This article examines the significance of the world map in video games for the interpretation of spatial situations. An example is the popular role-playing game The Witcher 3: Wild Hunt. Nowadays, most video games are characterized by the presence of a spatial aspect. The game world map is the most important navigational element of the game that the gamer can use. To this end, the authors decided to test the importance of the game world map in the context of analyzing different examples of spatial situations that appear in The Witcher 3: Wild Hunt by the respondents. Eye movement tracking was chosen as the research method. The analysis was conducted using statistical tests. Both gamers and non-gamers of The Witcher 3: Wild Hunt, gamers and non-gamers in general, and people who identified themselves as women or men participated in the survey. Each subject was shown 5 movies (1 introductory movie, 4 movies in the main part of the study) from the gameplay of the game, in which the game world map was opened. After each video, a question was asked about both the gameplay and the game world map. It was found that familiarity with The Witcher 3: Wild Hunt, frequency of playing video games and gender influenced the correctness and time of answering the questions asked. In addition, it was found that the game world map and gameplay segments do not cognitively burden the users. Differences in visual strategy were observed between the groups of test subjects. The authors emphasized the importance of conducting further research on video games in relation to the analysis of spatial situations.
NCED is currently involved in researching the effectiveness of anaglyph maps in the classroom and are working with educators and scientists to interpret various Earth-surface processes. Based on the findings of the research, various activities and interpretive information will be developed and available for educators to use in their classrooms. Keep checking back with this website because activities and maps are always being updated. We believe that anaglyph maps are an important tool in helping students see the world and are working to further develop materials and activities to support educators in their use of the maps.
This website has various 3-D maps and supporting materials that are available for download. Maps can be printed, viewed on computer monitors, or projected on to screens for larger audiences. Keep an eye on our website for more maps, activities and new information. Let us know how you use anaglyph maps in your classroom. Email any ideas or activities you have to ncedmaps@umn.edu
Anaglyph paper maps are a cost effective offshoot of the GeoWall Project. Geowall is a high end visualization tool developed for use in the University of Minnesota's Geology and Geophysics Department. Because of its effectiveness it has been expanded to 300 institutions across the United States. GeoWall projects 3-D images and allows students to see 3-D representations but is limited because of the technology. Paper maps are a cost effective solution that allows anaglyph technology to be used in classroom and field-based applications.
Maps are best when viewed with RED/CYAN anaglyph glasses!
A note on downloading: "viewable" maps are .jpg files; "high-quality downloads" are .tif files. While it is possible to view the latter in a web-browser in most cases, the download may be slow. As an alternative, try right-clicking on the link to the high-quality download and choosing "save" from the pop-up menu that results. Save the file to your own machine, then try opening the saved copy. This may be faster than clicking directly on the link to open it in the browser.
World Map: 3-D map that highlights oceanic bathymetry and plate boundaries.
Continental United States: 3-D grayscale map of the Lower 48.
Western United States: 3-D grayscale map of the Western United States with state boundaries.
Regional Map: 3-D greyscale map stretching from Hudson Bay to the Central Great Plains. This map includes the Western Great Lakes and the Canadian Shield.
Minnesota Map: 3-D greyscale map of Minnesota with county and state boundaries.
Twin Cities: 3-D map extending beyond Minneapolis and St. Paul.
Twin Cities Confluence Map: 3-D map highlighting the confluence of the Mississippi and Minnesota Rivers. This map includes most of Minneapolis and St. Paul.
Minneapolis, MN: 3-D topographical map of South Minneapolis.
Bassets Creek, Minneapolis: 3-D topographical map of the Bassets Creek watershed.
North Minneapolis: 3-D topographical map highlighting North Minneapolis and the Mississippi River.
St. Paul, MN: 3-D topographical map of St. Paul.
Western Suburbs, Twin Cities: 3-D topographical map of St. Louis Park, Hopkins and Minnetonka area.
Minnesota River Valley Suburbs, Twin Cities: 3-D topographical map of Bloomington, Eden Prairie and Edina area.
Southern Suburbs, Twin Cities: 3-D topographical map of Burnsville, Lakeville and Prior Lake area.
Southeast Suburbs, Twin Cities: 3-D topographical map of South St. Paul, Mendota Heights, Apple Valley and Eagan area.
Northeast Suburbs, Twin Cities: 3-D topographical map of White Bear Lake, Maplewood and Roseville area.
Northwest Suburbs, Mississippi River, Twin Cities: 3-D topographical map of North Minneapolis, Brooklyn Center and Maple Grove area.
Blaine, MN: 3-D map of Blaine and the Mississippi River.
White Bear Lake, MN: 3-D topographical map of White Bear Lake and the surrounding area.
Maple Grove, MN: 3-D topographical mmap of the NW suburbs of the Twin Cities.
RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global professional map services market size is projected to grow significantly from USD 12.5 billion in 2023 to approximately USD 25.8 billion by 2032, exhibiting a robust CAGR of 8.3% during the forecast period. This growth is driven by increasing urbanization, technological advancements, and the rising demand for precise geospatial data across various industries.
One of the primary growth factors for the professional map services market is the proliferation of smart city projects worldwide. Governments and urban planning authorities are leveraging geospatial data to manage urban infrastructure effectively, optimize resource allocation, and enhance sustainability. The integration of advanced technologies such as Geographic Information Systems (GIS), remote sensing, and Internet of Things (IoT) in smart city initiatives is significantly boosting the demand for professional map services. Furthermore, the advent of 5G technology and its potential to provide real-time, high-resolution data is expected to propel the market growth further.
Another key driver is the growing importance of environmental monitoring and disaster management. Climate change and its adverse effects have necessitated the need for accurate and timely geospatial data to monitor environmental changes, predict natural disasters, and plan accordingly. Professional map services play a crucial role in tracking deforestation, monitoring air and water quality, and managing natural resources. During disaster events such as earthquakes, floods, and hurricanes, these services provide critical data for emergency response and recovery efforts, thereby saving lives and reducing economic losses.
The transportation and logistics sector is also contributing significantly to the market's growth. With the rise of e-commerce and global trade, there is a heightened need for efficient route planning, fleet management, and supply chain optimization. Professional map services enable companies to streamline their operations by providing accurate maps, real-time traffic data, and geospatial analytics. This not only reduces operational costs but also enhances customer satisfaction by ensuring timely deliveries. Additionally, the advent of autonomous vehicles and drones is expected to create new opportunities for professional map services in the coming years.
Regionally, North America holds a substantial share of the professional map services market, primarily due to the early adoption of advanced technologies and the presence of major market players. The region's focus on smart city projects, environmental sustainability, and advanced transportation systems is driving the demand for these services. Europe follows closely, with significant investments in urban planning and environmental monitoring. The Asia Pacific region is expected to witness the highest growth rate, driven by rapid urbanization, infrastructural developments, and increasing government initiatives. Latin America and the Middle East & Africa are also showing promising growth prospects, supported by emerging smart city projects and infrastructural advancements.
Digital Map Software is playing an increasingly pivotal role in the professional map services market. With the evolution of technology, digital maps have transformed from static representations to dynamic, interactive tools that provide real-time data and analytics. This software is essential for industries such as transportation, urban planning, and logistics, where precise and up-to-date geospatial information is crucial. The integration of digital map software with other technologies like AI and IoT enhances its capabilities, allowing for more accurate predictions and efficient decision-making processes. As the demand for real-time geospatial data continues to rise, digital map software is expected to drive innovation and growth within the market.
The professional map services market can be segmented by service type into Mapping and Surveying, Geographic Information System (GIS) Services, Remote Sensing, Cartography, and Others. Each of these segments plays a vital role in providing comprehensive geospatial solutions to various industries.
The Mapping and Surveying segment is fundamental to the professional map services market. This segment involves the detailed measurement and analysis of the Earth's surface, providing essential data for constru
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This map (raster dataset, single layer) uses existing datasets to map globally “How important point x is likely to be for meeting the demand of a reliable & useable source of water on a scale of 0 to 1?” This relatively simple approach uses estimated water demand in a given basin as weight to identify pressure for flow regulation and water provisioning services. Precipitation and land cover estimates are then combined with it to give some insight into the hydrologic attributes of “location” and “timing” of flow that the ecosystems may influence. The underlying assumption here is that undisturbed ecosystems everywhere are performing the ecohydrological functions leading to freshwater services. The question is more (at the global scale): how dependent are the populations in the basin on the continued functioning of these services.
Input datasets:
Process:
Step 1: Calculate average annual water consumption estimates over HydroBasin outlines. This step spreads the demand laterally (in case of small basins) and upstream to the headwaters from (typically) downstream consumer concentration.
Step 2: Normalize the demand globally and map the normalized values on to “natural” land cover classes from the land cover dataset [forests, grasslands, etc].
Step 3: Normalize annual precipitation layer within basins on the scale 0-1 where 1 is the maximum annual precipitation in that basin. This is also mapped on the “natural” land cover. Precipitation is thus acting as ‘weight’ for importance within the basin. Example, upland headwaters will typically receive more rainfall and can be argued to be important for the flow regulation in the basin.
Step 4: Combine the layers from 2 and 3.
Caveats:
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales (1:10m version is stored in the EEA-SDI). Featuring tightly integrated vector and raster data, with Natural Earth one can make a variety of visually pleasing, well-crafted maps with cartography or GIS software. Natural Earth was built through a collaboration of many volunteers and is supported by NACIS (North American Cartographic Information Society), and is free for use in any type of project. The carefully generalized linework maintains consistent, recognizable geographic shapes at 1:10m, 1:50m, and 1:110m scales. Natural Earth was built from the ground up in order for all data layers align precisely with one another. For example, where rivers and country borders are one and the same, the lines are coincident. Most data contain embedded feature names, which are ranked by relative importance. Other attributes facilitate faster map production, such as width attributes assigned to river segments for creating tapers.
Cultural vector data themes: + Countries + Disputed areas and breakaway regions + First order admin + Populated places + Urban polygons + Parks and protected areas
+ Pacific nation groupings
Physical vector data themes: + Coastline + Land
+ Ocean
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset of publications included in the systematic map undertaken for the Global review of the Important Plant Areas approach, a chapter in the PhD thesis Plant conservation in Colombia: Interdisciplinary approaches for the protection of useful plant species (Kor, 2023).This systematic map can be filtered by a range of variables including location, publication year, language, study country, and IPA focus, with links to all literature sources provided where available. Please read the "Notes" sheet in the workbook for the search strategy and inclusion criteria used and definitions of the categories assigned to the variables.
Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software.
Natural Earth was built through a collaboration of many volunteers and is supported by NACIS (North American Cartographic Information Society).
Natural Earth Vector comes in ESRI shapefile format, the de facto standard for vector geodata. Character encoding is Windows-1252.
Natural Earth Vector includes features corresponding to the following:
Cultural Vector Data Thremes:
Physical Vector Data Themes:
The map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global High Precision Smart Travel Digital Map market size was valued at approximately USD 5.4 billion in 2023 and is expected to reach around USD 11.2 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 8.4% during the forecast period. This remarkable growth trajectory can be attributed to the increasing demand for accurate and real-time navigation solutions, advancements in mapping technology, and the proliferation of smart devices.
One of the primary growth factors for the High Precision Smart Travel Digital Map market is the rapid integration of these maps into various smart devices, including smartphones, tablets, and in-car navigation systems. As consumers become more reliant on digital maps for daily commuting and traveling, the demand for high-precision maps that offer real-time updates and accurate route information is surging. The advent of autonomous vehicles and connected cars is further propelling this demand, as these technologies require precise mapping data to ensure safety and efficiency.
Another significant driver is the increasing adoption of Geographic Information System (GIS) and Global Positioning System (GPS) technologies across multiple sectors. Industries such as transportation, logistics, and tourism are leveraging these technologies to enhance their operational efficiency and provide better services to their customers. For instance, logistics companies use high-precision digital maps to optimize delivery routes, reducing fuel consumption and delivery times. Similarly, the tourism industry utilizes these maps to offer tourists detailed information about destinations, improving their travel experience.
The growing emphasis on smart city initiatives worldwide is also contributing to the market's growth. Governments and municipal bodies are investing heavily in digital infrastructure to create smarter, more connected urban environments. High precision smart travel digital maps play a crucial role in these initiatives by providing accurate data for urban planning, traffic management, and public transportation systems. Additionally, the advent of 5G technology is expected to enhance the capabilities of these maps by enabling faster data transmission and more reliable connectivity.
The role of Digital Map Service providers has become increasingly vital in this evolving landscape. These services offer comprehensive mapping solutions that cater to various industries, from logistics to tourism. By providing real-time data and seamless integration with other digital platforms, Digital Map Services enhance the user experience and operational efficiency. As businesses and consumers alike demand more sophisticated and interactive mapping solutions, the importance of reliable Digital Map Services continues to grow. This trend is further amplified by the rise of smart cities and the need for precise navigation tools in urban environments.
Regionally, North America holds a significant share of the High Precision Smart Travel Digital Map market, driven by the presence of major technology companies and high consumer adoption rates. The Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by rapid urbanization, increasing smartphone penetration, and government initiatives aimed at developing smart cities. Europe also represents a substantial market, supported by advanced infrastructure and a strong emphasis on technological innovation.
The High Precision Smart Travel Digital Map market is segmented by component into software, hardware, and services. The software segment encompasses mapping and navigation software that provides users with accurate and up-to-date travel information. This segment is expected to dominate the market due to the increasing use of mobile applications and in-car navigation systems. Companies are continuously enhancing their software offerings with features like real-time traffic updates, 3D mapping, and augmented reality, making them indispensable tools for modern travelers.
Hardware components include GPS devices, sensors, and other equipment used to collect and process mapping data. While the hardware segment is essential for the functioning of digital maps, it is expected to grow at a moderate pace compared to software and services. The ongoing innovation in sensor technology and the integration of advanced hardware
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: A Buckingham, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 8, high schoolResource type: lessonSubject topic(s): culture, gisRegion: worldStandards: Minnesota Social Studies Standards
Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.
Standard 7. The characteristics, distribution and complexity of the earth’s cultures influence human systems (social, economic and political systems).
Standard 14. Globalization, the spread of capitalism and the end of the Cold War have shaped a contemporary world still characterized by rapid technological change, dramatic increases in global population and economic growth coupled with persistent economic and social disparities and cultural conflict. (The New Global Era: 1989 to Present)
Objectives: Students will be able to:
Earth Map (earthmap.org) is a web-based FAO-Google tool for quick multi-temporal analysis of environment and climate parameters for evidence-based policies integrating cloud technologies and freely available datasets. Earth Map can analyse and display data that are already present in Google Earth Engine (earthengine.google.com) as other freely available datasets that have been gathered, processed and uploaded to the platform.
Data domains range from temperature to precipitation, fires, population, vegetation, evapotranspiration, water, land use/cover, elevation, soil, satellite images, etc. Most of the data include multi-temporal series allowing to have a time machine for several environmental parameters.
Earth Map aims to lower the access to some feature of Earth Engine through a simple graphical interface with drop-down menus. Any user can run environmental and climatic analysis on their area of interest and in a matter of few seconds.
https://data.apps.fao.org/catalog/dataset/a7116f30-254f-43c3-85ce-6756b4dd5259/resource/2d9c30c0-b593-4879-9096-1b3e87cc248a/download/earth-map-screenshot.png" alt="EarthMap Screenshot">
Users without prior experience in GIS or remote sensing, but with knowledge of the land to be analysed, can use Earth Map to produce images, tables and statistics describing the environmental and climatic context and history of an area. Therefore, Earth Map can play a strategic role in providing guidance in project design but also in project monitoring and final evaluation.
Even in countries where data appear to be scarce, the remote-sensing data in Earth Engine are integrated with additional freely available datasets to provide timely analysis, customized for the objectives of the projects. The tool allows to gather an in-depth multi-temporal perspective of the environmental and climatic conditions with a focus on the study of the anomalies and their frequency.
Earth Map has been developed in the framework of the FAO-Google partnership, in synergy with the FAO Hand-in-Hand Geospatial Platform and thanks to the support of the International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). The team behind Earth Map is the same team that developed Collect Earth (www.openforis.org/tools/collect-earth.html) and it is still maintaining it; Collect Earth is another FAO-Google application to produce detailed statistics of land use, land use change and forest through a point sampling approach and freely available remote sensing data.
Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.World Topographic Map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes cities, water features, physiographic features, contours, parks, landmarks, highways, roads, railways, airports, and administrative boundaries, overlaid on shaded relief imagery for added context.This basemap is compiled from a variety of authoritative sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), HERE, and Esri. Data for select areas is sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view. Additionally, data for the World Topographic Map is provided by the GIS community through the Community Maps Program. View the list of Contributors for the World Topographic Map.CoverageThe map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Africa, Australia and New Zealand; Europe and Russia; India; most of the Middle East; Pacific Island nations; Alaska; Canada; Mexico; South America and Central America. Coverage is available down to ~1:2k and ~1:1k in select urban areas.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop you can see topographic citations. Citations returned apply only to the available map at that location and scale.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer in a web map, see this Topographic basemap.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
With support from Esri, The Nature Conservancy, and Microsoft’s AI for Earth program, NatureServe created a comprehensive set of habitat models for over 2,200 at-risk species in the contiguous United States featured in the original MoBI (Map of Biodiversity Importance).The species models covered a taxonomically and ecologically diverse set of our nation’s most imperiled plants and animals. The Map of Biodiversity Importance combines and analyzes the habitat models with existing protected areas boundaries to identify where underprotected, range-limited species are concentrated. The map highlights where conservation efforts can help prevent extinctions, delivering part of an intelligent nervous system for conserving the diversity of life. The Map of Biodiversity Importance was only possible because of the 50 years of biodiversity survey data and unparalleled expertise of the NatureServe Network of state natural heritage programs that informed each of the models. Final products from the Map of Biodiversity Importance project are available on Esri’s Living Atlas of the World.
The information content is made up of roads, anthropic settlements, technological networks, vegetation, hydrography, orography. The orography is represented by contour lines with an equidistance of 100m, altitude points and gradients. Report the borders of the State and Region; the important inhabited centers are represented in pink with perimeter and crossings. The road network is classified according to the importance and nature of the road surface, with an indication of distances in kilometres
Digital Map Market Size 2025-2029
The digital map market size is forecast to increase by USD 31.95 billion at a CAGR of 31.3% between 2024 and 2029.
The market is driven by the increasing adoption of intelligent Personal Digital Assistants (PDAs) and the availability of location-based services. PDAs, such as smartphones and smartwatches, are becoming increasingly integrated with digital map technologies, enabling users to navigate and access real-time information on-the-go. The integration of Internet of Things (IoT) enables remote monitoring of cars and theft recovery. Location-based services, including mapping and navigation apps, are a crucial component of this trend, offering users personalized and convenient solutions for travel and exploration. However, the market also faces significant challenges.
Ensuring the protection of sensitive user information is essential for companies operating in this market, as trust and data security are key factors in driving user adoption and retention. Additionally, the competition in the market is intense, with numerous players vying for market share. Companies must differentiate themselves through innovative features, user experience, and strong branding to stand out in this competitive landscape. Security and privacy concerns continue to be a major obstacle, as the collection and use of location data raises valid concerns among consumers.
What will be the Size of the Digital Map Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the market, cartographic generalization and thematic mapping techniques are utilized to convey complex spatial information, transforming raw data into insightful visualizations. Choropleth maps and dot density maps illustrate distribution patterns of environmental data, economic data, and demographic data, while spatial interpolation and predictive modeling enable the estimation of hydrographic data and terrain data in areas with limited information. Urban planning and land use planning benefit from these tools, facilitating network modeling and location intelligence for public safety and emergency management.
Spatial regression and spatial autocorrelation analyses provide valuable insights into urban development trends and patterns. Network analysis and shortest path algorithms optimize transportation planning and logistics management, enhancing marketing analytics and sales territory optimization. Decision support systems and fleet management incorporate 3D building models and real-time data from street view imagery, enabling effective resource management and disaster response. The market in the US is experiencing robust growth, driven by the integration of Geographic Information Systems (GIS), Global Positioning Systems (GPS), and advanced computer technology into various industries.
How is this Digital Map Industry segmented?
The digital map industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Application
Navigation
Geocoders
Others
Type
Outdoor
Indoor
Solution
Software
Services
Deployment
On-premises
Cloud
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Indonesia
Japan
South Korea
Rest of World (ROW)
By Application Insights
The navigation segment is estimated to witness significant growth during the forecast period. Digital maps play a pivotal role in various industries, particularly in automotive applications for driver assistance systems. These maps encompass raster data, aerial photography, government data, and commercial data, among others. Open-source data and proprietary data are integrated to ensure map accuracy and up-to-date information. Map production involves the use of GPS technology, map projections, and GIS software, while map maintenance and quality control ensure map accuracy. Location-based services (LBS) and route optimization are integral parts of digital maps, enabling real-time navigation and traffic data.
Data validation and map tiles ensure data security. Cloud computing facilitates map distribution and map customization, allowing users to access maps on various devices, including mobile mapping and indoor mapping. Map design, map printing, and reverse geocoding further enhance the user experience. Spatial analysis and data modeling are essential for data warehousing and real-time navigation. The automotive industry's increasing adoption of connected cars and long-term evolution (LTE) technologies have fueled the demand for digital maps. These maps enable driver assistance app
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global mobile mapping market size was valued at USD 24 billion in 2023 and is projected to reach USD 78 billion by 2032, growing at a compound annual growth rate (CAGR) of 14%. The market growth is largely driven by the increasing adoption of mobile mapping technologies in various industries such as transportation, logistics, and public sector services. The exponential growth of mobile and internet technologies has paved the way for advanced mapping solutions that provide real-time data and analytics.
The surge in demand for accurate and efficient geospatial data is a primary growth factor for the mobile mapping market. Industries ranging from transportation to telecommunications are continuously seeking advanced technologies to enhance operational efficiency and customer service. Mobile mapping solutions, equipped with high-resolution sensors and advanced software, offer unparalleled accuracy and speed, enabling industries to make informed decisions. Furthermore, the increasing integration of Internet of Things (IoT) and Artificial Intelligence (AI) technologies with mobile mapping systems is fueling the growth of this market. IoT devices provide a constant stream of data, while AI algorithms enhance data processing, making mobile mapping systems more robust and versatile.
Another significant growth driver is the rising importance of location-based services in todayÂ’s connected world. Location-based services rely heavily on accurate and real-time geospatial data, which mobile mapping technologies are adept at providing. From navigation applications to location-based advertising, the need for precise mapping solutions is becoming more critical. The proliferation of smart cities further accelerates the demand for mobile mapping, as urban planners require detailed and up-to-date maps for infrastructure development, traffic management, and emergency response. Additionally, the increasing use of mobile mapping in disaster management and environmental monitoring is opening new avenues for market expansion.
The growing investments in infrastructure development and the modernization of existing systems are also driving market growth. Governments and private organizations are investing heavily in the development of advanced mapping technologies to support various applications such as urban planning, infrastructure development, and environmental conservation. The adoption of mobile mapping solutions in the construction and real estate sectors is further contributing to market growth. These solutions provide accurate spatial data, enabling planners and developers to design and execute projects more efficiently. Furthermore, advancements in sensor technologies and the availability of high-speed data connectivity are enhancing the capabilities of mobile mapping systems, making them more reliable and efficient.
The integration of a Map Positioning Unit within mobile mapping systems is becoming increasingly significant. These units are essential for enhancing the precision and reliability of geospatial data collection. By providing accurate positioning information, Map Positioning Units ensure that the data collected is consistent and precise, which is crucial for applications such as urban planning, transportation, and logistics. The demand for these units is growing as industries seek to improve the accuracy of their mapping solutions. With advancements in technology, Map Positioning Units are becoming more compact and efficient, making them easier to integrate into existing systems. This integration is particularly beneficial for sectors that require high levels of accuracy and real-time data, such as smart city projects and disaster management. As the mobile mapping market continues to expand, the role of Map Positioning Units will become even more pivotal in driving innovation and efficiency.
Regionally, North America holds a significant share of the mobile mapping market, driven by advanced technological infrastructure and high adoption rates of new technologies. The presence of major market players and extensive research and development activities contribute to the region's market dominance. Europe follows closely, with substantial investments in smart city projects and infrastructure development. The Asia-Pacific region is expected to witness the highest growth rate during the forecast period, attributed to rapid urbanization, increasing investments in infrastructure, and growing adoption of advanced technologies. Latin America and the Middle East & Africa regions are also experiencing stea
Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This map is designed to be used as a general reference map for informational and educational purposes as well as a basemap by GIS professionals and other users for creating web maps and web mapping applications.To launch a web map containing this map layer, click here.The map was developed by National Geographic and Esri and reflects the distinctive National Geographic cartographic style in a multi-scale reference map of the world. The map was authored using data from a variety of leading data providers, including Garmin, HERE, UNEP-WCMC, NASA, ESA, USGS, and others.This reference map includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings and landmarks, overlaid on shaded relief and land cover imagery for added context. The map includes global coverage down to ~1:144k scale and more detailed coverage for North America down to ~1:9k scale. Here's a ready-to-use web map that uses the National Geographic World Map as its basemap. Map Note: Although small-scale boundaries, place names and map notes were provided and edited by National Geographic, boundaries and names shown do not necessarily reflect the map policy of the National Geographic Society, particularly at larger scales where content has not been thoroughly reviewed or edited by National Geographic.Data Notes: The credits below include a list of data providers used to develop the map. Below are a few additional notes:Reference Data: National Geographic, Esri, Garmin, HERE, INCREMENT P, NRCAN, METILand Cover Imagery: NASA Blue Marble, ESA GlobCover 2009 (Copyright notice: © ESA 2010 and UCLouvain)Protected Areas: IUCN and UNEP-WCMC (2011), The World Database on Protected Areas (WDPA) Annual Release. Cambridge, UK: UNEP-WCMC. Available at: www.protectedplanet.net.Ocean Data: GEBCO, NOAA
The World Terrestrial Ecosystems map classifies the world into areas of similar climate, landform, and land cover, which form the basic components of any terrestrial ecosystem structure. This map is important because it uses objectively derived and globally consistent data to characterize the ecosystems at a much finer spatial resolution (250-m) than existing ecoregionalizations, and a much finer thematic resolution (431 classes) than existing global land cover products. This item was updated on Apr 14, 2023 to distinguish between Boreal and Polar climate regions in the terrestrial ecosystems. Cell Size: 250-meter Source Type: ThematicPixel Type: 16 Bit UnsignedData Projection: GCS WGS84Extent: GlobalSource: USGS, The Nature Conservancy, EsriUpdate Cycle: NoneWhat can you do with this layer?This map allows you to query the land surface pixels and returns the values of all the input parameters (landform type, landcover/vegetation type, climate region) and the name of the terrestrial ecosystem at that location.This layer can be used in analysis at global and local regions. However, for large scale spatial analysis, we have also provided an ArcGIS Pro Package that contains the original raster data with multiple table attributes. For simple mapping applications, there is also a raster tile layer. This layer can be combined with the World Protected Areas Database to assess the types of ecosystems that are protected, and progress towards meeting conservation goals. The WDPA layer updates monthly from the United Nations Environment Programme.Developing the World Terrestrial EcosystemsWorld Terrestrial Ecosystems map was produced by adopting and modifying the Intergovernmental Panel on Climate Change (IPCC) approach on the definition of Terrestrial Ecosystems and development of standardized global climate regions using the values of environmental moisture regime and temperature regime. We then combined the values of Global Climate Regions, Landforms and matrix-forming vegetation assemblage or land use, using the ArcGIS Combine tool (Spatial Analyst) to produce World Ecosystems Dataset. This combination resulted of 431 World Ecosystems classes.Each combination was assigned a color using an algorithm that blended traditional color schemes for each of the three components. Every pixel in this map is symbolized by a combination of values for each of these fields.The work from this collaboration is documented in the publication:Sayre et al. 2020. An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems - Global Ecology and Conservation More information about World Terrestrial Ecosystems can be found in this Story Map.
Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.World Street Map includes highways, major roads, minor roads, one-way arrow indicators, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, overlaid on shaded relief for added context.This basemap is compiled from a variety of authoritative sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), HERE, and Esri. Data for select areas is sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view. Additionally, data for the World Street Map is provided by the GIS community through the Community Maps Program. For details on data sources contributed by the GIS community in this map, view the list of Contributors for the World Street Map.CoverageThe map provides coverage for the world down to ~1:72k and street-level data down to ~1:4k across the United States; most of Canada; Japan; Europe; much of Russia; Australia and New Zealand; India; most of the Middle East; Pacific Island nations; South America; Central America; and Africa. Coverage in select urban areas is provided down to ~1:1k.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer in a web map, see this Streets basemap.
This article examines the significance of the world map in video games for the interpretation of spatial situations. An example is the popular role-playing game The Witcher 3: Wild Hunt. Nowadays, most video games are characterized by the presence of a spatial aspect. The game world map is the most important navigational element of the game that the gamer can use. To this end, the authors decided to test the importance of the game world map in the context of analyzing different examples of spatial situations that appear in The Witcher 3: Wild Hunt by the respondents. Eye movement tracking was chosen as the research method. The analysis was conducted using statistical tests. Both gamers and non-gamers of The Witcher 3: Wild Hunt, gamers and non-gamers in general, and people who identified themselves as women or men participated in the survey. Each subject was shown 5 movies (1 introductory movie, 4 movies in the main part of the study) from the gameplay of the game, in which the game world map was opened. After each video, a question was asked about both the gameplay and the game world map. It was found that familiarity with The Witcher 3: Wild Hunt, frequency of playing video games and gender influenced the correctness and time of answering the questions asked. In addition, it was found that the game world map and gameplay segments do not cognitively burden the users. Differences in visual strategy were observed between the groups of test subjects. The authors emphasized the importance of conducting further research on video games in relation to the analysis of spatial situations.