStepsWide_merged.csv.
were not imported, as they presented the same data contained in other files in a wide format. Hence, only the files with long format containing the same data were imported in the BigQuery database.
2) To be able to compare and measure the correlation among different variables based on hourly records, I decided to create a new table based on LEFT JOIN function and columns Id and ActivityHour. I repeated the same JOIN on tables with minute records. Hence I obtained 2 new tables: - hourly_activity.csv, - minute_activity.csv.
3) To validate most of the columns containing DATE and DATETIME values that were imported as STRING data type, I used the PARSE_DATE() and PARSE_DATETIME() commands. While importing the - heartrate_seconds_merged.csv, - hourlyCalories_merged.csv, - hourlyIntensities_merged.csv, - hourlySteps_merged.csv, - minutesCaloriesNarrow_merged.csv, - minuteIntensitiesNarrow_merged.csv, - minuteMETsNarrow_merged.csv, - minuteSleep_merged.csv, - minuteSteps_merged.csv, - sleepDay_merge.csv, - weigthLog_Info_merged.csv files to BigQuery, it was necessary to import the DATETIME and DATE type columns as STRING, because the original syntax, used in the CSV files, couldn’t be recognized as a correct DATETIME data type, due to “AM” and “PM” text at the end of the expression.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Section 337, Tariff Act of 1930, Investigations of Unfair Practices in Import Trade. Under section 337, the USITC determines whether there is unfair competition in the importation of products into, or their subsequent sale in, the United States. Section 337 prohibits the importation into the US , or the sale of such articles by owners, importers or consignees, of articles which infringe a patent, copyright, trademark, or semiconductor mask work, or where unfair competition or unfair acts exist that can destroy or substantially injure a US industry or prevent one from developing, or restrain or monopolize trade in US commerce. These latter categories are very broad: unfair competition can involve counterfeit, mismarked or misbranded goods, where the sale of the goods are at unfairly low prices, where other antitrust violations take place such as price fixing, market division or the goods violate a standard applicable to such goods.
US International Trade Commission 337Info Unfair Import Investigations Information System contains data on investigations done under Section 337. Section 337 declares the infringement of certain statutory intellectual property rights and other forms of unfair competition in import trade to be unlawful practices. Most Section 337 investigations involve allegations of patent or registered trademark infringement.
Fork this notebook to get started on accessing data in the BigQuery dataset using the BQhelper package to write SQL queries.
Data Origin: https://bigquery.cloud.google.com/dataset/patents-public-data:usitc_investigations
"US International Trade Commission 337Info Unfair Import Investigations Information System" by the USITC, for public use.
Banner photo by João Silas on Unsplash
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Querying BigQuery tables You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.github_repos.[TABLENAME].
If you're using Python, you can start with this code:
import pandas as pd
from bq_helper import BigQueryHelper
bq_assistant = BigQueryHelper("bigquery-public-data", "utility_us")