Use this data set when submitting code offline for competitions otherwise just use !pip install tabpfn for online use. Usage for offline code submissions within Kaggle notebooks is as follows:
1**.First add the dataset by selecting "add data" and searching for this dataset and adding it to your input. **
2.**Next add the following code to a code block in your notebook **
python
!pip install tabpfn --no-index --find-links=file:///kaggle/input/tabpfn
!mkdir -p /opt/conda/lib/python3.10/site-packages/tabpfn/models_diff
!cp /kaggle/input/tabpfn/prior_diff_real_checkpoint_n_0_epoch_100.cpkt /opt/conda/lib/python3.10/site-packages/tabpfn/models_diff/
3.** Import** :
from tabpfn import TabPFNClassifier
4.**Now you are all set you can create a classifier and run it offline for submission in offline kaggle code competitions:**
python
classifier = TabPFNClassifier(device='cpu',N_ensemble_configurations=64)
classifier.fit(X_train, Y_train)
y_eval, p_eval = classifier.predict(X_cv, return_winning_probability=True)
If you want to use TabPFN with GPU use the following code when you make the model:
classifier = TabPFNClassifier(device='cuda',N_ensemble_configurations=32)
You can find documentation for this package on GitHub: https://github.com/automl/TabPFN.git Original paper on TabPFN can be found at: https://arxiv.org/abs/2207.01848 License Copyright 2022 Noah Hollmann, Samuel Müller, Katharina Eggensperger, Frank Hutter
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
model.summary()
in PyTorchKeras has a neat API to view the visualization of the model which is very helpful while debugging your network. Here is a barebone code to try and mimic the same in PyTorch. The aim is to provide information complementary to, what is not provided by print(your_model)
in PyTorch.
pip install torchsummary
or git clone https://github.com/sksq96/pytorch-summary
from torchsummary import summary
summary(your_model, input_size=(channels, H, W))
input_size
is required to make a forward pass through the network.import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
class Net(nn.Module):
def _init_(self):
super(Net, self)._init_()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0
model = Net().to(device)
summary(model, (1, 28, 28))
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 10, 24, 24] 260
Conv2d-2 [-1, 20, 8, 8] 5,020
Dropout2d-3 [-1, 20, 8, 8] 0
Linear-4 [-1, 50] 16,050
Linear-5 [-1, 10] 510
================================================================
Total params: 21,840
Trainable params: 21,840
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.06
Params size (MB): 0.08
Estimated Total Size (MB): 0.15
----------------------------------------------------------------
import torch
from torchvision import models
from torchsummary import summary
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vgg = models.vgg16().to(device)
summary(vgg, (3, 224, 224))
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 224, 224] 1,792
ReLU-2 [-1, 64, 224, 224] 0
Conv2d-3 [-1, 64, 224, 224] 36,928
ReLU-4 [-1, 64, 224, 224] 0
MaxPool2d-5 [-1, 64, 112, 112] 0
Conv2d-6 [-1, 128, 112, 112] 73,856
ReLU-7 [-1, 128, 112, 112] 0
Conv2d-8 [-1, 128, 112, 112] 147,584
ReLU-9 [-1, 128, 112, 112] 0
MaxPool2d-10 [-1, 128, 56, 56] 0
Conv2d-11 [-1, 256, 56, 56] 295,168
ReLU-12 [-1, 256, 56, 56] 0
Conv2d-13 [-1, 256, 56, 56] 590,080
ReLU-14 [-1, 256, 56, 56] 0
Conv2d-15 [-1, 256, 56, 56] 590,080
ReLU-16 [-1, 256, 56, 56] 0
MaxPool2d-17 [-1, 256, 28, 28] 0
Conv2d-18 [-1, 512, 28, 28] 1,180,160
ReLU-19 [-1, 512, 28, 28] 0
Conv2d-20 [-1, 512, 28, 28] 2,359,808
ReLU-21 [-1, 512, 28, 28] 0
Conv2d-22 [-1, 512, 28, 28] 2,359,808
ReLU-23 [-1, 512, 28, 28] 0
MaxPool2d-24 [-1, 512, 14, 14] 0
Conv2d-25 [-1, 512, 14, 14] 2,359,808
ReLU-26 [-1, 512, 14, 14] 0
Conv2d-27 [-1, 512, 14, 14] 2,359,808
ReLU...
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Use this data set when submitting code offline for competitions otherwise just use !pip install tabpfn for online use. Usage for offline code submissions within Kaggle notebooks is as follows:
1**.First add the dataset by selecting "add data" and searching for this dataset and adding it to your input. **
2.**Next add the following code to a code block in your notebook **
python
!pip install tabpfn --no-index --find-links=file:///kaggle/input/tabpfn
!mkdir -p /opt/conda/lib/python3.10/site-packages/tabpfn/models_diff
!cp /kaggle/input/tabpfn/prior_diff_real_checkpoint_n_0_epoch_100.cpkt /opt/conda/lib/python3.10/site-packages/tabpfn/models_diff/
3.** Import** :
from tabpfn import TabPFNClassifier
4.**Now you are all set you can create a classifier and run it offline for submission in offline kaggle code competitions:**
python
classifier = TabPFNClassifier(device='cpu',N_ensemble_configurations=64)
classifier.fit(X_train, Y_train)
y_eval, p_eval = classifier.predict(X_cv, return_winning_probability=True)
If you want to use TabPFN with GPU use the following code when you make the model:
classifier = TabPFNClassifier(device='cuda',N_ensemble_configurations=32)
You can find documentation for this package on GitHub: https://github.com/automl/TabPFN.git Original paper on TabPFN can be found at: https://arxiv.org/abs/2207.01848 License Copyright 2022 Noah Hollmann, Samuel Müller, Katharina Eggensperger, Frank Hutter
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.