100+ datasets found
  1. Bioinformatics Market Analysis, Size, and Forecast 2025-2029: North America...

    • technavio.com
    pdf
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Bioinformatics Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/bioinformatics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Europe, France, United Kingdom, North America, Canada, Germany, United States
    Description

    Snapshot img

    Bioinformatics Market Size 2025-2029

    The bioinformatics market size is valued to increase by USD 15.98 billion, at a CAGR of 17.4% from 2024 to 2029. Reduction in cost of genetic sequencing will drive the bioinformatics market.

    Market Insights

    North America dominated the market and accounted for a 43% growth during the 2025-2029.
    By Application - Molecular phylogenetics segment was valued at USD 4.48 billion in 2023
    By Product - Platforms segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 309.88 million 
    Market Future Opportunities 2024: USD 15978.00 million
    CAGR from 2024 to 2029 : 17.4%
    

    Market Summary

    The market is a dynamic and evolving field that plays a pivotal role in advancing scientific research and innovation in various industries, including healthcare, agriculture, and academia. One of the primary drivers of this market's growth is the rapid reduction in the cost of genetic sequencing, making it increasingly accessible to researchers and organizations worldwide. This affordability has led to an influx of large-scale genomic data, necessitating the development of sophisticated bioinformatics tools for Next-Generation Sequencing (NGS) data analysis. Another significant trend in the market is the shortage of trained laboratory professionals capable of handling and interpreting complex genomic data. This skills gap creates a demand for user-friendly bioinformatics software and services that can streamline data analysis and interpretation, enabling researchers to focus on scientific discovery rather than data processing. For instance, a leading pharmaceutical company could leverage bioinformatics tools to optimize its drug discovery pipeline by analyzing large genomic datasets to identify potential drug targets and predict their efficacy. By integrating these tools into its workflow, the company can reduce the time and cost associated with traditional drug discovery methods, ultimately bringing new therapies to market more efficiently. Despite its numerous benefits, the market faces challenges such as data security and privacy concerns, data standardization, and the need for interoperability between different software platforms. Addressing these challenges will require collaboration between industry stakeholders, regulatory bodies, and academic institutions to establish best practices and develop standardized protocols for data sharing and analysis.

    What will be the size of the Bioinformatics Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free SampleBioinformatics, a dynamic and evolving market, is witnessing significant growth as businesses increasingly rely on high-performance computing, gene annotation, and bioinformatics software to decipher regulatory elements, gene expression regulation, and genomic variation. Machine learning algorithms, phylogenetic trees, and ontology development are integral tools for disease modeling and protein interactions. cloud computing platforms facilitate the storage and analysis of vast biological databases and sequence datas, enabling data mining techniques and statistical modeling for sequence assembly and drug discovery pipelines. Proteomic analysis, protein folding, and computational biology are crucial components of this domain, with biomedical ontologies and data integration platforms enhancing research efficiency. The integration of gene annotation and machine learning algorithms, for instance, has led to a 25% increase in accurate disease diagnosis within leading healthcare organizations. This trend underscores the importance of investing in advanced bioinformatics solutions for improved regulatory compliance, budgeting, and product strategy.

    Unpacking the Bioinformatics Market Landscape

    Bioinformatics, an essential discipline at the intersection of biology and computer science, continues to revolutionize the scientific landscape. Evolutionary bioinformatics, with its molecular dynamics simulation and systems biology approaches, enables a deeper understanding of biological processes, leading to improved ROI in research and development. For instance, next-generation sequencing technologies have reduced sequencing costs by a factor of ten, enabling genome-wide association studies and transcriptome sequencing on a previously unimaginable scale. In clinical bioinformatics, homology modeling techniques and protein-protein interaction analysis facilitate drug target identification, enhancing compliance with regulatory requirements. Phylogenetic analysis tools and comparative genomics studies contribute to the discovery of novel biomarkers and the development of personalized treatments. Bioimage informatics and proteomic data integration employ advanced sequence alignment algorithms and functional genomics tools to unlock new insights from complex

  2. D

    Bioinformatics Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Bioinformatics Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-bioinformatics-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Bioinformatics Market Outlook



    The global bioinformatics market size was projected at $10.4 billion in 2023 and is anticipated to grow to $24.8 billion by 2032, with a compound annual growth rate (CAGR) of 10.2%. This rapid growth is primarily attributed to the increasing demand for bioinformatics tools in genomics and proteomics research, thereby enhancing data interpretation and analysis capabilities. Additionally, the surge in the adoption of cloud-based solutions and the increasing volume of biological data generated through research activities are key factors driving the market growth. Furthermore, the rising emphasis on precision medicine and personalized healthcare approaches plays a significant role in the expansion of this market.



    One of the major growth factors driving the bioinformatics market is the vast amount of biological data being generated, necessitating advanced data analysis and management tools. The advent of next-generation sequencing technologies has revolutionized genetic research, leading to exponential data generation. Bioinformatics provides the necessary computational solutions to manage, analyze, and interpret this data efficiently. Moreover, the increasing collaboration between biological scientists and computer experts is further accelerating the development of novel bioinformatics tools, enhancing their application across various domains. This interdisciplinary approach is not only improving research outcomes but also facilitating the discovery of new biological insights.



    Another significant growth driver is the rising investment in research and development in the field of genomics and proteomics. Governments and private organizations across the globe are investing heavily in life sciences research to understand complex biological processes and diseases better. These investments are expected to increase the demand for sophisticated bioinformatics tools and services. Additionally, the integration of artificial intelligence and machine learning with bioinformatics is opening new avenues for research, enabling more precise data analysis and prediction models. This technological convergence is expected to provide significant growth opportunities for the bioinformatics market during the forecast period.



    The increasing prevalence of chronic diseases and the growing need for personalized medicine are also contributing to the expansion of the bioinformatics market. Personalized medicine, which tailors healthcare to individual patients, relies heavily on bioinformatics to analyze genetic information and develop targeted therapies. As healthcare systems worldwide shift towards more personalized approaches, the demand for bioinformatics solutions is expected to rise significantly. Moreover, bioinformatics plays a crucial role in drug discovery and development processes, providing insights that accelerate the identification of potential drug targets and biomarkers.



    The role of Life Sciences Software in the bioinformatics market is becoming increasingly prominent as researchers and healthcare providers seek more sophisticated tools to manage and analyze complex biological data. These software solutions are essential for processing the vast amounts of data generated by modern research techniques, such as next-generation sequencing and mass spectrometry. By providing robust data management and analysis capabilities, Life Sciences Software enables researchers to gain deeper insights into genetic and proteomic information, facilitating the discovery of new therapeutic targets and the development of personalized medicine approaches. As the demand for precision medicine continues to grow, the importance of Life Sciences Software in bioinformatics is expected to rise, driving innovation and market expansion.



    Regionally, North America holds the largest share of the bioinformatics market due to the presence of a well-established healthcare infrastructure and significant investments in biotechnological research. The region is home to several leading bioinformatics companies and research institutions, which are at the forefront of innovation and technological advancements. Additionally, the Asia Pacific region is expected to witness the fastest growth during the forecast period, driven by increasing government funding for genomics research and the growing adoption of bioinformatics in emerging economies like China and India. The expansion of biopharmaceutical industries and a rising focus on precision medicine in these regions are further contributing to market growth.



    Pro

  3. R

    Bioinformatics Market Research Report 2033

    • researchintelo.com
    csv, pdf, pptx
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Intelo (2025). Bioinformatics Market Research Report 2033 [Dataset]. https://researchintelo.com/report/bioinformatics-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    Research Intelo
    License

    https://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy

    Time period covered
    2024 - 2033
    Area covered
    Global
    Description

    Bioinformatics Market Outlook



    According to our latest research, the global bioinformatics market size reached USD 16.2 billion in 2024, exhibiting robust expansion driven by growing demand across various life science applications. The market is anticipated to maintain a strong momentum, registering a CAGR of 12.6% during the forecast period, and is projected to achieve a value of USD 47.3 billion by 2033. This significant growth is primarily fueled by advancements in genomics and proteomics, the proliferation of high-throughput sequencing technologies, and the rising integration of artificial intelligence and machine learning in biological data analysis. As per our latest research, the increasing need for efficient data management and analysis in drug discovery, personalized medicine, and agricultural biotechnology continues to propel the global bioinformatics market forward.




    One of the core growth drivers for the bioinformatics market is the exponential rise in biological data generation, particularly from next-generation sequencing (NGS) platforms. As sequencing costs have plummeted and throughput has soared, researchers and organizations across academia, healthcare, and agriculture are generating vast amounts of genomic, proteomic, and metabolomic data. This deluge of information necessitates robust bioinformatics tools and platforms for storage, retrieval, analysis, and interpretation. The capability to translate raw biological data into actionable insights for disease research, crop improvement, and environmental monitoring has made bioinformatics indispensable. Furthermore, collaborations between biotechnology companies, academic institutions, and IT firms are fostering innovation in software and algorithm development, amplifying the market’s growth trajectory.




    Another significant growth factor is the integration of artificial intelligence (AI) and machine learning (ML) within bioinformatics platforms. AI-driven analytics are revolutionizing the way researchers interpret complex biological datasets, enabling more accurate predictions in genomics, drug discovery, and personalized medicine. The ability of ML algorithms to identify patterns, predict molecular interactions, and automate data processing is enhancing the efficiency and reliability of bioinformatics workflows. Moreover, the increasing adoption of cloud-based bioinformatics solutions is democratizing access to powerful computational resources, allowing small and medium enterprises (SMEs) and academic labs to leverage advanced analytics without heavy infrastructure investments. These technological advancements are expected to further accelerate market expansion over the coming years.




    The growing focus on personalized medicine and precision healthcare is also catalyzing the demand for bioinformatics. Healthcare providers and pharmaceutical companies are increasingly utilizing bioinformatics tools to tailor treatments based on individual genetic profiles, leading to improved patient outcomes and reduced adverse effects. In drug discovery, bioinformatics accelerates target identification, biomarker discovery, and candidate screening, shortening development timelines and reducing costs. Furthermore, bioinformatics is playing a pivotal role in agricultural biotechnology, helping researchers develop genetically modified crops with enhanced traits, improved yield, and resistance to diseases. The convergence of these diverse applications underscores the strategic importance of bioinformatics across multiple sectors.




    From a regional perspective, North America continues to lead the global bioinformatics market, supported by a well-established biotechnology industry, significant R&D investments, and favorable government initiatives. The United States, in particular, is home to several leading bioinformatics companies and research institutions, driving innovation and adoption. Europe follows closely, with strong contributions from countries like Germany, the UK, and France, where collaborative research projects and public-private partnerships are prevalent. Meanwhile, the Asia Pacific region is witnessing the fastest growth, propelled by expanding genomics research, increasing healthcare expenditures, and a surge in government funding for life science initiatives, particularly in China, India, and Japan.



    Product & Service Analysis



    The product & service segment of the bioinformatics market is broadly categorized into software, hardware, and

  4. Bioinformatics Services Market By Type (Sequence, Gene Expression), By...

    • verifiedmarketresearch.com
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Bioinformatics Services Market By Type (Sequence, Gene Expression), By Application (Genomics, Proteomics, Transcriptomics), By End-User (Biopharmaceutical Companies, Academic & Research Institutes), & Region For 2024-2031 [Dataset]. https://www.verifiedmarketresearch.com/product/bioinformatics-services-market/
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Bioinformatics Services Market size was valued at USD 11.1 Billion in 2023 and is projected to reach USD 3.58 Billion by 2031, growing at a CAGR of 15.06% from 2024-2031.Bioinformatics Services Market: Definition/ OverviewBioinformatics services cover a wide range of computational tools and methods for managing, analyzing, and interpreting biological data. These services enable the integration of data from domains such as genomics, proteomics, transcriptomics, and metabolomics to provide insights into biological systems. Drug discovery, customized medicine, gene sequencing, and biological data management are some of the most important applications of bioinformatics. Researchers and healthcare professionals use these services to analyze big datasets, detect disease markers, and develop tailored medicines, considerably improving the precision and efficiency of life science research.

  5. D

    Bioinformatics In Healthcare Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Bioinformatics In Healthcare Market Research Report 2033 [Dataset]. https://dataintelo.com/report/bioinformatics-in-healthcare-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Bioinformatics in Healthcare Market Outlook



    According to our latest research, the global bioinformatics in healthcare market size reached USD 12.4 billion in 2024, reflecting robust adoption across clinical, research, and pharmaceutical domains. The market is expected to expand at a CAGR of 13.2% from 2025 to 2033, reaching a projected value of USD 36.6 billion by 2033. This impressive growth trajectory is fueled by escalating investments in genomics, rising demand for personalized medicine, and the integration of advanced computational tools in healthcare. The bioinformatics in healthcare market is witnessing a paradigm shift as organizations increasingly leverage data-driven insights to accelerate drug discovery, improve diagnostics, and enhance patient outcomes.




    A primary driver for the rapid expansion of the bioinformatics in healthcare market is the surging volume of biological and clinical data being generated worldwide. The proliferation of next-generation sequencing (NGS) technologies, coupled with decreasing costs of genome sequencing, has resulted in an unprecedented influx of genetic information. This wealth of data demands sophisticated bioinformatics solutions to manage, analyze, and interpret complex datasets efficiently. As a result, healthcare institutions, research centers, and pharmaceutical companies are investing heavily in advanced bioinformatics platforms and software to unlock actionable insights from vast genomic and proteomic repositories. This trend is further amplified by the growing recognition of the pivotal role bioinformatics plays in bridging the gap between raw biological data and clinical application.




    Another significant growth factor is the expanding application of bioinformatics in personalized medicine and targeted therapeutics. With the healthcare industry shifting towards precision medicine, there is an urgent need for tools that can integrate and analyze multi-omics data—spanning genomics, transcriptomics, proteomics, and metabolomics. Bioinformatics enables the identification of disease biomarkers, prediction of drug responses, and customization of treatment regimens based on individual patient profiles. This has not only improved patient outcomes but has also optimized healthcare resource utilization. The increasing prevalence of chronic diseases, rising cancer incidence, and the demand for tailored therapies are propelling the adoption of bioinformatics in clinical diagnostics and drug development, thus driving overall market growth.




    Strategic collaborations and investments by government agencies, academic institutions, and private enterprises are further catalyzing the bioinformatics in healthcare market. Initiatives such as the Human Genome Project and various national genomics programs have laid the foundation for large-scale data generation and sharing. Governments across North America, Europe, and Asia Pacific are launching funding programs to support bioinformatics infrastructure, skill development, and research. These efforts are enhancing data interoperability, standardization, and integration, thereby fostering innovation in the field. Moreover, the emergence of cloud-based bioinformatics platforms is democratizing access to computational resources, enabling smaller organizations and developing regions to participate in cutting-edge research and clinical applications.




    From a regional perspective, North America continues to dominate the bioinformatics in healthcare market, accounting for the largest revenue share in 2024. This leadership position is attributed to the presence of advanced healthcare infrastructure, significant R&D investments, and a strong ecosystem of academic and commercial players. Europe follows closely, driven by robust government support and a vibrant biotech sector. Meanwhile, Asia Pacific is emerging as the fastest-growing region, fueled by expanding healthcare expenditure, increasing adoption of genomic medicine, and a burgeoning talent pool in computational biology. Latin America and the Middle East & Africa are also experiencing steady growth, supported by improving healthcare systems and international collaborations.



    Solution Analysis



    The bioinformatics in healthcare market is segmented by solution into software, services, and platforms, each playing a critical role in the ecosystem. Bioinformatics software forms the backbone of data analysis, enabling researchers and clinicians to process and interpret complex biologi

  6. The eBioKit, a stand-alone educational platform for bioinformatics

    • plos.figshare.com
    xlsx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rafael Hernández-de-Diego; Etienne P. de Villiers; Tomas Klingström; Hadrien Gourlé; Ana Conesa; Erik Bongcam-Rudloff (2023). The eBioKit, a stand-alone educational platform for bioinformatics [Dataset]. http://doi.org/10.1371/journal.pcbi.1005616
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Rafael Hernández-de-Diego; Etienne P. de Villiers; Tomas Klingström; Hadrien Gourlé; Ana Conesa; Erik Bongcam-Rudloff
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Bioinformatics skills have become essential for many research areas; however, the availability of qualified researchers is usually lower than the demand and training to increase the number of able bioinformaticians is an important task for the bioinformatics community. When conducting training or hands-on tutorials, the lack of control over the analysis tools and repositories often results in undesirable situations during training, as unavailable online tools or version conflicts may delay, complicate, or even prevent the successful completion of a training event. The eBioKit is a stand-alone educational platform that hosts numerous tools and databases for bioinformatics research and allows training to take place in a controlled environment. A key advantage of the eBioKit over other existing teaching solutions is that all the required software and databases are locally installed on the system, significantly reducing the dependence on the internet. Furthermore, the architecture of the eBioKit has demonstrated itself to be an excellent balance between portability and performance, not only making the eBioKit an exceptional educational tool but also providing small research groups with a platform to incorporate bioinformatics analysis in their research. As a result, the eBioKit has formed an integral part of training and research performed by a wide variety of universities and organizations such as the Pan African Bioinformatics Network (H3ABioNet) as part of the initiative Human Heredity and Health in Africa (H3Africa), the Southern Africa Network for Biosciences (SAnBio) initiative, the Biosciences eastern and central Africa (BecA) hub, and the International Glossina Genome Initiative.

  7. G

    Bioinformatics Pipelines as a Service Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Bioinformatics Pipelines as a Service Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/bioinformatics-pipelines-as-a-service-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Bioinformatics Pipelines as a Service Market Outlook



    According to our latest research, the global Bioinformatics Pipelines as a Service market size was valued at USD 1.82 billion in 2024, and is anticipated to grow at a robust CAGR of 14.6% from 2025 to 2033. By the end of 2033, the market is forecasted to reach USD 5.73 billion. This growth is primarily driven by the increasing adoption of cloud computing in life sciences, the exponential rise in biological data generation, and the growing need for scalable, cost-effective, and automated bioinformatics solutions across healthcare, pharmaceutical, and research sectors.




    The surge in next-generation sequencing (NGS) and other high-throughput technologies has led to an unprecedented volume of biological data, creating a pressing demand for advanced computational tools. Bioinformatics Pipelines as a Service (BPaaS) addresses this need by offering scalable, automated, and user-friendly platforms that streamline complex data analysis workflows. Researchers and clinicians are increasingly leveraging these services to accelerate genomic, proteomic, and transcriptomic studies. The shift towards precision medicine and the growing importance of biomarker discovery are key growth factors, as BPaaS platforms enable rapid and reproducible analysis, reducing time-to-insight and enhancing research productivity. Furthermore, the integration of artificial intelligence (AI) and machine learning (ML) within these pipelines is further enhancing data interpretation, fostering innovation, and expanding market opportunities.




    Another significant growth driver is the rising demand for cost-effective and flexible bioinformatics solutions among small and medium-sized enterprises (SMEs) and academic institutions. Traditional bioinformatics infrastructure requires substantial investment in hardware, software, and skilled personnel, which can be prohibitive for smaller organizations. BPaaS eliminates these barriers by providing on-demand access to sophisticated analytical tools and computational resources, democratizing access to advanced bioinformatics. This trend is particularly evident in emerging economies, where cloud-based solutions are enabling research institutions and biotechnology startups to participate in cutting-edge life sciences research without heavy capital expenditure. Additionally, the growing collaborations between bioinformatics service providers and pharmaceutical companies are accelerating drug discovery and development pipelines, further propelling market growth.




    Regulatory compliance and data security have also become critical considerations, especially with the increasing use of patient-derived data in clinical and translational research. BPaaS providers are investing in robust security protocols, compliance certifications, and data governance frameworks to address these concerns. The adoption of cloud-based bioinformatics pipelines is being facilitated by advancements in data encryption, multi-factor authentication, and secure data storage solutions, ensuring the protection of sensitive genomic and clinical information. This has instilled greater confidence among healthcare providers and pharmaceutical companies, driving broader acceptance of BPaaS solutions in regulated environments. As a result, the market is witnessing strong demand from both developed and developing regions, with North America and Europe leading in adoption, while Asia Pacific and Latin America are rapidly emerging as high-growth markets.




    From a regional perspective, North America dominated the Bioinformatics Pipelines as a Service market in 2024, accounting for approximately 44% of global revenue, followed by Europe and Asia Pacific. The presence of leading bioinformatics companies, advanced healthcare infrastructure, and substantial investments in genomics research have positioned North America as a key driver of market expansion. Europe is also witnessing significant growth due to increased funding for life sciences research and supportive regulatory frameworks. Meanwhile, Asia Pacific is projected to exhibit the highest CAGR over the forecast period, driven by expanding biotechnology industries, growing government initiatives, and rising adoption of digital health technologies in countries such as China, India, and Japan.



    The emergence of "https://growthmarketreports.com/report/cloud-based-multi-omics-data-warehouse-market" target="_blank">Cloud-Based Multi-Omics D

  8. G

    Bioinformatics AI Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Bioinformatics AI Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/bioinformatics-ai-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Bioinformatics AI Market Outlook



    As per our latest research, the global Bioinformatics AI market size reached USD 2.13 billion in 2024, reflecting the rapid adoption of artificial intelligence technologies across the life sciences sector. The market is experiencing robust expansion, registering a CAGR of 28.7% from 2025 to 2033. By the end of 2033, the Bioinformatics AI market is forecasted to soar to USD 17.49 billion. This remarkable growth is primarily driven by the escalating demand for advanced data analysis in genomics, proteomics, and precision medicine, as well as the increasing integration of AI into drug discovery and clinical diagnostics workflows.




    The surge in the Bioinformatics AI market is underpinned by the exponential growth of biological data, particularly genomic and proteomic datasets, generated by next-generation sequencing technologies. As the volume and complexity of omics data continue to escalate, traditional bioinformatics tools are proving inadequate for extracting actionable insights. AI-powered algorithms, especially those leveraging deep learning and natural language processing, are transforming the way researchers analyze, interpret, and visualize biological information. These technologies enable the identification of novel biomarkers, prediction of disease susceptibility, and acceleration of drug target discovery, thereby fueling the adoption of AI-driven solutions among pharmaceutical, biotechnology, and academic research institutions.




    Another key growth factor for the Bioinformatics AI market is the increasing emphasis on precision medicine and personalized healthcare. Governments and private organizations worldwide are investing heavily in initiatives aimed at tailoring medical treatments to individual genetic profiles. AI-based bioinformatics platforms facilitate the integration of multi-omics data, electronic health records, and real-world evidence to deliver personalized therapeutic recommendations. This shift towards individualized care is driving the demand for scalable, accurate, and automated AI solutions capable of supporting clinical decision-making, patient stratification, and risk assessment. Furthermore, the ongoing COVID-19 pandemic has highlighted the critical role of AI in accelerating vaccine and drug development, further propelling market growth.




    The proliferation of cloud computing and big data analytics is also playing a pivotal role in the expansion of the Bioinformatics AI market. Cloud-based platforms offer scalable infrastructure and high-performance computing capabilities, enabling researchers to process and analyze vast biological datasets with enhanced efficiency and cost-effectiveness. The availability of AI-as-a-Service (AIaaS) offerings is democratizing access to advanced bioinformatics tools, allowing smaller research labs and emerging biotech firms to leverage state-of-the-art AI technologies without significant upfront investments. This democratization is fostering innovation and collaboration across the global life sciences ecosystem, thereby accelerating the adoption of AI-driven bioinformatics solutions.



    Bioinformatics plays a pivotal role in the modern life sciences landscape, serving as the backbone for data-driven research and development. The field encompasses a wide range of computational techniques and tools designed to manage, analyze, and interpret complex biological data. As the volume of data generated by high-throughput technologies continues to grow, bioinformatics provides the necessary infrastructure to transform raw data into meaningful insights. This transformation is crucial for advancing our understanding of biological systems, identifying potential therapeutic targets, and developing novel diagnostic tools. By integrating bioinformatics with AI, researchers can enhance their ability to predict disease outcomes, personalize treatment plans, and accelerate the discovery of new drugs. The synergy between bioinformatics and AI is driving innovation across the life sciences, enabling breakthroughs that were previously unimaginable.




    From a regional perspective, North America continues to dominate the Bioinformatics AI market, accounting for the largest share in 2024, followed by Europe and Asia Pacific. The presence of leading pharmaceutical and biotechnology companies, well-established healthcare infrastructure, and signif

  9. Data from: ChromosomeWalk, a virtual exhibition introducing the human genome...

    • figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marie-Claude Blatter; Vivienne Baillie Gerritsen; Patricia Palagi; Lydie Bougueleret; Frédérique Lisacek; Marc Robinson-Rechavi; Ioannis Xenarios (2023). ChromosomeWalk, a virtual exhibition introducing the human genome and bioinformatics [Dataset]. http://doi.org/10.6084/m9.figshare.741684.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Marie-Claude Blatter; Vivienne Baillie Gerritsen; Patricia Palagi; Lydie Bougueleret; Frédérique Lisacek; Marc Robinson-Rechavi; Ioannis Xenarios
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Chromosome Walk is a virtual exhibition that explains the importance of bioinformatics in the life sciences today, and an interactive and recreational journey into the human genome.

  10. f

    Data from: Bioinformatics analysis of the role of lysosome-related genes in...

    • datasetcatalog.nlm.nih.gov
    • tandf.figshare.com
    Updated Jul 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wang, Zhongming; Wang, Huazhong; Li, Xizhang; Li, Wenjie; Tang, Ruiyao; Zhou, Huaiying; Peng, Gui; Liu, Zhenbang (2024). Bioinformatics analysis of the role of lysosome-related genes in breast cancer [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001370581
    Explore at:
    Dataset updated
    Jul 26, 2024
    Authors
    Wang, Zhongming; Wang, Huazhong; Li, Xizhang; Li, Wenjie; Tang, Ruiyao; Zhou, Huaiying; Peng, Gui; Liu, Zhenbang
    Description

    This study aimed to investigate the roles of lysosome-related genes in BC prognosis and immunity. Transcriptome data from TCGA and MSigDB, along with lysosome-related gene sets, underwent NMF cluster analysis, resulting in two subtypes. Using lasso regression and univariate/multivariate Cox regression analysis, an 11-gene signature was successfully identified and verified. High- and low-risk populations were dominated by HR+ sample types. There were differences in pathway enrichment, immune cell infiltration, and immune scores. Sensitive drugs targeting model genes were screened using GDSC and CCLE. This study constructed a reliable prognostic model with lysosome-related genes, providing valuable insights for BC clinical immunotherapy. Lysosome-related genes can be used to predict survival outcomes in BRCA patients.Significant differences were showed in the immune status of patient with different prognoses.Immunotherapy may show better therapeutic results in low-risk patients.The most promising targeted drugs in the low-risk group are mainly Lapatinib, Palbociclib and Ribociclib. Lysosome-related genes can be used to predict survival outcomes in BRCA patients. Significant differences were showed in the immune status of patient with different prognoses. Immunotherapy may show better therapeutic results in low-risk patients. The most promising targeted drugs in the low-risk group are mainly Lapatinib, Palbociclib and Ribociclib.

  11. D

    Bioinformatics Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Bioinformatics Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/bioinformatics-software-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Bioinformatics Software Market Outlook



    The global bioinformatics software market size was valued at approximately USD 10 billion in 2023, and it is projected to reach around USD 25 billion by 2032, growing at a robust CAGR of 11% during the forecast period. This remarkable growth is fueled by the increased application of bioinformatics in drug discovery and development, the rising demand for personalized medicine, and the ongoing advancements in sequencing technologies. The convergence of biology and information technology has led to the optimization of biological data management, propelling the market's expansion as it transforms the landscape of biotechnology and pharmaceutical research. The rapid integration of artificial intelligence and machine learning techniques to process complex biological data further accentuates the growth trajectory of this market.



    An essential growth factor for the bioinformatics software market is the burgeoning demand for sequencing technologies. The decreasing cost of sequencing has led to a massive increase in the volume of genomic data generated, necessitating advanced software solutions to manage and interpret this data efficiently. This demand is particularly evident in genomics and proteomics, where bioinformatics software plays a critical role in analyzing and visualizing large datasets. Additionally, the adoption of cloud computing in bioinformatics offers scalable resources and cost-effective solutions for data storage and processing, further fueling market growth. The increasing collaboration between research institutions and software companies to develop innovative bioinformatics tools is also contributing positively to market expansion.



    Another significant driver is the growth of personalized medicine, which relies heavily on bioinformatics for the analysis of individual genetic information to tailor therapeutic strategies. As healthcare systems worldwide move towards precision medicine, the demand for bioinformatics software that can integrate genetic, phenotypic, and environmental data becomes more pronounced. This trend is not only transforming patient care but also significantly impacting drug development processes, as pharmaceutical companies aim to create more effective and targeted therapies. The strategic partnerships and collaborations between biotech firms and bioinformatics software providers are critical in advancing personalized medicine and enhancing patient outcomes.



    The increasing prevalence of complex diseases such as cancer and neurological disorders necessitates comprehensive research efforts, driving the need for robust bioinformatics software. These diseases require multi-omics approaches for better understanding, diagnosis, and treatment, where bioinformatics tools are indispensable. The ongoing research and development activities in this area, supported by government funding and private investments, are fostering innovation in bioinformatics solutions. Furthermore, the development of user-friendly and intuitive software interfaces is expanding the market beyond specialized research labs to include clinical settings and hospitals, broadening the potential user base and enhancing market penetration.



    From a regional perspective, North America currently leads the bioinformatics software market, thanks to its advanced technological infrastructure, significant investment in healthcare R&D, and the presence of numerous key market players. The region accounted for the largest market share in 2023 and is expected to maintain its dominance throughout the forecast period. Meanwhile, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by increasing investments in biotechnology and pharmaceutical research, expanding healthcare infrastructure, and the rising adoption of bioinformatics in emerging economies like China and India. Europe's market growth is also significant, supported by substantial funding for genomic research and a strong focus on precision medicine initiatives.



    Lifesciences Data Mining and Visualization are becoming increasingly vital in the bioinformatics software market. As the volume of biological data continues to grow exponentially, the need for sophisticated tools to mine and visualize this data is paramount. These tools enable researchers to uncover hidden patterns and insights from complex datasets, facilitating breakthroughs in genomics, proteomics, and other life sciences fields. The integration of advanced data mining techniques with visualization capabilities allows for a more intuitive

  12. Bioinformatics Cores & New Technologies: The evolving role of 21st Century...

    • figshare.com
    pdf
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephen Turner (2023). Bioinformatics Cores & New Technologies: The evolving role of 21st Century Bioinformatics Core Facilities [Dataset]. http://doi.org/10.6084/m9.figshare.715242.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Stephen Turner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Slides presented at the first annual ABRF MADSSCi Meeting (http://madssci.my.abrf.org/), June 2013.

  13. r

    Data from: Spectrum analysis based method for dynamics and collective...

    • researchdata.edu.au
    • bridges.monash.edu
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yi-Zhen Shen; Yong-Sheng Ding; Quan Gu (2022). Spectrum analysis based method for dynamics and collective analysis of protein-protein interaction networks [Dataset]. http://doi.org/10.4225/03/5a13725619374
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset provided by
    Monash University
    Authors
    Yi-Zhen Shen; Yong-Sheng Ding; Quan Gu
    Description

    The importance of understanding biological interaction networks has fueled the development of numerous interaction data generation techniques, databases and prediction tools. Generation of high-confident interaction networks formulates the first step towards the study for protein–protein interactions (PPI). A number of experimental methods, based on distinct, physical principles have been developed to identify PPI such as the yeast two-hybrid method (Y2H). In this work, we focus on one example of biological networks, namely the yeast protein interaction network (YPIN). In YPIN, we design and implement a computational model that captures the discrete and stochastic nature of protein interactions. In this model, we apply spectrum analysis method to the variance of the protein nodes which play an important role in the PPI networks, which can show the topology structure of dynamic and collective performances of PPI networks. We take YPIN, such as 48 "quasi-cliques" and 6 "quasi-bipartites" separated from 11855 yeast PPI networks with 2617 proteins, as an example and apply spectrum analysis to show the topology structure of dynamic and collective analysis of PPI networks and the performances. The obtained results may be valuable for deciphering unknown protein functions, determining protein complexes, and inventing drugs. PRIB 2008 proceedings found at: http://dx.doi.org/10.1007/978-3-540-88436-1

    Contributors: Monash University. Faculty of Information Technology. Gippsland School of Information Technology ; Chetty, Madhu ; Ahmad, Shandar ; Ngom, Alioune ; Teng, Shyh Wei ; Third IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB) (3rd : 2008 : Melbourne, Australia) ; Coverage: Rights: Copyright by Third IAPR International Conference on Pattern Recognition in Bioinformatics. All rights reserved.

  14. Additional file 3: of The importance of genotype identity, genetic...

    • springernature.figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jean-Michel Michno; Robert Stupar (2023). Additional file 3: of The importance of genotype identity, genetic heterogeneity, and bioinformatic handling for properly assessing genomic variation in transgenic plants [Dataset]. http://doi.org/10.6084/m9.figshare.6407150.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Jean-Michel Michno; Robert Stupar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Resulting raw variant SNP calls from GATK HaplotypeCaller. (VCF 49825 kb)

  15. G

    Veterinary Bioinformatics Solutions Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Veterinary Bioinformatics Solutions Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/veterinary-bioinformatics-solutions-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Veterinary Bioinformatics Solutions Market Outlook



    According to our latest research, the veterinary bioinformatics solutions market size reached USD 1.45 billion globally in 2024, and is set to grow at a robust CAGR of 13.2% from 2025 to 2033. By the end of the forecast period in 2033, the market is expected to achieve a value of approximately USD 4.14 billion. This remarkable growth trajectory is primarily fueled by increasing demand for precision veterinary medicine, the rising prevalence of zoonotic diseases, and the rapid adoption of advanced bioinformatics tools in animal health research and diagnostics. As per our latest research, the integration of genomics and big data analytics into the veterinary sector is revolutionizing disease surveillance, drug discovery, and clinical diagnostics, thus propelling the market forward.




    A significant growth factor driving the veterinary bioinformatics solutions market is the surging incidence of zoonotic and infectious diseases among both companion and livestock animals. With the globalization of animal trade and increased human-animal interactions, the risk of disease transmission has escalated, necessitating robust surveillance and early detection mechanisms. Bioinformatics solutions empower veterinarians and researchers to analyze vast datasets from genomics, proteomics, and epidemiological studies, enabling early identification of disease outbreaks and facilitating prompt interventions. This trend is further complemented by governmental and non-governmental initiatives aimed at strengthening animal health infrastructure and surveillance systems, particularly in regions prone to emerging infectious diseases.




    Another crucial driver is the technological advancement and integration of artificial intelligence (AI) and machine learning (ML) in veterinary bioinformatics platforms. These technologies enhance data processing capabilities, automate complex analyses, and provide actionable insights for clinical diagnostics and drug discovery. The proliferation of next-generation sequencing (NGS) technologies has also made genomic and proteomic data more accessible and affordable, resulting in a surge of data generation that requires sophisticated bioinformatics solutions for interpretation. Pharmaceutical and biotechnology companies are increasingly investing in these platforms to streamline drug development processes, reduce time-to-market, and improve the efficacy of veterinary therapeutics.




    Increasing awareness about animal welfare and the economic significance of livestock health further amplifies market growth. Farmers and animal health professionals are recognizing the importance of data-driven decision-making to optimize herd management, enhance productivity, and minimize losses due to diseases. Bioinformatics solutions provide valuable insights into genetic traits, disease susceptibility, and treatment responses, supporting precision breeding and personalized veterinary care. The growing trend of pet humanization is also contributing to the adoption of advanced diagnostics and personalized medicine in companion animals, further boosting the demand for veterinary bioinformatics solutions across various animal types.




    From a regional perspective, North America dominates the veterinary bioinformatics solutions market, accounting for the largest revenue share in 2024, followed by Europe and Asia Pacific. The presence of leading bioinformatics companies, advanced veterinary healthcare infrastructure, and significant investments in research and development underpin North America's leadership. Europe is characterized by a strong regulatory framework for animal health and a high level of adoption of digital technologies in veterinary practice. Meanwhile, the Asia Pacific region is poised for the fastest growth during the forecast period, driven by expanding livestock industries, rising pet ownership, and increasing government initiatives to strengthen animal health surveillance systems. Latin America and the Middle East & Africa are also witnessing gradual adoption, although market penetration remains lower compared to developed regions.



  16. Additional file 4: of The importance of genotype identity, genetic...

    • springernature.figshare.com
    • figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jean-Michel Michno; Robert Stupar (2023). Additional file 4: of The importance of genotype identity, genetic heterogeneity, and bioinformatic handling for properly assessing genomic variation in transgenic plants [Dataset]. http://doi.org/10.6084/m9.figshare.6407192.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Jean-Michel Michno; Robert Stupar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Resulting raw variant indel calls from GATK HaplotypeCaller. (VCF 29397 kb)

  17. f

    Data from: The Expression and Survival Significance of Glucose Transporter-1...

    • datasetcatalog.nlm.nih.gov
    • tandf.figshare.com
    Updated Aug 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gu, Jichun; Li, Ji; Guo, Yujie; Du, Jiali; Deng, Junyuan; Jin, Chen; Fu, Deliang; Bao, Yun; Kong, Lei (2021). The Expression and Survival Significance of Glucose Transporter-1 in Pancreatic Cancer: Meta-Analysis, Bioinformatics Analysis and Retrospective Study [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000846171
    Explore at:
    Dataset updated
    Aug 4, 2021
    Authors
    Gu, Jichun; Li, Ji; Guo, Yujie; Du, Jiali; Deng, Junyuan; Jin, Chen; Fu, Deliang; Bao, Yun; Kong, Lei
    Description

    To explore the expression profile and prognostic relevance of GLUT-1 in pancreatic cancer, a meta-analysis, bioinformatics analysis based on Gene Expression Omnibus (GEO), Oncomine dataset and The Cancer Genome Atlas (TCGA) database, and immunohistochemistry in tumor and normal tissue from 88 pancreatic ductal adenocarcinoma (PDAC) patients were performed. GLUT-1 was significantly overexpressed in pancreatic cancer but it could not be a significant biomarker for prognosis. TNM stage and pathological grade could be biomarker of poor prognosis of patients with pancreatic cancer.

  18. f

    DataSheet_1_A role of inflammaging in aortic aneurysm: new insights from...

    • datasetcatalog.nlm.nih.gov
    Updated Sep 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ye, Ping; Wang, Zhiwen; Liu, Hao; Wang, Shilin; Xia, Jiahong; Yang, Peiwen; Chen, Shu (2023). DataSheet_1_A role of inflammaging in aortic aneurysm: new insights from bioinformatics analysis.pdf [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000943921
    Explore at:
    Dataset updated
    Sep 6, 2023
    Authors
    Ye, Ping; Wang, Zhiwen; Liu, Hao; Wang, Shilin; Xia, Jiahong; Yang, Peiwen; Chen, Shu
    Description

    IntroductionAortic aneurysms (AA) are prevalent worldwide with a notable absence of drug therapies. Thus, identifying potential drug targets is of utmost importance. AA often presents in the elderly, coupled with consistently raised serum inflammatory markers. Given that ageing and inflammation are pivotal processes linked to the evolution of AA, we have identified key genes involved in the inflammaging process of AA development through various bioinformatics methods, thereby providing potential molecular targets for further investigation.MethodsThe transcriptome data of AA was procured from the datasets GSE140947, GSE7084, and GSE47472, sourced from the NCBI GEO database, whilst gene data of ageing and inflammation were obtained from the GeneCards Database. To identify key genes, differentially expressed analysis using the “Limma” package and WGCNA were implemented. Protein-protein intersection (PPI) analysis and machine learning (ML) algorithms were employed for the screening of potential biomarkers, followed by an assessment of the diagnostic value. Following the acquisition of the hub inflammaging and AA-related differentially expressed genes (IADEGs), the TFs-mRNAs-miRNAs regulatory network was established. The CIBERSORT algorithm was utilized to investigate immune cell infiltration in AA. The correlation of hub IADEGs with infiltrating immunocytes was also evaluated. Lastly, wet laboratory experiments were carried out to confirm the expression of hub IADEGs.Results342 and 715 AA-related DEGs (ADEGs) recognized from GSE140947 and GSE7084 datasets were procured by intersecting the results of “Limma” and WGCNA analyses. After 83 IADEGs were obtained, PPI analysis and ML algorithms pinpointed 7 and 5 hub IADEGs candidates respectively, and 6 of them demonstrated a high diagnostic value. Immune cell infiltration outcomes unveiled immune dysregulation in AA. In the wet laboratory experiments, 3 hub IADEGs, including BLNK, HLA-DRA, and HLA-DQB1, finally exhibited an expression trend in line with the bioinformatics analysis result.DiscussionOur research identified three genes - BLNK, HLA-DRA, and HLA-DQB1- that play a significant role in promoting the development of AA through inflammaging, providing novel insights into the future understanding and therapeutic intervention of AA.

  19. f

    Data from: Bioinformatics analysis of the clinicopathological and prognostic...

    • datasetcatalog.nlm.nih.gov
    • tandf.figshare.com
    Updated Jun 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wang, Zi-mo; Ren, Dong-hui; Zhang, Cong-yu; Zhang, Li; Zheng, Hua-chuan (2023). Bioinformatics analysis of the clinicopathological and prognostic significance of BAG3 mRNA in gynecological cancers [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000986712
    Explore at:
    Dataset updated
    Jun 28, 2023
    Authors
    Wang, Zi-mo; Ren, Dong-hui; Zhang, Cong-yu; Zhang, Li; Zheng, Hua-chuan
    Description

    BAG3 is a co-chaperone BAG family protein that plays important roles in protein homeostasis, cell survival, cell motility, and tumour metastasis. This study aimed to clarify the clinicopathological and prognostic implications of BAG3 mRNA expression in tumours. We performed bioinformatics analysis on BAG3 mRNA expression using TCGA, XIANTAO, UALCAN, and Kaplan-Meier plotter databases. BAG3 mRNA expression was downregulated in breast and endometrial cancers and positively correlated with favourable PAM50 subtyping in breast cancer,clinical stage and short overall survival in ovarian cancer and negatively correlated with T stage, clinical stage, and histological grade in cervical and endometrial cancers. The top BAG3-related pathways included ligand-receptor interactions and activity, DNA packaging and nucleosomes, hormonal responses, membrane regions, microdomains and rafts, and endosomes in breast cancer; ligand-receptor interactions, transmembrane transporters and channels, cell adhesion, and keratinisation in cervical cancer; ligand-receptor interactions, anion transmembrane transporters, lipoproteins, keratinisation, cell adhesion, and protein processing in endometrial cancer; metabolism of porphyrin, chlorophyll, pentose, uronic acid, ascorbate, and alternate and cell adhesion in ovarian cancer. BAG3 expression could represent a potential marker for carcinogenesis, histogenesis, aggressive behaviours, and prognosis in gynecological cancers.IMPACT STATEMENTWhat is already known on this subject? BAG3 regulates cell activity, autophagy, and resistance to apoptosis through multiple domains and plays an important role in tumour development. BAG3 positively regulates tumour cell invasion and migration in cervical and ovarian cancers.What do the results of this study add? BAG3 expression is closely associated with histogenesis, clinicopathology, and prognosis in gynecological cancers and is involved in signalling pathways associated with the control of cell proliferation, migration, invasion, and drug resistance in tumours.What are the implications of these findings for clinical practice and/or further research? Abnormal BAG3 expression can be employed as a possible marker of tumour development, invasion, and prognosis, providing new ideas for treating cancer. What is already known on this subject? BAG3 regulates cell activity, autophagy, and resistance to apoptosis through multiple domains and plays an important role in tumour development. BAG3 positively regulates tumour cell invasion and migration in cervical and ovarian cancers. What do the results of this study add? BAG3 expression is closely associated with histogenesis, clinicopathology, and prognosis in gynecological cancers and is involved in signalling pathways associated with the control of cell proliferation, migration, invasion, and drug resistance in tumours. What are the implications of these findings for clinical practice and/or further research? Abnormal BAG3 expression can be employed as a possible marker of tumour development, invasion, and prognosis, providing new ideas for treating cancer.

  20. q

    Sequence Similarity: An inquiry based and "under the hood" approach for...

    • qubeshub.org
    Updated Aug 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adam Kleinschmit*; Benita Brink; Steven Roof; Carlos Goller; Sabrina Robertson (2021). Sequence Similarity: An inquiry based and "under the hood" approach for incorporating molecular sequence alignment in introductory undergraduate biology courses [Dataset]. http://doi.org/10.24918/cs.2019.5
    Explore at:
    Dataset updated
    Aug 28, 2021
    Dataset provided by
    QUBES
    Authors
    Adam Kleinschmit*; Benita Brink; Steven Roof; Carlos Goller; Sabrina Robertson
    Description

    Introductory bioinformatics exercises often walk students through the use of computational tools, but often provide little understanding of what a computational tool does "under the hood." A solid understanding of how a bioinformatics computational algorithm functions, including its limitations, is key for interpreting the output in a biologically relevant context. This introductory bioinformatics exercise integrates an introduction to web-based sequence alignment algorithms with models to facilitate student reflection and appreciation for how computational tools provide similarity output data. The exercise concludes with a set of inquiry-based questions in which students may apply computational tools to solve a real biological problem.

    In the module, students first define sequence similarity and then investigate how similarity can be quantitatively compared between two similar length proteins using a Blocks Substitution Matrix (BLOSUM) scoring matrix. Students then look for local regions of similarity between a sequence query and subjects within a large database using Basic Local Alignment Search Tool (BLAST). Lastly, students access text-based FASTA-formatted sequence information via National Center for Biotechnology Information (NCBI) databases as they collect sequences for a multiple sequence alignment using Clustal Omega to generate a phylogram and evaluate evolutionary relationships. The combination of diverse, inquiry-based questions, paper models, and web-based computational resources provides students with a solid basis for more advanced bioinformatics topics and an appreciation for the importance of bioinformatics tools across the discipline of biology.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Technavio (2025). Bioinformatics Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/bioinformatics-market-industry-analysis
Organization logo

Bioinformatics Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW)

Explore at:
pdfAvailable download formats
Dataset updated
Jun 18, 2025
Dataset provided by
TechNavio
Authors
Technavio
License

https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

Time period covered
2025 - 2029
Area covered
Europe, France, United Kingdom, North America, Canada, Germany, United States
Description

Snapshot img

Bioinformatics Market Size 2025-2029

The bioinformatics market size is valued to increase by USD 15.98 billion, at a CAGR of 17.4% from 2024 to 2029. Reduction in cost of genetic sequencing will drive the bioinformatics market.

Market Insights

North America dominated the market and accounted for a 43% growth during the 2025-2029.
By Application - Molecular phylogenetics segment was valued at USD 4.48 billion in 2023
By Product - Platforms segment accounted for the largest market revenue share in 2023

Market Size & Forecast

Market Opportunities: USD 309.88 million 
Market Future Opportunities 2024: USD 15978.00 million
CAGR from 2024 to 2029 : 17.4%

Market Summary

The market is a dynamic and evolving field that plays a pivotal role in advancing scientific research and innovation in various industries, including healthcare, agriculture, and academia. One of the primary drivers of this market's growth is the rapid reduction in the cost of genetic sequencing, making it increasingly accessible to researchers and organizations worldwide. This affordability has led to an influx of large-scale genomic data, necessitating the development of sophisticated bioinformatics tools for Next-Generation Sequencing (NGS) data analysis. Another significant trend in the market is the shortage of trained laboratory professionals capable of handling and interpreting complex genomic data. This skills gap creates a demand for user-friendly bioinformatics software and services that can streamline data analysis and interpretation, enabling researchers to focus on scientific discovery rather than data processing. For instance, a leading pharmaceutical company could leverage bioinformatics tools to optimize its drug discovery pipeline by analyzing large genomic datasets to identify potential drug targets and predict their efficacy. By integrating these tools into its workflow, the company can reduce the time and cost associated with traditional drug discovery methods, ultimately bringing new therapies to market more efficiently. Despite its numerous benefits, the market faces challenges such as data security and privacy concerns, data standardization, and the need for interoperability between different software platforms. Addressing these challenges will require collaboration between industry stakeholders, regulatory bodies, and academic institutions to establish best practices and develop standardized protocols for data sharing and analysis.

What will be the size of the Bioinformatics Market during the forecast period?

Get Key Insights on Market Forecast (PDF) Request Free SampleBioinformatics, a dynamic and evolving market, is witnessing significant growth as businesses increasingly rely on high-performance computing, gene annotation, and bioinformatics software to decipher regulatory elements, gene expression regulation, and genomic variation. Machine learning algorithms, phylogenetic trees, and ontology development are integral tools for disease modeling and protein interactions. cloud computing platforms facilitate the storage and analysis of vast biological databases and sequence datas, enabling data mining techniques and statistical modeling for sequence assembly and drug discovery pipelines. Proteomic analysis, protein folding, and computational biology are crucial components of this domain, with biomedical ontologies and data integration platforms enhancing research efficiency. The integration of gene annotation and machine learning algorithms, for instance, has led to a 25% increase in accurate disease diagnosis within leading healthcare organizations. This trend underscores the importance of investing in advanced bioinformatics solutions for improved regulatory compliance, budgeting, and product strategy.

Unpacking the Bioinformatics Market Landscape

Bioinformatics, an essential discipline at the intersection of biology and computer science, continues to revolutionize the scientific landscape. Evolutionary bioinformatics, with its molecular dynamics simulation and systems biology approaches, enables a deeper understanding of biological processes, leading to improved ROI in research and development. For instance, next-generation sequencing technologies have reduced sequencing costs by a factor of ten, enabling genome-wide association studies and transcriptome sequencing on a previously unimaginable scale. In clinical bioinformatics, homology modeling techniques and protein-protein interaction analysis facilitate drug target identification, enhancing compliance with regulatory requirements. Phylogenetic analysis tools and comparative genomics studies contribute to the discovery of novel biomarkers and the development of personalized treatments. Bioimage informatics and proteomic data integration employ advanced sequence alignment algorithms and functional genomics tools to unlock new insights from complex

Search
Clear search
Close search
Google apps
Main menu