Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/38181/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38181/terms
This Innovative Technology Experiences for Students and Teachers (ITEST) project has developed, implemented, and evaluated a series of innovative Socio-Environmental Science Investigations (SESI) using a geospatial curriculum approach. It is targeted for economically disadvantaged 9th grade high school students in Allentown, PA, and involves hands-on geospatial technology to help develop STEM-related skills. SESI focuses on societal issues related to environmental science. These issues are multi-disciplinary, involve decision-making that is based on the analysis of merged scientific and sociological data, and have direct implications for the social agency and equity milieu faced by these and other school students. This project employed a design partnership between Lehigh University natural science, social science, and education professors, high school science and social studies teachers, and STEM professionals in the local community to develop geospatial investigations with Web-based Geographic Information Systems (GIS). These were designed to provide students with geospatial skills, career awareness, and motivation to pursue appropriate education pathways for STEM-related occupations, in addition to building a more geographically and scientifically literate citizenry. The learning activities provide opportunities for students to collaborate, seek evidence, problem-solve, master technology, develop geospatial thinking and reasoning skills, and practice communication skills that are essential for the STEM workplace and beyond. Despite the accelerating growth in geospatial industries and congruence across STEM, few school-based programs integrate geospatial technology within their curricula, and even fewer are designed to promote interest and aspiration in the STEM-related occupations that will maintain American prominence in science and technology. The SESI project is based on a transformative curriculum approach for geospatial learning using Web GIS to develop STEM-related skills and promote STEM-related career interest in students who are traditionally underrepresented in STEM-related fields. This project attends to a significant challenge in STEM education: the recognized deficiency in quality locally-based and relevant high school curriculum for under-represented students that focuses on local social issues related to the environment. Environmental issues have great societal relevance, and because many environmental problems have a disproportionate impact on underrepresented and disadvantaged groups, they provide a compelling subject of study for students from these groups in developing STEM-related skills. Once piloted in the relatively challenging environment of an urban school with many unengaged learners, the results will be readily transferable to any school district to enhance geospatial reasoning skills nationally.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open-Source GIS plays a pivotal role in advancing GIS education, fostering research collaboration, and supporting global sustainability by enabling the sharing of data, models, and knowledge. However, the integration of big data, deep learning methods, and artificial intelligence deep learning in geospatial research presents significant challenges for GIS education. These include increasing software learning costs, higher computational power demand, and the management of fragmented information in the Web 2.0 context. Addressing these challenges while integrating emerging GIS innovations and restructuring GIS knowledge systems is crucial for the evolution of GIS Education 3.0. This study introduces a Visual Programming-based Geospatial Cyberinfrastructure (V-GCI) framework, integrated with the replicable and reproducible (R&R) framework, to enhance GIS function compatibility, learning scalability, and web GIS application interoperability. Through a case study on spatial accessibility using the generalized two-step floating catchment area method (G2SFCA), this paper demonstrates how V-GCI can reshape the GIS knowledge tree and its potential to enhance replicability and reproducibility within open-source GIS Education 3.0.
Facebook
TwitterThis is the new quarterly ArcGIS newsletter for Higher Education. It will contain all the important information for teaching and facilitating the use of ArcGIS across your university. We aim to publish newsletters in October, January, April and July. Lets get into it.
Facebook
TwitterExplore the content in this pathway to see the role of GIS in agriculture education. Understand the opportunities that GIS opens for students in the career cluster for agriculture, food, and natural resources.
Facebook
TwitterCommunicate about finds using interactive and dynamic dashboards. Try it out for yourself:
Facebook
TwitterThe coronavirus (COVID-19) is causing many universities and colleges to virtualize their classes. Schools that have not considered or postponed a decision to virtualize their GIS classes using ArcGIS Pro and ArcMap are revaluating their options. Those that have experimented with virtualizing ArcGIS Pro are seriously considering how to expand their virtualized offering._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Facebook
TwitterHi, I'm Kiaran Ratcliffe a GIS Consultant within the Education Team at Esri UK. Esri is a company that creates and distributes GIS software, and my focus is on helping schools and universities access and use this software effectively. That means helping educators bring GIS into the classroom in ways that are engaging, inclusive, and relevant. We want students to leave school or university not just knowing how to use GIS, but understanding how to apply it to make a difference—socially, environmentally, and across all kinds of industries.It’s a really rewarding role. We get to support both students and teachers, and help them use modern spatial tools to explore the world, solve problems, and tell powerful stories with data.
Facebook
TwitterThis layer is a part of Esri GeoInquiries at http://www.esri.com/geoinquiries The HDI was created to emphasize that people and their capabilities should be the ultimate criteria for assessing the development of a country, not economic growth alone. The HDI can also be used to question national policy choices, asking how two countries with the same level of GNI per capita can end up with different human development outcomes. These contrasts can stimulate debate about government policy priorities. The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable and have a decent standard of living. The HDI is the geometric mean of normalized indices for each of the three dimensions. The health dimension is assessed by life expectancy at birth, the education dimension is measured by mean of years of schooling for adults aged 25 years and more and expected years of schooling for children of school entering age. The standard of living dimension is measured by gross national income per capita. The HDI uses the logarithm of income, to reflect the diminishing importance of income with increasing GNI. The scores for the three HDI dimension indices are then aggregated into a composite index using geometric mean. Refer to Technical notes for more details. [source, 2020]This dataset includes the fields:HDI_Rank_2019HDI_2019Life_expectancy_at_birth_inYearExpected_years_of_schoolingMean_years_of_schooling_2019GNI_per_capita_2019Data sources:UN Development Programhttp://hdr.undp.org/en/content/2019-human-development-index-rankingHistoric HDI data source:http://hdr.undp.org/en/data#
Facebook
TwitterGIS has never been more important and relevant in society. GIS has never been more important and relevant to the way we live. We live in a world awash with data and GIS is one of the tool that can help make sense of that data.We are part of data science and the collision point between computer science and geography.
Facebook
TwitterTable from the American Community Survey (ACS) 5-year series on education enrollment and attainment related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B14007/B14002 School Enrollment, B15003 Educational Attainment. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.
Facebook
TwitterWith the move towards named user licencing for ArcGIS the importance of well kept ArcGIS Online organisation has never been as significant as before. If your institution has decided to continue their modern GIS journey on a fresh EU hosted ArcGIS Online node your users can quickly find themselves in a situation where they might want to transfer content from the old organisation to the new one. There is a number of ways to go about this, some easier than others.
Facebook
TwitterThis layer shows education level for adults 25+. Counts broken down by sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the percentage of adults (25+) who were not high school graduates. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionChildhood stunting is a global public health concern, associated with both short and long-term consequences, including high child morbidity and mortality, poor development and learning capacity, increased vulnerability for infectious and non-infectious disease. The prevalence of stunting varies significantly throughout Ethiopian regions. Therefore, this study aimed to assess the geographical variation in predictors of stunting among children under the age of five in Ethiopia using 2019 Ethiopian Demographic and Health Survey.MethodThe current analysis was based on data from the 2019 mini Ethiopian Demographic and Health Survey (EDHS). A total of 5,490 children under the age of five were included in the weighted sample. Descriptive and inferential analysis was done using STATA 17. For the spatial analysis, ArcGIS 10.7 were used. Spatial regression was used to identify the variables associated with stunting hotspots, and adjusted R2 and Corrected Akaike Information Criteria (AICc) were used to compare the models. As the prevalence of stunting was over 10%, a multilevel robust Poisson regression was conducted. In the bivariable analysis, variables having a p-value < 0.2 were considered for the multivariable analysis. In the multivariable multilevel robust Poisson regression analysis, the adjusted prevalence ratio with the 95% confidence interval is presented to show the statistical significance and strength of the association.ResultThe prevalence of stunting was 33.58% (95%CI: 32.34%, 34.84%) with a clustered geographic pattern (Moran’s I = 0.40, p40 (APR = 0.74, 95%CI: 0.55, 0.99). Children whose mother had secondary (APR = 0.74, 95%CI: 0.60, 0.91) and higher (APR = 0.61, 95%CI: 0.44, 0.84) educational status, household wealth status (APR = 0.87, 95%CI: 0.76, 0.99), child aged 6–23 months (APR = 1.87, 95%CI: 1.53, 2.28) were all significantly associated with stunting.ConclusionIn Ethiopia, under-five children suffering from stunting have been found to exhibit a spatially clustered pattern. Maternal education, wealth index, birth interval and child age were determining factors of spatial variation of stunting. As a result, a detailed map of stunting hotspots and determinants among children under the age of five aid program planners and decision-makers in designing targeted public health measures.
Facebook
TwitterAnyone who has taught GIS using Census Data knows it is an invaluable data set for showing students how to take data stored in a table and join it to boundary data to transform this data into something that can be visualised and analysed spatially. Joins are a core GIS skill and need to be learnt, as not every data set is going to come neatly packaged as a shapefile or feature layer with all the data you need stored within. I don't know how many times I taught students to download data as a table from Nomis, load it into a GIS and then join that table data to the appropriate boundary data so they could produce choropleth maps to do some visual analysis, but it was a lot! Once students had gotten the hang of joins using census data they'd often ask why this data doesn't exist as a prepackaged feature layer with all the data they wanted within it. Well good news, now a lot off it is and it's accessible through the Living Atlas! Don't get me wrong I fully understand the importance of teaching students how to perform joins but once you have this understanding if you can access data that already contains all the information you need then you should be taking advantage of it to save you time. So in this exercise I am going to show you how to load English and Welsh Census Data from the 2021 Census into the ArcGIS Map Viewer from the Living Atlas and produce some choropleth maps to use to perform visual analysis without having to perform a single join.
Facebook
TwitterAnalyze the importance of conservation through the creation of the National Park Service in the United States. THE GRADE 4 INTERDISCIPLINARY GEOINQUIRY COLLECTIONhttp://www.esri.com/geoinquiriesTo support Esri’s involvement in the White House ConnectED Initiative, GeoInquiry instructional materials using ArcGIS Online for elementary grade 4 education are now freely available.The Grade 4 Interdisciplinary GeoInquiry collection contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading elementary textbooks. The activities use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device/laptop agnostic. The activities harmonize with the Next Generation Science Standards, the C3 Framework, and Common Core. Activity topics include:Teachers, GeoMentors, and administrators can learn more at http://www.esri.com/geoinquiries
Facebook
TwitterFor the category for less than high school education, the highest level of education attained includes less than ninth grade education, as well as ninth to twelfth grade education without a high school diploma. For the high school graduates category, the highest level of education attained includes high school diploma or equivalency. For the some college education category, the highest level of education attained includes associate’s degree or some college education without a degree. For the bachelor's degree or higher category, the highest level of education attained includes bachelor’s, graduate, or professional degree. Due to rounding, educational attainment categories may not sum to 100%. Educational attainment is an important driver of life expectancy, as people with higher levels of education are more likely to obtain well-paying jobs, live in safer neighborhoods, have access to quality healthcare, and engage in healthier behaviors.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Facebook
TwitterMuch of the ArcGIS System is cloud based and identity really helps unlock the power of this connected GIS. In this resourse we will outline what an ArcGIS Identity is, why it is important to allow users across your organisation to have one and how to set them up.
Facebook
TwitterAs you might have already heard, after 20+ years of serving the GIS community ArcMap is finally retiring.The desktop role of the ArcGIS system is being replaced by ArcGIS Pro, which is more integrated with other ArcGIS solutions like ArcGIS Online, The Living Atlas, fieldwork and web applications.
Facebook
TwitterI graduated from Durham University with a Mathematics degree (MMath) and began my career working for the engineering consultancy Mott MacDonald as a Graduate Transport Modeller.I spent three years in this role, developing simulation models for transport systems at the local and national level. During this time I began using GIS to aid in designing network structures and displaying model outputs.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/38181/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38181/terms
This Innovative Technology Experiences for Students and Teachers (ITEST) project has developed, implemented, and evaluated a series of innovative Socio-Environmental Science Investigations (SESI) using a geospatial curriculum approach. It is targeted for economically disadvantaged 9th grade high school students in Allentown, PA, and involves hands-on geospatial technology to help develop STEM-related skills. SESI focuses on societal issues related to environmental science. These issues are multi-disciplinary, involve decision-making that is based on the analysis of merged scientific and sociological data, and have direct implications for the social agency and equity milieu faced by these and other school students. This project employed a design partnership between Lehigh University natural science, social science, and education professors, high school science and social studies teachers, and STEM professionals in the local community to develop geospatial investigations with Web-based Geographic Information Systems (GIS). These were designed to provide students with geospatial skills, career awareness, and motivation to pursue appropriate education pathways for STEM-related occupations, in addition to building a more geographically and scientifically literate citizenry. The learning activities provide opportunities for students to collaborate, seek evidence, problem-solve, master technology, develop geospatial thinking and reasoning skills, and practice communication skills that are essential for the STEM workplace and beyond. Despite the accelerating growth in geospatial industries and congruence across STEM, few school-based programs integrate geospatial technology within their curricula, and even fewer are designed to promote interest and aspiration in the STEM-related occupations that will maintain American prominence in science and technology. The SESI project is based on a transformative curriculum approach for geospatial learning using Web GIS to develop STEM-related skills and promote STEM-related career interest in students who are traditionally underrepresented in STEM-related fields. This project attends to a significant challenge in STEM education: the recognized deficiency in quality locally-based and relevant high school curriculum for under-represented students that focuses on local social issues related to the environment. Environmental issues have great societal relevance, and because many environmental problems have a disproportionate impact on underrepresented and disadvantaged groups, they provide a compelling subject of study for students from these groups in developing STEM-related skills. Once piloted in the relatively challenging environment of an urban school with many unengaged learners, the results will be readily transferable to any school district to enhance geospatial reasoning skills nationally.