Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vitamin D insufficiency appears to be prevalent in SLE patients. Multiple factors potentially contribute to lower vitamin D levels, including limited sun exposure, the use of sunscreen, darker skin complexion, aging, obesity, specific medical conditions, and certain medications. The study aims to assess the risk factors associated with low vitamin D levels in SLE patients in the southern part of Bangladesh, a region noted for a high prevalence of SLE. The research additionally investigates the possible correlation between vitamin D and the SLEDAI score, seeking to understand the potential benefits of vitamin D in enhancing disease outcomes for SLE patients. The study incorporates a dataset consisting of 50 patients from the southern part of Bangladesh and evaluates their clinical and demographic data. An initial exploratory data analysis is conducted to gain insights into the data, which includes calculating means and standard deviations, performing correlation analysis, and generating heat maps. Relevant inferential statistical tests, such as the Student’s t-test, are also employed. In the machine learning part of the analysis, this study utilizes supervised learning algorithms, specifically Linear Regression (LR) and Random Forest (RF). To optimize the hyperparameters of the RF model and mitigate the risk of overfitting given the small dataset, a 3-Fold cross-validation strategy is implemented. The study also calculates bootstrapped confidence intervals to provide robust uncertainty estimates and further validate the approach. A comprehensive feature importance analysis is carried out using RF feature importance, permutation-based feature importance, and SHAP values. The LR model yields an RMSE of 4.83 (CI: 2.70, 6.76) and MAE of 3.86 (CI: 2.06, 5.86), whereas the RF model achieves better results, with an RMSE of 2.98 (CI: 2.16, 3.76) and MAE of 2.68 (CI: 1.83,3.52). Both models identify Hb, CRP, ESR, and age as significant contributors to vitamin D level predictions. Despite the lack of a significant association between SLEDAI and vitamin D in the statistical analysis, the machine learning models suggest a potential nonlinear dependency of vitamin D on SLEDAI. These findings highlight the importance of these factors in managing vitamin D levels in SLE patients. The study concludes that there is a high prevalence of vitamin D insufficiency in SLE patients. Although a direct linear correlation between the SLEDAI score and vitamin D levels is not observed, machine learning models suggest the possibility of a nonlinear relationship. Furthermore, factors such as Hb, CRP, ESR, and age are identified as more significant in predicting vitamin D levels. Thus, the study suggests that monitoring these factors may be advantageous in managing vitamin D levels in SLE patients. Given the immunological nature of SLE, the potential role of vitamin D in SLE disease activity could be substantial. Therefore, it underscores the need for further large-scale studies to corroborate this hypothesis.
Facebook
TwitterIn 2020, around 46 percent of individuals worldwide aged 15 years and older stated they thought mental health was more important than physical health, while another 46 percent felt mental health was just as important as physical health. This statistic illustrates the perceived importance of mental health compared to physical health among individuals worldwide in 2020.
Facebook
TwitterIn 2019, ** percent of the physicians and ** percent of students and residents surveyed in the U.S. said that patient data would be valuable to them clinically if it was sourced from a wearable device. Furthermore, ** percent of physicians and ** percent of students and residents said they would give clinical importance to patients self reported data if it was from a health app.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update — December 7, 2014. – Evidence-based medicine (EBM) is not working for many reasons, for example: 1. Incorrect in their foundations (paradox): hierarchical levels of evidence are supported by opinions (i.e., lowest strength of evidence according to EBM) instead of real data collected from different types of study designs (i.e., evidence). http://dx.doi.org/10.6084/m9.figshare.1122534 2. The effect of criminal practices by pharmaceutical companies is only possible because of the complicity of others: healthcare systems, professional associations, governmental and academic institutions. Pharmaceutical companies also corrupt at the personal level, politicians and political parties are on their payroll, medical professionals seduced by different types of gifts in exchange of prescriptions (i.e., bribery) which very likely results in patients not receiving the proper treatment for their disease, many times there is no such thing: healthy persons not needing pharmacological treatments of any kind are constantly misdiagnosed and treated with unnecessary drugs. Some medical professionals are converted in K.O.L. which is only a puppet appearing on stage to spread lies to their peers, a person supposedly trained to improve the well-being of others, now deceits on behalf of pharmaceutical companies. Probably the saddest thing is that many honest doctors are being misled by these lies created by the rules of pharmaceutical marketing instead of scientific, medical, and ethical principles. Interpretation of EBM in this context was not anticipated by their creators. “The main reason we take so many drugs is that drug companies don’t sell drugs, they sell lies about drugs.” ―Peter C. Gøtzsche “doctors and their organisations should recognise that it is unethical to receive money that has been earned in part through crimes that have harmed those people whose interests doctors are expected to take care of. Many crimes would be impossible to carry out if doctors weren’t willing to participate in them.” —Peter C Gøtzsche, The BMJ, 2012, Big pharma often commits corporate crime, and this must be stopped. Pending (Colombia): Health Promoter Entities (In Spanish: EPS ―Empresas Promotoras de Salud).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThere is widespread evidence that statistical methods play an important role in original research articles, especially in medical research. The evaluation of statistical methods and reporting in journals suffers from a lack of standardized methods for assessing the use of statistics. The objective of this study was to develop and evaluate an instrument to assess the statistical intensity in research articles in a standardized way.MethodsA checklist-type measure scale was developed by selecting and refining items from previous reports about the statistical contents of medical journal articles and from published guidelines for statistical reporting. A total of 840 original medical research articles that were published between 2007–2015 in 16 journals were evaluated to test the scoring instrument. The total sum of all items was used to assess the intensity between sub-fields and journals. Inter-rater agreement was examined using a random sample of 40 articles. Four raters read and evaluated the selected articles using the developed instrument.ResultsThe scale consisted of 66 items. The total summary score adequately discriminated between research articles according to their study design characteristics. The new instrument could also discriminate between journals according to their statistical intensity. The inter-observer agreement measured by the ICC was 0.88 between all four raters. Individual item analysis showed very high agreement between the rater pairs, the percentage agreement ranged from 91.7% to 95.2%.ConclusionsA reliable and applicable instrument for evaluating the statistical intensity in research papers was developed. It is a helpful tool for comparing the statistical intensity between sub-fields and journals. The novel instrument may be applied in manuscript peer review to identify papers in need of additional statistical review.
Facebook
TwitterNote: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.
This dataset contains a selection of 27 indicators of public health significance by Chicago community area, with the most updated information available. The indicators are rates, percents, or other measures related to natality, mortality, infectious disease, lead poisoning, and economic status. See the full description at https://data.cityofchicago.org/api/assets/2107948F-357D-4ED7-ACC2-2E9266BBFFA2.
Facebook
TwitterThe National Health Interview Survey (NHIS) is the principal source of information on the health of the civilian noninstitutionalized population of the United States and is one of the major data collection programs of the National Center for Health Statistics (NCHS) which is part of the Centers for Disease Control and Prevention (CDC). The National Health Survey Act of 1956 provided for a continuing survey and special studies to secure accurate and current statistical information on the amount, distribution, and effects of illness and disability in the United States and the services rendered for or because of such conditions. The survey referred to in the Act, now called the National Health Interview Survey, was initiated in July 1957. Since 1960, the survey has been conducted by NCHS, which was formed when the National Health Survey and the National Vital Statistics Division were combined. NHIS data are used widely throughout the Department of Health and Human Services (DHHS) to monitor trends in illness and disability and to track progress toward achieving national health objectives. The data are also used by the public health research community for epidemiologic and policy analysis of such timely issues as characterizing those with various health problems, determining barriers to accessing and using appropriate health care, and evaluating Federal health programs. The NHIS also has a central role in the ongoing integration of household surveys in DHHS. The designs of two major DHHS national household surveys have been or are linked to the NHIS. The National Survey of Family Growth used the NHIS sampling frame in its first five cycles and the Medical Expenditure Panel Survey currently uses half of the NHIS sampling frame. Other linkage includes linking NHIS data to death certificates in the National Death Index (NDI). While the NHIS has been conducted continuously since 1957, the content of the survey has been updated about every 10-15 years. In 1996, a substantially revised NHIS questionnaire began field testing. This revised questionnaire, described in detail below, was implemented in 1997 and has improved the ability of the NHIS to provide important health information.
Facebook
TwitterObjectives: Demonstrate the application of decision trees—classification and regression trees (CARTs), and their cousins, boosted regression trees (BRTs)—to understand structure in missing data. Setting: Data taken from employees at 3 different industrial sites in Australia. Participants: 7915 observations were included. Materials and methods: The approach was evaluated using an occupational health data set comprising results of questionnaires, medical tests and environmental monitoring. Statistical methods included standard statistical tests and the ‘rpart’ and ‘gbm’ packages for CART and BRT analyses, respectively, from the statistical software ‘R’. A simulation study was conducted to explore the capability of decision tree models in describing data with missingness artificially introduced. Results: CART and BRT models were effective in highlighting a missingness structure in the data, related to the type of data (medical or environmental), the site in which it was collected, the number of visits, and the presence of extreme values. The simulation study revealed that CART models were able to identify variables and values responsible for inducing missingness. There was greater variation in variable importance for unstructured as compared to structured missingness. Discussion: Both CART and BRT models were effective in describing structural missingness in data. CART models may be preferred over BRT models for exploratory analysis of missing data, and selecting variables important for predicting missingness. BRT models can show how values of other variables influence missingness, which may prove useful for researchers. Conclusions: Researchers are encouraged to use CART and BRT models to explore and understand missing data.
Facebook
TwitterBy Health Data New York [source]
This dataset provides comprehensive measures to evaluate the quality of medical services provided to Medicaid beneficiaries by Health Homes, including the Centers for Medicare & Medicaid Services (CMS) Core Set and Health Home State Plan Amendment (SPA). This allows us to gain insight into how well these health homes are performing in terms of delivering high-quality care. Our data sources include the Medicaid Data Mart, QARR Member Level Files, and New York State Delivery System Inform Incentive Program (DSRIP) Data Warehouse. With this data set you can explore essential indicators such as rates for indicators within scope of Core Set Measures, sub domains, domains and measure descriptions; age categories used; denominators of each measure; level of significance for each indicator; and more! By understanding more about Health Home Quality Measures from this resource you can help make informed decisions about evidence based health practices while also promoting better patient outcomes
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains measures that evaluate the quality of care delivered by Health Homes for the Centers for Medicare & Medicaid Services (CMS). With this dataset, you can get an overview of how a health home is performing in terms of quality. You can use this data to compare different health homes and their respective service offerings.
The data used to create this dataset was collected from Medicaid Data Mart, QARR Member Level Files, and New York State Delivery System Incentive Program (DSRIP) Data Warehouse sources.
In order to use this dataset effectively, you should start by looking at the columns provided. These include: Measurement Year; Health Home Name; Domain; Sub Domain; Measure Description; Age Category; Denominator; Rate; Level of Significance; Indicator. Each column provides valuable insight into how a particular health home is performing in various measurements of healthcare quality.
When examining this data, it is important to remember that many variables are included in any given measure and that changes may have occurred over time due to varying factors such as population or financial resources available for healthcare delivery. Furthermore, changes in policy may also affect performance over time so it is important to take these things into account when evaluating the performance of any given health home from one year to the next or when comparing different health homes on a specific measure or set of indicators over time
- Using this dataset, state governments can evaluate the effectiveness of their health home programs by comparing the performance across different domains and subdomains.
- Healthcare providers and organizations can use this data to identify areas for improvement in quality of care provided by health homes and strategies to reduce disparities between individuals receiving care from health homes.
- Researchers can use this dataset to analyze how variations in cultural context, geography, demographics or other factors impact delivery of quality health home services across different locations
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: health-home-quality-measures-beginning-2013-1.csv | Column name | Description | |:--------------------------|:----------------------------------------------------| | Measurement Year | The year in which the data was collected. (Integer) | | Health Home Name | The name of the health home. (String) | | Domain | The domain of the measure. (String) | | Sub Domain | The sub domain of the measure. (String) | | Measure Description | A description of the measure. (String) | | Age Category | The age category of the patient. (String) | | Denominator | The denominator of the measure. (Integer) | | Rate | The rate of the measure. (Float) | | Level of Significance | The level of significance of the measure. (String) | | Indicator | The indicator of the measure. (String) |
...
Facebook
Twitter
As per our latest research, the global Secure Medical Data Exchange market size reached USD 2.87 billion in 2024, reflecting a robust upward trajectory fueled by the increasing necessity for interoperable, secure, and compliant health information systems worldwide. The market is projected to expand at a CAGR of 13.1% from 2025 to 2033, reaching a forecasted market size of USD 8.72 billion by 2033. This remarkable growth is primarily driven by the surge in digital healthcare adoption, rising cyber threats, and stringent regulatory frameworks emphasizing patient data privacy and security.
One of the primary growth factors for the Secure Medical Data Exchange market is the escalating demand for seamless interoperability among healthcare providers. As healthcare systems globally transition towards digitization, the need to securely share patient information across various platforms, departments, and even between organizations has become critical. This demand is further intensified by the proliferation of electronic health records (EHRs) and the increasing adoption of telemedicine, which require secure and reliable data exchange mechanisms. The integration of advanced encryption technologies and blockchain-based solutions is also enhancing trust and transparency, further propelling market growth.
Another significant driver is the heightened awareness and regulatory emphasis on data privacy and compliance. Governments and regulatory bodies across regions have enacted stringent guidelines such as HIPAA in the US, GDPR in Europe, and similar frameworks in other regions, mandating healthcare organizations to implement robust security measures for medical data exchange. Non-compliance can result in severe penalties, reputational damage, and loss of patient trust, compelling organizations to invest in advanced secure data exchange solutions. Additionally, the increasing frequency and sophistication of cyberattacks targeting healthcare infrastructure have underscored the importance of adopting secure medical data exchange systems, thereby accelerating market expansion.
Technological advancements are also playing a pivotal role in shaping the market landscape. The integration of artificial intelligence, machine learning, and advanced analytics into secure medical data exchange platforms is enabling real-time threat detection, automated compliance monitoring, and improved data management. These innovations are not only enhancing security but also streamlining workflows, reducing operational costs, and improving patient outcomes. Furthermore, the growing adoption of cloud-based solutions is enabling healthcare organizations to scale their data exchange capabilities efficiently while maintaining high levels of security and compliance.
Regionally, North America dominates the Secure Medical Data Exchange market, accounting for the largest share in 2024, driven by the presence of advanced healthcare infrastructure, high digital adoption rates, and stringent regulatory requirements. Europe follows closely, benefiting from strong government initiatives and increasing investments in healthcare IT. The Asia Pacific region is expected to witness the fastest growth over the forecast period, fueled by expanding healthcare access, rising investments in digital health, and growing awareness of data security and privacy concerns. Latin America and the Middle East & Africa are also experiencing steady growth, supported by ongoing healthcare reforms and digital transformation initiatives.
The Component segment of the Secure Medical Data Exchange market is categorized into Software, Hardware, and Services. The software sub-segment holds the largest market share, as healthcare organizations increasingly deploy advanced platforms and applications to facilitate secure and interoperable data exchange. Software solutions are continuously evolving to incorporate advanced security features such as end-to-end
Facebook
Twitterhttps://market.biz/privacy-policyhttps://market.biz/privacy-policy
Introduction
Mental Health Statistics: Mental health is vital to well-being, influencing how people think, feel, and act. In recent years, there has been increasing recognition of its significance as societies become more aware of the far-reaching effects mental health disorders have on individuals, families, and communities.
Mental health statistics provide crucial insights into these conditions' prevalence, causes, and consequences, enabling policymakers, healthcare providers, and researchers to understand emerging trends better. This data supports effective resource allocation and the development of targeted interventions to tackle mental health issues.
We can pinpoint high-risk groups and regions that require additional support by examining these trends. Additionally, these insights help inform public health initiatives focused on reducing stigma and promoting mental health awareness. Accurate statistics are essential for shaping evidence-based policies emphasizing prevention, early intervention, and improving access to mental health services. As mental health continues to gain attention, continuous data collection and research will be key to addressing the global mental health crisis effectively.
Facebook
TwitterThis statistic shows the percentage of U.S. adults aged 18 years and older that believed that technology was important to the management of their health. According to the survey, ** percent of the respondents indicated that technology was "somewhat important" to managing their health.
Facebook
TwitterThis is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).Check the Data Dictionary for field descriptions.Search for the Medical Service Study Area data on the CHHS Open Data Portal.Checkout the California Healthcare Atlas for more Medical Service Study Area information.This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
Facebook
Twitter
According to our latest research, the global real-time health data analytics market size reached USD 16.2 billion in 2024, and is projected to grow at a robust CAGR of 18.4% from 2025 to 2033, reaching an estimated value of USD 80.2 billion by 2033. This substantial growth is primarily driven by the increasing adoption of digital health solutions, the proliferation of connected medical devices, and the rising demand for instant, actionable healthcare insights to improve patient outcomes and operational efficiency worldwide.
One of the primary growth factors fueling the real-time health data analytics market is the rapid digitization of healthcare systems. Hospitals, clinics, and other healthcare providers are increasingly deploying electronic health records (EHRs), wearable devices, and remote monitoring solutions that generate vast volumes of real-time patient data. These technologies enable continuous tracking of vital signs, medication adherence, and other health metrics, allowing clinicians to make timely decisions and intervene early in case of anomalies. The integration of artificial intelligence (AI) and machine learning (ML) algorithms with real-time analytics platforms further enhances the ability to detect patterns, predict adverse events, and personalize treatment plans. As healthcare organizations strive to transition from reactive to proactive care models, the demand for sophisticated real-time analytics solutions is expected to surge.
Another significant driver for the real-time health data analytics market is the increasing emphasis on value-based care and population health management. Governments and payers across the globe are incentivizing healthcare providers to improve quality while reducing costs, which necessitates the use of advanced analytics for tracking patient outcomes, identifying high-risk populations, and optimizing resource allocation. Real-time analytics platforms empower healthcare professionals to aggregate and analyze data from multiple sources, including EHRs, claims, and social determinants of health, providing a holistic view of patient populations. By enabling early identification of trends and gaps in care, these solutions facilitate targeted interventions, reduce hospital readmissions, and support evidence-based decision-making, thereby aligning with the objectives of value-based healthcare delivery.
Moreover, the ongoing COVID-19 pandemic has underscored the critical importance of real-time health data analytics in managing public health crises. Governments and healthcare organizations worldwide have leveraged real-time analytics to monitor the spread of the virus, allocate resources, and optimize vaccination campaigns. The pandemic has accelerated the adoption of telemedicine, remote patient monitoring, and cloud-based analytics platforms, further expanding the scope of real-time data utilization. As the world continues to face emerging infectious diseases and chronic health challenges, the ability to rapidly analyze and act upon real-time health data will remain a strategic priority for both public and private sector stakeholders.
In the realm of space technology, Reaction Wheel Health Analytics Services are becoming increasingly vital. These services are essential for monitoring the health and performance of reaction wheels, which are critical components in satellite attitude control systems. By utilizing advanced analytics, these services can detect anomalies and predict potential failures in reaction wheels, ensuring the longevity and reliability of satellite missions. The integration of real-time health data analytics with Reaction Wheel Health Analytics Services allows for proactive maintenance and optimization of satellite operations, reducing the risk of mission-critical failures and enhancing overall system efficiency. As the demand for satellite-based services continues to grow, the role of these analytics services in ensuring uninterrupted satellite functionality becomes ever more crucial.
From a regional perspective, North America currently dominates the real-time health data analytics market, accounting for the largest revenue share in 2024, driven by advanced healthcare infrastructure, widespread adoption of digital health technologies, and strong regulatory
Facebook
TwitterThis statistic shows the results of a 2014 Popsugar survey among American women asking them how important it is that health and fitness brands offer products that make them happy. During the survey, *** percent of female respondents said it is very important.
Facebook
TwitterThe Journal of Community Health Management FAQ - ResearchHelpDesk - The Journal of Community Health Management (JCHM) is open access, double-blind peer-review journal publishing quarterly since 2014. JCHM is proclaimed by Innovative Education and Scientific Research Foundation, print and published by Innovative Publication. It has an International Standard Serial Number (ISSN 2394-272X, e ISSN 2394-2738). JCHM permits authors to self-archive final approval of the articles on any OAI-compliant institutional/subject-based repository. Aim and Scope JCHM is focusing on Community Health which is the branch of the Public Health, it's making people aware and describing their role as determinants of their own and other people’s health in contrast to environmental health which focal point on the physical environment and its impact on people health. It concentrates on the maintenance, protection, and improvement of the health status of population groups and communities. The scope is, therefore, huge covering almost all streams of Community Health Management starting from original research articles, review articles, short communications, and clinical cases as well as studies covering clinical, experimental and applied topics on Community health Management on above subjective areas. The scope of the journal isn't restricted to those subjects however it's the broader coverage of all the newest updates and specialties. Indexing The Journal is an index with Index Copernicus (Poland), Google Scholar, J-gate, EBSCO (USA) database, Academia.edu, CrossRef, ROAD, InfoBase Index, GENAMIC, etc. Keywords Acute Care, Bio-statics, Community Health, Epidemiology and Health Services Research, Health Management, Medicine and Allied branches of Medical Sciences including Health Statistics, Nutrition, Preventive Medicine, Primary Prevention, Primary Health Care, Secondary Prevention, Secondary Healthcare, Tertiary Healthcare.
Facebook
TwitterBy City of Chicago [source]
This public health dataset contains a comprehensive selection of indicators related to natality, mortality, infectious disease, lead poisoning, and economic status from Chicago community areas. It is an invaluable resource for those interested in understanding the current state of public health within each area in order to identify any deficiencies or areas of improvement needed.
The data includes 27 indicators such as birth and death rates, prenatal care beginning in first trimester percentages, preterm birth rates, breast cancer incidences per hundred thousand female population, all-sites cancer rates per hundred thousand population and more. For each indicator provided it details the geographical region so that analyses can be made regarding trends on a local level. Furthermore this dataset allows various stakeholders to measure performance along these indicators or even compare different community areas side-by-side.
This dataset provides a valuable tool for those striving toward better public health outcomes for the citizens of Chicago's communities by allowing greater insight into trends specific to geographic regions that could potentially lead to further research and implementation practices based on empirical evidence gathered from this comprehensive yet digestible selection of indicators
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
In order to use this dataset effectively to assess the public health of a given area or areas in the city: - Understand which data is available: The list of data included in this dataset can be found above. It is important to know all that are included as well as their definitions so that accurate conclusions can be made when utilizing the data for research or analysis. - Identify areas of interest: Once you are familiar with what type of data is present it can help to identify which community areas you would like to study more closely or compare with one another. - Choose your variables: Once you have identified your areas it will be helpful to decide which variables are most relevant for your studies and research specific questions regarding these variables based on what you are trying to learn from this data set.
- Analyze the Data : Once your variables have been selected and clarified take right into analyzing the corresponding values across different community areas using statistical tests such as t-tests or correlations etc.. This will help answer questions like “Are there significant differences between two outputs?” allowing you to compare how different Chicago Community Areas stack up against each other with regards to public health statistics tracked by this dataset!
- Creating interactive maps that show data on public health indicators by Chicago community area to allow users to explore the data more easily.
- Designing a machine learning model to predict future variations in public health indicators by Chicago community area such as birth rate, preterm births, and childhood lead poisoning levels.
- Developing an app that enables users to search for public health information in their own community areas and compare with other areas within the city or across different cities in the US
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: public-health-statistics-selected-public-health-indicators-by-chicago-community-area-1.csv | Column name | Description | |:-----------------------------------------------|:--------------------------------------------------------------------------------------------------| | Community Area | Unique identifier for each community area in Chicago. (Integer) | | Community Area Name | Name of the community area in Chicago. (String) | | Birth Rate | Number of live births per 1,000 population. (Float) | | General Fertility Rate | Number of live births per 1,000 women aged 15-44. (Float) ...
Facebook
TwitterBy Data Society [source]
This dataset contains key demographic, health status indicators and leading cause of death data to help us understand the current trends and health outcomes in communities across the United States. By looking at this data, it can be seen how different states, counties and populations have changed over time. With this data we can analyze levels of national health services use such as vaccination rates or mammography rates; review leading causes of death to create public policy initiatives; as well as identify risk factors for specific conditions that may be associated with certain populations or regions. The information from these files includes State FIPS Code, County FIPS Code, CHSI County Name, CHSI State Name, CHSI State Abbreviation, Influenza B (FluB) report count & expected cases rate per 100K population , Hepatitis A (HepA) Report Count & expected cases rate per 100K population , Hepatitis B (HepB) Report Count & expected cases rate per 100K population , Measles (Meas) Report Count & expected cases rate per 100K population , Pertussis(Pert) Report Count & expected case rate per 100K population , CRS report count & expected case rate per 100K population , Syphilis report count and expected case rate per 100k popuation. We also look at measures related to preventive care services such as Pap smear screen among women aged 18-64 years old check lower/upper confidence intervals seperately ; Mammogram checks among women aged 40-64 years old specified lower/upper conifence intervals separetly ; Colonosopy/ Proctoscpushy among men aged 50+ measured in lower/upper limits ; Pneumonia Vaccination amongst 65+ with loewr/upper confidence level detail Additionally we have some interesting trend indicating variables like measures of birth adn death which includes general fertility ratye ; Teen Birth Rate by Mother's age group etc Summary Measures covers mortality trend following life expectancy by sex&age categories Vressionable populations access info gives us insight into disablilty ratio + access to envtiromental issues due to poor quality housing facilities Finally Risk Factors cover speicfic hoslitic condtiions suchs asthma diagnosis prevelance cancer diabetes alcholic abuse smoking trends All these information give a good understanding on Healthy People 2020 target setings demograpihcally speaking hence will aid is generating more evience backed policies
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
What the Dataset Contains
This dataset contains valuable information about public health relevant to each county in the United States, broken down into 9 indicator domains: Demographics, Leading Causes of Death, Summary Measures of Health, Measures of Birth and Death Rates, Relative Health Importance, Vulnerable Populations and Environmental Health Conditions, Preventive Services Use Data from BRFSS Survey System Data , Risk Factors and Access to Care/Health Insurance Coverage & State Developed Types of Measurements such as CRS with Multiple Categories Identified for Each Type . The data includes indicators such as percentages or rates for influenza (FLU), hepatitis (HepA/B), measles(MEAS) pertussis(PERT), syphilis(Syphilis) , cervical cancer (CI_Min_Pap_Smear - CI_Max\Pap \Smear), breast cancer (CI\Min Mammogram - CI \Max \Mammogram ) proctoscopy (CI Min Proctoscopy - CI Max Proctoscopy ), pneumococcal vaccinations (Ci min Pneumo Vax - Ci max Pneumo Vax )and flu vaccinations (Ci min Flu Vac - Ci Max Flu Vac). Additionally , it provides information on leading causes of death at both county levels & national level including age-adjusted mortality rates due to suicide among teens aged between 15-19 yrs per 100000 population etc.. Furthermore , summary measures such as age adjusted percentage who consider their physical health fair or poor are provided; vulnerable populations related indicators like relative importance score for disabled adults ; preventive service use related ones ranging from self reported vaccination coverage among men40-64 yrs old against hepatitis B virus etc...
Getting Started With The Dataset
To get started with exploring this dataset first your need to understand what each column in the table represents: State FIPS Code identifies a unique identifier used by various US government agencies which denote states . County FIPS code denotes counties wi...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe scientific community increasingly is recognizing the need to bolster standards of data analysis given the widespread concern that basic mistakes in data analysis are contributing to the irreproducibility of many published research findings. The aim of this study was to investigate students’ attitudes towards statistics within a multi-site medical educational context, monitor their changes and impact on student achievement. In addition, we performed a systematic review to better support our future pedagogical decisions in teaching applied statistics to medical students.MethodsA validated Serbian Survey of Attitudes Towards Statistics (SATS-36) questionnaire was administered to medical students attending obligatory introductory courses in biostatistics from three medical universities in the Western Balkans. A systematic review of peer-reviewed publications was performed through searches of Scopus, Web of Science, Science Direct, Medline, and APA databases through 1994. A meta-analysis was performed for the correlation coefficients between SATS component scores and statistics achievement. Pooled estimates were calculated using random effects models.ResultsSATS-36 was completed by 461 medical students. Most of the students held positive attitudes towards statistics. Ability in mathematics and grade point average were associated in a multivariate regression model with the Cognitive Competence score, after adjusting for age, gender and computer ability. The results of 90 paired data showed that Affect, Cognitive Competence, and Effort scores demonstrated significant positive changes. The Cognitive Competence score showed the largest increase (M = 0.48, SD = 0.95). The positive correlation found between the Cognitive Competence score and students’ achievement (r = 0.41; p
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Objectives: To assess the impact on readers' interpretation of the results reported in an abstract for a hypothetical clinical trial with 1) a statistically significant result, 2) spin, 3) both a statistically significant result and spin compared to 4) no spin and no statistically significant result.
Participants: Health students and professionals from universities and health institutions in France and the UK.
Interventions: Participants completed an online questionnaire using Likert scales and free text, after reading one of the four versions of an abstract about a hypothetical randomized trial evaluating "Naranex" and "Bulofil" (two hypothetical drugs) for chronic low back pain. The abstracts differed in a) reported result of "mean difference of 1.31 points (95%CI 0.08 to 2.54; p= 0.04)" or "mean difference of 1.31 points (95%CI -0.08 to 2.70; p= 0.06)" and b) presence or absence of spin. The effect size for the trial's primary outcome (pain disability score) was the same in each abstract; slightly in favour of Naranex.
Primary outcome: The reader's interpretation of the trial's results, based on their answer (1: disagree, 4: neutral, 7: agree) to the following statement: "About the main findings of the study, what is your opinion about the following statement: 'Naranex is better than Bulofil'?"
Results: 297 of the 404 people randomized to receive one of the four abstracts completed the study. Respondents were more likely to favour Narenex when the abstract reported a statistically significant result without spin; a statistically significant result with spin, a non-statistically significant result with spin, compared to when it reported a non-statistically significant result without spin.
Conclusions: Statistical significance appears to have influenced readers' perception whatever the level of spin, while spin influenced readers' perception when the results were not statistically significant but did not appear to have an impact when results were statistically significant
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vitamin D insufficiency appears to be prevalent in SLE patients. Multiple factors potentially contribute to lower vitamin D levels, including limited sun exposure, the use of sunscreen, darker skin complexion, aging, obesity, specific medical conditions, and certain medications. The study aims to assess the risk factors associated with low vitamin D levels in SLE patients in the southern part of Bangladesh, a region noted for a high prevalence of SLE. The research additionally investigates the possible correlation between vitamin D and the SLEDAI score, seeking to understand the potential benefits of vitamin D in enhancing disease outcomes for SLE patients. The study incorporates a dataset consisting of 50 patients from the southern part of Bangladesh and evaluates their clinical and demographic data. An initial exploratory data analysis is conducted to gain insights into the data, which includes calculating means and standard deviations, performing correlation analysis, and generating heat maps. Relevant inferential statistical tests, such as the Student’s t-test, are also employed. In the machine learning part of the analysis, this study utilizes supervised learning algorithms, specifically Linear Regression (LR) and Random Forest (RF). To optimize the hyperparameters of the RF model and mitigate the risk of overfitting given the small dataset, a 3-Fold cross-validation strategy is implemented. The study also calculates bootstrapped confidence intervals to provide robust uncertainty estimates and further validate the approach. A comprehensive feature importance analysis is carried out using RF feature importance, permutation-based feature importance, and SHAP values. The LR model yields an RMSE of 4.83 (CI: 2.70, 6.76) and MAE of 3.86 (CI: 2.06, 5.86), whereas the RF model achieves better results, with an RMSE of 2.98 (CI: 2.16, 3.76) and MAE of 2.68 (CI: 1.83,3.52). Both models identify Hb, CRP, ESR, and age as significant contributors to vitamin D level predictions. Despite the lack of a significant association between SLEDAI and vitamin D in the statistical analysis, the machine learning models suggest a potential nonlinear dependency of vitamin D on SLEDAI. These findings highlight the importance of these factors in managing vitamin D levels in SLE patients. The study concludes that there is a high prevalence of vitamin D insufficiency in SLE patients. Although a direct linear correlation between the SLEDAI score and vitamin D levels is not observed, machine learning models suggest the possibility of a nonlinear relationship. Furthermore, factors such as Hb, CRP, ESR, and age are identified as more significant in predicting vitamin D levels. Thus, the study suggests that monitoring these factors may be advantageous in managing vitamin D levels in SLE patients. Given the immunological nature of SLE, the potential role of vitamin D in SLE disease activity could be substantial. Therefore, it underscores the need for further large-scale studies to corroborate this hypothesis.