Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Egypt number dataset can be a great element for direct marketing nationwide right now. Also, this Egypt number dataset has thousands of active mobile numbers that help to increase sales in the company. Most importantly, you can develop your business by bringing many trustworthy B2C customers. Likewise, clients can send you a fast response whether they need it or not. Furthermore, this Egypt number dataset is a very essential tool for telemarketing. In other words, you get all these 95% valid leads at a very cheap price from us. Most importantly, our List To Data website still follows the full GDPR rules strictly. In addition, the return on investment (ROI) will give you satisfaction from the business. Egypt phone data is a very powerful contact database that you can get in your budget. Moreover, the Egypt phone data is very beneficial for fast business growth through direct marketing. In fact, our List To Data assures you that we give verified numbers at an affordable cost. As such, you can say that it brings you more profit than your expense. Additionally, the Egypt phone data has all the details like name, age, gender, location, and business. Anyway, people can connect with the largest group of consumers quickly through this. However, people can use these cell phone numbers without any worry. Thus, buy it from us as our experts are ready to present the most satisfactory service. Egypt phone number list is very helpful for any business and marketing. People can use this Egypt phone number list to develop their telemarketing. They can easily reach consumers through direct calls or SMS. In other words, we gather all the database and recheck it, so you should buy our packages right now. Furthermore, you can believe this correct directory to maximize your company’s growth rapidly. Also, we deliver the Egypt phone number list in an Excel and CSV file. Actually, the country’s mobile number library will help you in getting more profit than investment. Similarly, the List To Data expert team is ready to help you 24 hours with any necessary details that can help your business. Hence, buy this telemarketing lead at a very reasonable price to expand sales through B2C customers.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Italy number dataset includes phone numbers that businesses can trust. The dataset comes from reliable sources, ensuring accuracy. These sources collect numbers from various places, such as public records and directories. You can also find source URLs, which help you verify where the data came from. This adds another layer of credibility to the information. Additionally, this data provides 24/7 support. This is important for businesses that need quick answers. Furthermore, this Italy number dataset follows an opt-in process. This means every person whose number appears in the list agreed to have their number shared. They understand how we will use their information, making it safe to contact them. With this number dataset, businesses gain access to trustworthy and reliable information. List to Data is a website that helps you quickly find important phone numbers. Italy phone data is a valuable database that allows businesses to filter information based on specific needs. This means you can filter the data by gender, age, and relationship status. For example, businesses can easily find numbers for younger people to reach that age group. This ability to filter information makes communication more effective. You can focus on the audience that matters most to you. Moreover, you can remove invalid Italy phone data from the list. That means if any number becomes inactive, you can take it out. Keeping only active numbers helps ensure that your contacts are always up-to-date. This process makes it easy to get up-to-date info regularly. The ability to filter, remove invalid data, and stay GDPR compliant makes this data powerful for organizations. Italy phone number list is a collection of phone numbers from people living in Italy. This list is very useful for businesses and organizations that want to reach out to these individuals. The numbers in this list are 100% correct and valid. This means that every number works, so businesses can call confidently. If any number does not work, you receive a replacement guarantee. Furthermore, every number in the Italy phone number list comes from a customer permission basis. This means that people on the list agreed to have their phone numbers shared. By using this list, businesses can effectively connect with the right people while keeping everything legal and safe. The valid numbers and replacement guarantee make this list an excellent tool for outreach.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
rxivist.org allowed readers to sort and filter the tens of thousands of preprints posted to bioRxiv and medRxiv. Rxivist used a custom web crawler to index all papers posted to those two websites; this is a snapshot of Rxivist the production database. The version number indicates the date on which the snapshot was taken. See the included "README.md" file for instructions on how to use the "rxivist.backup" file to import data into a PostgreSQL database server.
Please note this is a different repository than the one used for the Rxivist manuscript—that is in a separate Zenodo repository. You're welcome (and encouraged!) to use this data in your research, but please cite our paper, now published in eLife.
Previous versions are also available pre-loaded into Docker images, available at blekhmanlab/rxivist_data.
Version notes:
2023-03-01
The final Rxivist data upload, more than four years after the first and encompassing 223,541 preprints posted to bioRxiv and medRxiv through the end of February 2023.
2020-12-07***
In addition to bioRxiv preprints, the database now includes all medRxiv preprints as well.
The website where a preprint was posted is now recorded in a new field in the "articles" table, called "repo".
We've significantly refactored the web crawler to take advantage of developments with the bioRxiv API.
The main difference is that preprints flagged as "published" by bioRxiv are no longer recorded on the same schedule that download metrics are updated: The Rxivist database should now record published DOI entries the same day bioRxiv detects them.
Twitter metrics have returned, for the most part. Improvements with the Crossref Event Data API mean we can once again tally daily Twitter counts for all bioRxiv DOIs.
The "crossref_daily" table remains where these are recorded, and daily numbers are now up to date.
Historical daily counts have also been re-crawled to fill in the empty space that started in October 2019.
There are still several gaps that are more than a week long due to missing data from Crossref.
We have recorded available Crossref Twitter data for all papers with DOI numbers starting with "10.1101," which includes all medRxiv preprints. However, there appears to be almost no Twitter data available for medRxiv preprints.
The download metrics for article id 72514 (DOI 10.1101/2020.01.30.927871) were found to be out of date for February 2020 and are now correct. This is notable because article 72514 is the most downloaded preprint of all time; we're still looking into why this wasn't updated after the month ended.
2020-11-18
Publication checks should be back on schedule.
2020-10-26
This snapshot fixes most of the data issues found in the previous version. Indexed papers are now up to date, and download metrics are back on schedule. The check for publication status remains behind schedule, however, and the database may not include published DOIs for papers that have been flagged on bioRxiv as "published" over the last two months. Another snapshot will be posted in the next few weeks with updated publication information.
2020-09-15
A crawler error caused this snapshot to exclude all papers posted after about August 29, with some papers having download metrics that were more out of date than usual. The "last_crawled" field is accurate.
2020-09-08
This snapshot is misconfigured and will not work without modification; it has been replaced with version 2020-09-15.
2019-12-27
Several dozen papers did not have dates associated with them; that has been fixed.
Some authors have had two entries in the "authors" table for portions of 2019, one profile that was linked to their ORCID and one that was not, occasionally with almost identical "name" strings. This happened after bioRxiv began changing author names to reflect the names in the PDFs, rather than the ones manually entered into their system. These database records are mostly consolidated now, but some may remain.
2019-11-29
The Crossref Event Data API remains down; Twitter data is unavailable for dates after early October.
2019-10-31
The Crossref Event Data API is still experiencing problems; the Twitter data for October is incomplete in this snapshot.
The README file has been modified to reflect changes in the process for creating your own DB snapshots if using the newly released PostgreSQL 12.
2019-10-01
The Crossref API is back online, and the "crossref_daily" table should now include up-to-date tweet information for July through September.
About 40,000 authors were removed from the author table because the name had been removed from all preprints they had previously been associated with, likely because their name changed slightly on the bioRxiv website ("John Smith" to "J Smith" or "John M Smith"). The "author_emails" table was also modified to remove entries referring to the deleted authors. The web crawler is being updated to clean these orphaned entries more frequently.
2019-08-30
The Crossref Event Data API, which provides the data used to populate the table of tweet counts, has not been fully functional since early July. While we are optimistic that accurate tweet counts will be available at some point, the sparse values currently in the "crossref_daily" table for July and August should not be considered reliable.
2019-07-01
A new "institution" field has been added to the "article_authors" table that stores each author's institutional affiliation as listed on that paper. The "authors" table still has each author's most recently observed institution.
We began collecting this data in the middle of May, but it has not been applied to older papers yet.
2019-05-11
The README was updated to correct a link to the Docker repository used for the pre-built images.
2019-03-21
The license for this dataset has been changed to CC-BY, which allows use for any purpose and requires only attribution.
A new table, "publication_dates," has been added and will be continually updated. This table will include an entry for each preprint that has been published externally for which we can determine a date of publication, based on data from Crossref. (This table was previously included in the "paper" schema but was not updated after early December 2018.)
Foreign key constraints have been added to almost every table in the database. This should not impact any read behavior, but anyone writing to these tables will encounter constraints on existing fields that refer to other tables. Most frequently, this means the "article" field in a table will need to refer to an ID that actually exists in the "articles" table.
The "author_translations" table has been removed. This was used to redirect incoming requests for outdated author profile pages and was likely not of any functional use to others.
The "README.md" file has been renamed "1README.md" because Zenodo only displays a preview for the file that appears first in the list alphabetically.
The "article_ranks" and "article_ranks_working" tables have been removed as well; they were unused.
2019-02-13.1
After consultation with bioRxiv, the "fulltext" table will not be included in further snapshots until (and if) concerns about licensing and copyright can be resolved.
The "docker-compose.yml" file was added, with corresponding instructions in the README to streamline deployment of a local copy of this database.
2019-02-13
The redundant "paper" schema has been removed.
BioRxiv has begun making the full text of preprints available online. Beginning with this version, a new table ("fulltext") is available that contains the text of preprints that have been processed already. The format in which this information is stored may change in the future; any digression will be noted here.
This is the first version that has a corresponding Docker image.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Roulette has been a cornerstone in the study of randomness and statistics since its invention, influencing not only physical casinos but also online platforms. I have created a unique dataset that simulates a roulette wheel, not only to explore the random generation of numbers but also to illustrate how certain techniques can be easily employed by online casinos for fraudulent activities.
-Temporal and Climatic Variables: Each spin is precisely recorded, integrating sports results and weather conditions that influence fraud techniques.
-Dynamic Fraud Techniques: I have created 53 different fraud techniques, including 5 advanced hybrid techniques that combine various manipulation methods. I select and change fraud techniques daily, adjusting them according to the 'peak hours' of casino traffic to reflect realistic manipulation methods.
-Influence of Historical Results: I use spin histories to determine 'hot' (more frequent) and 'cold' (less frequent) numbers, which are key to deciding the fraud techniques at any given moment.
-Distributions and Biases: The distributions of resulting numbers are adjusted based on these analyses, showing how historical information can be used to manipulate future results.
-Majority of Legitimate Spins: Almost 95% of the spins in this dataset are completely legitimate, without any manipulation, reflecting the normal operation of a roulette wheel.
-Fraud Concentrated During Peak Hours, Weeks, Months, and Days: The remaining 5% corresponds to fraudulent spins, strategically distributed during peak hours, weeks, months, and days, covering a period of one year. This proportion highlights the importance of thoroughly auditing these high-activity periods.
I would love to see more studies on this database, so I encourage everyone who reads this post to share the insights you discover.
Here is the list of strategies used in the dataset (some of them are not as intuitive as they might seem by their names):
0 == No Fraud 1. 'number_bias' 2. 'predictable_sequences' 3. 'color_omission' 4. 'low_range_bias' 5. 'sequence_repetition' 6. 'cyclic_alteration' 7. 'day_night_bias' 8. 'altered_zero_frequency' 9. 'random_alterations' 10. 'temporal_bias' 11. 'day_hour_bias' 12. 'day_of_week_bias' 13. 'day_of_month_bias' 14. 'bimodal_distribution' 15. 'fibonacci_bias' 16. 'parity_alteration' 17. 'prime_sequence' 18. 'double_sinusoidal_distribution' 19. 'normal_distribution' 20. 'time_series_patterns' 21. 'adaptive_variation' 22. 'wear_simulation' 23. 'advanced_hybrid_1' 24. 'advanced_hybrid_2' 25. 'advanced_hybrid_3' 26. 'advanced_hybrid_4' 27. 'advanced_hybrid_5' 28. 'previous_result_sum_bias' 29. 'special_dates_bias' 30. 'weighted_global_events_distribution' 31. 'previous_winning_combinations_bias' 32. 'sentiment_analysis_alteration' 33. 'weighted_day_of_month_bias' 34. 'weather_patterns_bias' 35. 'weighted_hour_of_day_distribution' 36. 'sports_events_bias' 37. 'lunar_cycles_modulation' 38. 'high_range_bias' 39. 'inverse_prime_sequence' 40. 'alternate_parity_bias' 41. 'zero_series_frequency' 42. 'game_history_bias' 43. 'gaussian_noise_modulation' 44. 'time_weighted_distribution_bias' 45. 'last_digit_bias' 46. 'cumulative_temporal_bias' 47. 'hidden_previous_results_patterns' 48. 'weighted_hot_cold_oscillation' 49. 'adaptive_hot_cold_sequence' 50. 'cold_number_mirage' 51. 'hot_number_evasion' 52. 'false_cold' 53. 'hot_deviation'
Attached is an example of analysis for a specific hour using a specific strategy, in this case, "double_sinusoidal_distribution":
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F9698182%2Ff536eaa650aeebb5737a9d9a2ec53665%2Foutputexample.png?generation=1720566276284440&alt=media" alt="">
Facebook
TwitterHow many people use social media?
Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
Who uses social media?
Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
How much time do people spend on social media?
Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
What are the most popular social media platforms?
Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
Facebook
TwitterWhich county has the most Facebook users?
There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
Facebook – the most used social media
Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
Facebook usage by device
As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
Facebook
TwitterInstagram’s most popular post
As of April 2024, the most popular post on Instagram was Lionel Messi and his teammates after winning the 2022 FIFA World Cup with Argentina, posted by the account @leomessi. Messi's post, which racked up over 61 million likes within a day, knocked off the reigning post, which was 'Photo of an Egg'. Originally posted in January 2021, 'Photo of an Egg' surpassed the world’s most popular Instagram post at that time, which was a photo by Kylie Jenner’s daughter totaling 18 million likes.
After several cryptic posts published by the account, World Record Egg revealed itself to be a part of a mental health campaign aimed at the pressures of social media use.
Instagram’s most popular accounts
As of April 2024, the official Instagram account @instagram had the most followers of any account on the platform, with 672 million followers. Portuguese footballer Cristiano Ronaldo (@cristiano) was the most followed individual with 628 million followers, while Selena Gomez (@selenagomez) was the most followed woman on the platform with 429 million. Additionally, Inter Miami CF striker Lionel Messi (@leomessi) had a total of 502 million. Celebrities such as The Rock, Kylie Jenner, and Ariana Grande all had over 380 million followers each.
Instagram influencers
In the United States, the leading content category of Instagram influencers was lifestyle, with 15.25 percent of influencers creating lifestyle content in 2021. Music ranked in second place with 10.96 percent, followed by family with 8.24 percent. Having a large audience can be very lucrative: Instagram influencers in the United States, Canada and the United Kingdom with over 90,000 followers made around 1,221 US dollars per post.
Instagram around the globe
Instagram’s worldwide popularity continues to grow, and India is the leading country in terms of number of users, with over 362.9 million users as of January 2024. The United States had 169.65 million Instagram users and Brazil had 134.6 million users. The social media platform was also very popular in Indonesia and Turkey, with 100.9 and 57.1, respectively. As of January 2024, Instagram was the fourth most popular social network in the world, behind Facebook, YouTube and WhatsApp.
Facebook
TwitterGlobal B2B Mobile Phone Number Database | 100M+ Verified Contacts | 95% Accuracy Forager.ai provides the world’s most reliable mobile phone number data for businesses that refuse to compromise on quality. With 100 million+ professionally verified mobile numbers refreshed every 3 weeks, our database ensures 95% accuracy – so your teams never waste time on dead-end leads.
Why Our Data Wins ✅ Accuracy You Can Trust 95% of mobile numbers are verified against live carrier records and tied to current job roles. Say goodbye to “disconnected number” voicemails.
✅ Depth Beyond Digits Each contact includes 150+ data points:
Direct mobile numbers
Current job title, company, and department
Full career history + education background
Location data + LinkedIn profiles
Company size, industry, and revenue
✅ Freshness Guaranteed Bi-weekly updates combat job-hopping and role changes – critical for sales teams targeting decision-makers.
✅ Ethically Sourced & Compliant First-party collected data with full GDPR/CCPA compliance.
Who Uses This Data?
Sales Teams: Cold-call C-suite prospects with verified mobile numbers.
Marketers: Run hyper-personalized SMS/WhatsApp campaigns.
Recruiters: Source passive candidates with up-to-date contact intel.
Data Vendors: License premium datasets to enhance your product.
Tech Platforms: Power your SaaS tools via API with enterprise-grade B2B data.
Flexible Delivery, Instant Results
API (REST): Real-time integration for CRMs, dialers, or marketing stacks
CSV/JSON: Campaign-ready files.
PostgreSQL: Custom databases for large-scale enrichment
Compliance: Full audit trails + opt-out management
Why Forager.ai? → Proven ROI: Clients see 62% higher connect rates vs. industry averages (request case studies). → No Guesswork: Test-drive free samples before committing. → Scalable Pricing: Pay per record, license datasets, or get unlimited API access.
B2B Mobile Phone Data | Verified Contact Database | Sales Prospecting Lists | CRM Enrichment | Recruitment Phone Numbers | Marketing Automation | Phone Number Datasets | GDPR-Compliant Leads | Direct Dial Contacts | Decision-Maker Data
Need Proof? Contact us to see why Fortune 500 companies and startups alike trust Forager.ai for mission-critical outreach.
Facebook
TwitterData files containing detailed information about vehicles in the UK are also available, including make and model data.
Some tables have been withdrawn and replaced. The table index for this statistical series has been updated to provide a full map between the old and new numbering systems used in this page.
The Department for Transport is committed to continuously improving the quality and transparency of our outputs, in line with the Code of Practice for Statistics. In line with this, we have recently concluded a planned review of the processes and methodologies used in the production of Vehicle licensing statistics data. The review sought to seek out and introduce further improvements and efficiencies in the coding technologies we use to produce our data and as part of that, we have identified several historical errors across the published data tables affecting different historical periods. These errors are the result of mistakes in past production processes that we have now identified, corrected and taken steps to eliminate going forward.
Most of the revisions to our published figures are small, typically changing values by less than 1% to 3%. The key revisions are:
Licensed Vehicles (2014 Q3 to 2016 Q3)
We found that some unlicensed vehicles during this period were mistakenly counted as licensed. This caused a slight overstatement, about 0.54% on average, in the number of licensed vehicles during this period.
3.5 - 4.25 tonnes Zero Emission Vehicles (ZEVs) Classification
Since 2023, ZEVs weighing between 3.5 and 4.25 tonnes have been classified as light goods vehicles (LGVs) instead of heavy goods vehicles (HGVs). We have now applied this change to earlier data and corrected an error in table VEH0150. As a result, the number of newly registered HGVs has been reduced by:
3.1% in 2024
2.3% in 2023
1.4% in 2022
Table VEH0156 (2018 to 2023)
Table VEH0156, which reports average CO₂ emissions for newly registered vehicles, has been updated for the years 2018 to 2023. Most changes are minor (under 3%), but the e-NEDC measure saw a larger correction, up to 15.8%, due to a calculation error. Other measures (WLTP and Reported) were less notable, except for April 2020 when COVID-19 led to very few new registrations which led to greater volatility in the resultant percentages.
Neither these specific revisions, nor any of the others introduced, have had a material impact on the statistics overall, the direction of trends nor the key messages that they previously conveyed.
Specific details of each revision made has been included in the relevant data table notes to ensure transparency and clarity. Users are advised to review these notes as part of their regular use of the data to ensure their analysis accounts for these changes accordingly.
If you have questions regarding any of these changes, please contact the Vehicle statistics team.
Overview
VEH0101: https://assets.publishing.service.gov.uk/media/68ecf5acf159f887526bbd7c/veh0101.ods">Vehicles at the end of the quarter by licence status and body type: Great Britain and United Kingdom (ODS, 99.7 KB)
Detailed breakdowns
VEH0103: https://assets.publishing.service.gov.uk/media/68ecf5abf159f887526bbd7b/veh0103.ods">Licensed vehicles at the end of the year by tax class: Great Britain and United Kingdom (ODS, 23.8 KB)
VEH0105: https://assets.publishing.service.gov.uk/media/68ecf5ac2adc28a81b4acfc8/veh0105.ods">Licensed vehicles at
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CESNET-TimeSeries24: The dataset for network traffic forecasting and anomaly detection
The dataset called CESNET-TimeSeries24 was collected by long-term monitoring of selected statistical metrics for 40 weeks for each IP address on the ISP network CESNET3 (Czech Education and Science Network). The dataset encompasses network traffic from more than 275,000 active IP addresses, assigned to a wide variety of devices, including office computers, NATs, servers, WiFi routers, honeypots, and video-game consoles found in dormitories. Moreover, the dataset is also rich in network anomaly types since it contains all types of anomalies, ensuring a comprehensive evaluation of anomaly detection methods.Last but not least, the CESNET-TimeSeries24 dataset provides traffic time series on institutional and IP subnet levels to cover all possible anomaly detection or forecasting scopes. Overall, the time series dataset was created from the 66 billion IP flows that contain 4 trillion packets that carry approximately 3.7 petabytes of data. The CESNET-TimeSeries24 dataset is a complex real-world dataset that will finally bring insights into the evaluation of forecasting models in real-world environments.
Please cite the usage of our dataset as:
Koumar, J., Hynek, K., Čejka, T. et al. CESNET-TimeSeries24: Time Series Dataset for Network Traffic Anomaly Detection and Forecasting. Sci Data 12, 338 (2025). https://doi.org/10.1038/s41597-025-04603-x@Article{cesnettimeseries24, author={Koumar, Josef and Hynek, Karel and {\v{C}}ejka, Tom{\'a}{\v{s}} and {\v{S}}i{\v{s}}ka, Pavel}, title={CESNET-TimeSeries24: Time Series Dataset for Network Traffic Anomaly Detection and Forecasting}, journal={Scientific Data}, year={2025}, month={Feb}, day={26}, volume={12}, number={1}, pages={338}, issn={2052-4463}, doi={10.1038/s41597-025-04603-x}, url={https://doi.org/10.1038/s41597-025-04603-x}}
Time series
We create evenly spaced time series for each IP address by aggregating IP flow records into time series datapoints. The created datapoints represent the behavior of IP addresses within a defined time window of 10 minutes. The vector of time-series metrics v_{ip, i} describes the IP address ip in the i-th time window. Thus, IP flows for vector v_{ip, i} are captured in time windows starting at t_i and ending at t_{i+1}. The time series are built from these datapoints.
Datapoints created by the aggregation of IP flows contain the following time-series metrics:
Simple volumetric metrics: the number of IP flows, the number of packets, and the transmitted data size (i.e. number of bytes)
Unique volumetric metrics: the number of unique destination IP addresses, the number of unique destination Autonomous System Numbers (ASNs), and the number of unique destination transport layer ports. The aggregation of \textit{Unique volumetric metrics} is memory intensive since all unique values must be stored in an array. We used a server with 41 GB of RAM, which was enough for 10-minute aggregation on the ISP network.
Ratios metrics: the ratio of UDP/TCP packets, the ratio of UDP/TCP transmitted data size, the direction ratio of packets, and the direction ratio of transmitted data size
Average metrics: the average flow duration, and the average Time To Live (TTL)
Multiple time aggregation: The original datapoints in the dataset are aggregated by 10 minutes of network traffic. The size of the aggregation interval influences anomaly detection procedures, mainly the training speed of the detection model. However, the 10-minute intervals can be too short for longitudinal anomaly detection methods. Therefore, we added two more aggregation intervals to the datasets--1 hour and 1 day.
Time series of institutions: We identify 283 institutions inside the CESNET3 network. These time series aggregated per each institution ID provide a view of the institution's data.
Time series of institutional subnets: We identify 548 institution subnets inside the CESNET3 network. These time series aggregated per each institution ID provide a view of the institution subnet's data.
Data Records
The file hierarchy is described below:
cesnet-timeseries24/
|- institution_subnets/
| |- agg_10_minutes/.csv
| |- agg_1_hour/.csv
| |- agg_1_day/.csv
| |- identifiers.csv
|- institutions/
| |- agg_10_minutes/.csv
| |- agg_1_hour/.csv
| |- agg_1_day/.csv
| |- identifiers.csv
|- ip_addresses_full/
| |- agg_10_minutes//.csv
| |- agg_1_hour//.csv
| |- agg_1_day//.csv
| |- identifiers.csv
|- ip_addresses_sample/
| |- agg_10_minutes/.csv
| |- agg_1_hour/.csv
| |- agg_1_day/.csv
| |- identifiers.csv
|- times/
| |- times_10_minutes.csv
| |- times_1_hour.csv
| |- times_1_day.csv
|- ids_relationship.csv |- weekends_and_holidays.csv
The following list describes time series data fields in CSV files:
id_time: Unique identifier for each aggregation interval within the time series, used to segment the dataset into specific time periods for analysis.
n_flows: Total number of flows observed in the aggregation interval, indicating the volume of distinct sessions or connections for the IP address.
n_packets: Total number of packets transmitted during the aggregation interval, reflecting the packet-level traffic volume for the IP address.
n_bytes: Total number of bytes transmitted during the aggregation interval, representing the data volume for the IP address.
n_dest_ip: Number of unique destination IP addresses contacted by the IP address during the aggregation interval, showing the diversity of endpoints reached.
n_dest_asn: Number of unique destination Autonomous System Numbers (ASNs) contacted by the IP address during the aggregation interval, indicating the diversity of networks reached.
n_dest_port: Number of unique destination transport layer ports contacted by the IP address during the aggregation interval, representing the variety of services accessed.
tcp_udp_ratio_packets: Ratio of packets sent using TCP versus UDP by the IP address during the aggregation interval, providing insight into the transport protocol usage pattern. This metric belongs to the interval <0, 1> where 1 is when all packets are sent over TCP, and 0 is when all packets are sent over UDP.
tcp_udp_ratio_bytes: Ratio of bytes sent using TCP versus UDP by the IP address during the aggregation interval, highlighting the data volume distribution between protocols. This metric belongs to the interval <0, 1> with same rule as tcp_udp_ratio_packets.
dir_ratio_packets: Ratio of packet directions (inbound versus outbound) for the IP address during the aggregation interval, indicating the balance of traffic flow directions. This metric belongs to the interval <0, 1>, where 1 is when all packets are sent in the outgoing direction from the monitored IP address, and 0 is when all packets are sent in the incoming direction to the monitored IP address.
dir_ratio_bytes: Ratio of byte directions (inbound versus outbound) for the IP address during the aggregation interval, showing the data volume distribution in traffic flows. This metric belongs to the interval <0, 1> with the same rule as dir_ratio_packets.
avg_duration: Average duration of IP flows for the IP address during the aggregation interval, measuring the typical session length.
avg_ttl: Average Time To Live (TTL) of IP flows for the IP address during the aggregation interval, providing insight into the lifespan of packets.
Moreover, the time series created by re-aggregation contains following time series metrics instead of n_dest_ip, n_dest_asn, and n_dest_port:
sum_n_dest_ip: Sum of numbers of unique destination IP addresses.
avg_n_dest_ip: The average number of unique destination IP addresses.
std_n_dest_ip: Standard deviation of numbers of unique destination IP addresses.
sum_n_dest_asn: Sum of numbers of unique destination ASNs.
avg_n_dest_asn: The average number of unique destination ASNs.
std_n_dest_asn: Standard deviation of numbers of unique destination ASNs)
sum_n_dest_port: Sum of numbers of unique destination transport layer ports.
avg_n_dest_port: The average number of unique destination transport layer ports.
std_n_dest_port: Standard deviation of numbers of unique destination transport layer ports.
Moreover, files identifiers.csv in each dataset type contain IDs of time series that are present in the dataset. Furthermore, the ids_relationship.csv file contains a relationship between IP addresses, Institutions, and institution subnets. The weekends_and_holidays.csv contains information about the non-working days in the Czech Republic.
Facebook
TwitterAs of January 2024, Instagram was slightly more popular with men than women, with men accounting for 50.6 percent of the platform’s global users. Additionally, the social media app was most popular amongst younger audiences, with almost 32 percent of users aged between 18 and 24 years.
Instagram’s Global Audience
As of January 2024, Instagram was the fourth most popular social media platform globally, reaching two billion monthly active users (MAU). This number is projected to keep growing with no signs of slowing down, which is not a surprise as the global online social penetration rate across all regions is constantly increasing.
As of January 2024, the country with the largest Instagram audience was India with 362.9 million users, followed by the United States with 169.7 million users.
Who is winning over the generations?
Even though Instagram’s audience is almost twice the size of TikTok’s on a global scale, TikTok has shown itself to be a fierce competitor, particularly amongst younger audiences. TikTok was the most downloaded mobile app globally in 2022, generating 672 million downloads. As of 2022, Generation Z in the United States spent more time on TikTok than on Instagram monthly.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Jordan number dataset provides millions of powerful contacts for direct marketing. Our List To Data unit carefully gathers these leads from multiple trusted sources. Further, you can get all confirmed contact numbers from our site for any business to communicate with new clients. This Jordan number dataset creates significant opportunities for boosting company sales. Likewise, this Jordan number dataset is highly effective for business promotion through cold calls and text messages. That marketing lead gives instant feedback from the consumers and expands contracts. Despite this, we deliver the number directory to you in CSV or Excel form. In addition, anyone can operate it in any CRM software without any trouble. Jordan phone data is a very helpful contact library for SMS and telemarketing. Besides, the cold-calling database plays a vital role in direct business plans. Even, we prioritize security and strictly adhere to all the GDPR statutes. Most importantly, anyone can purchase this without any doubt from List To Data. In fact, you can make your business more famous by increasing productivity. Moreover, the Jordan phone data helps in many ways to earn more money from this country. This country is very wealthy in all those sectors, so you can accept our data package now. This website is the perfect place to collect all authentic client mobile contact numbers. As such, our skilled team is ready to assist you 24/7 in supplying your necessary leads. Jordan phone number list makes your business more profitable in a couple of months. This country has the nominal GDP (US$53 billion) and the most extensive by purchasing power parity (US$140 trillion). In other words, it creates a big possibility to earn more from here. As such agriculture, services, industry, and trade, are the main sources of income in Jordan. Accordingly, you can get their mobile numbers from us for direct calls or SMS marketing. In addition, this Jordan phone number list is far better for your business activities nationwide. Especially, you can do the marketing with this enormous group of people. Actually, it will increase your deals rapidly and expand the company’s wealth. Definitely, as a businessman, you take your needed sales leads from our website at an affordable cost.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here are a few use cases for this project:
Educational Tools: The model can be used to develop educational games or applications for children learning to identify different kinds of animals, objects, or numbers. These tools can use interactive image recognition feature, fueling interactive learning.
Series Categorization: Developers creating series for toddlers or kids can use this model to automatically categorize episodes based on the most frequently appearing objects, animals, or numbers to help parents find the suitable one for their children.
Object Recognition Training: The MK You No system can be used in object recognition training interfaces for young AI enthusiasts and researchers. The versatility and range of identifiable classes make the model an excellent starting point for learning about object recognition.
Augmented Reality Apps: This AI system could be implemented in augmented reality (AR) apps that interact with the objects from the list. For example, an app could transform identified objects into their cartoon versions or add funny animations to them.
Interactive Storybooks: The model can be used in creating interactive digital storybooks where children can learn new words by clicking on the object, animal, or number in the story, which the system would then identify and pronounce.
Facebook
TwitterCristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.
The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
How popular is Instagram?
Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
Who uses Instagram?
Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
Celebrity influencers on Instagram
Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Biological Resources Inventory (BRI) consists of 17 related tables, covering biological groupings (fish, invertebrates, plants, terrestrial vertebrates and even habitats), properties, data sources, and survey types. For each biological grouping, there are two tables. One lists all the species within an organismal grouping expected to occur in California (or in the case of habitats, all the habitat types expected to occur in California). The other links to a given species (in its respective organismal grouping) or habitat from the first table with a property number, and in some cases, provides further information about such details as the abundance, season and survey type. As expected there is also a table that links the property numbers used throughout the database with the actual property name. Our research indicates that this list of property names and numbers may not be up to date, nor reflect the names and property numbers used in the current lands inventory (more information about the Lands Inventory is available from Sharon Taylor, Lands Program- Sharon.Taylor@wildlife.ca.govor 916-323-7194). There are also several supporting tables that provide information about interpreting the codes used for abundance, season and survey type. While there are many entries in the BRI, most lack information about who, how, when and why they were obtained. We know data was collected from many sources and ranges in quality from first person direct observations made by CDFW personnel and partners, to regional bird and plant lists, to land management plans, to predicted occurrences from one of several nascent iterations of the California Wildlife Habitat Relationships program. Because of this variation, and our inability to understand the provenance or verify the accuracy of the data, we felt it prudent to only include the highest quality data from the BRI in the Biogeographic Information and Observation System (BIOS). This dataset is a subset of the information contained in the BRI database. It consists of direct observations made by CDFW staff or partners of fish, invertebrates, plants, terrestrial vertebrates and habitats from the BRI. While this is the best and likely most useful data contained in the BRI, we still have little supplemental information about the nature of these direct observations (date of observation, observer, reason for study or survey etc.), and as such urge the user to exercise caution in interpreting these data.
Facebook
TwitterOn 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/68f0f810e8e4040c38a3cf96/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 143 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/68f0ffd528f6872f1663ef77/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.12 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/68f20a3e06e6515f7914c71c/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 197 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/68f20a552f0fc56403a3cfef/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 443 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/68f100492f0fc56403a3cf94/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables
<span class="gem
Facebook
TwitterFinancial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
National coverage
Individuals
The target population is the civilian, non-institutionalized population 15 years and above.
Observation data/ratings [obs]
The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world's population (see Table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.
Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
The sample size was 1002.
Cellular telephone
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.
Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank
Facebook
TwitterThe Global Findex 2025 reveals how mobile technology is equipping more adults around the world to own and use financial accounts to save formally, access credit, make and receive digital payments, and pursue opportunities. Including the inaugural Global Findex Digital Connectivity Tracker, this fifth edition of Global Findex presents new insights on the interactions among mobile phone ownership, internet use, and financial inclusion.
The Global Findex is the world’s most comprehensive database on digital and financial inclusion. It is also the only global source of comparable demand-side data, allowing cross-country analysis of how adults access and use mobile phones, the internet, and financial accounts to reach digital information and resources, save, borrow, make payments, and manage their financial health. Data for the Global Findex 2025 were collected from nationally representative surveys of about 145,000 adults in 141 economies. The latest edition follows the 2011, 2014, 2017, and 2021 editions and includes new series measuring mobile phone ownership and internet use, digital safety, and frequency of transactions using financial services.
The Global Findex 2025 is an indispensable resource for policy makers in the fields of digital connectivity and financial inclusion, as well as for practitioners, researchers, and development professionals.
National Coverage
Individual
Observation data/ratings [obs]
In most low- and middle-income economies, Global Findex data were collected through face-to-face interviews. In these economies, an area frame design was used for interviewing. In most high-income economies, telephone surveys were used. In 2024, face-to-face interviews were again conducted in 22 economies after phone-based surveys had been employed in 2021 as a result of mobility restrictions related to COVID-19. In addition, an abridged form of the questionnaire was administered by phone to survey participants in Algeria, China, the Islamic Republic of Iran, Libya, Mauritius, and Ukraine because of economy-specific restrictions. In just one economy, Singapore, did the interviewing mode change from face to face in 2021 to phone based in 2024.
In economies in which face-to-face surveys were conducted, the first stage of sampling was the identification of primary sampling units. These units were then stratified by population size, geography, or both and clustered through one or more stages of sampling. Where population information was available, sample selection was based on probabilities proportional to population size; otherwise, simple random sampling was used. Random route procedures were used to select sampled households. Unless an outright refusal occurred, interviewers made up to three attempts to survey each sampled household. To increase the probability of contact and completion, attempts were made at different times of the day and, where possible, on different days. If an interview could not be completed at a household that was initially part of the sample, a simple substitution method was used to select a replacement household for inclusion.
Respondents were randomly selected within sampled households. Each eligible household member (that is, all those ages 15 or older) was listed, and a handheld survey device randomly selected the household member to be interviewed. For paper surveys, the Kish grid method was used to select the respondent. In economies in which cultural restrictions dictated gender matching, respondents were randomly selected from among all eligible adults of the interviewer’s gender.
In economies in which Global Findex surveys have traditionally been phone based, respondent selection followed the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies in which mobile phone and landline penetration is high, a dual sampling frame was used.
The same procedure for respondent selection was applied to economies in which phone-based interviews were being conducted for the first time. Dual-frame (landline and mobile phone) random digit dialing was used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digit dialing was used in economies with limited or no landline presence (less than 20 percent). For landline respondents in economies in which mobile phone or landline penetration is 80 percent or higher, respondents were selected randomly by using either the next-birthday method or the household enumeration method, which involves listing all eligible household members and randomly selecting one to participate. For mobile phone respondents in these economies or in economies in which mobile phone or landline penetration is less than 80 percent, no further selection was performed. At least three attempts were made to reach the randomly selected person in each household, spread over different days and times of day.
The English version of the questionnaire is provided for download.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in: Klapper, Leora, Dorothe Singer, Laura Starita, and Alexandra Norris. 2025. The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-2204-9.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The CIFAR-10 and CIFAR-100 datasets are labeled subsets of the 80 million tiny images dataset. CIFAR-10 and CIFAR-100 were created by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. (Sadly, the 80 million tiny images dataset has been thrown into the memory hole by its authors. Spotting the doublethink which was used to justify its erasure is left as an exercise for the reader.)
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.
The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class.
The classes are completely mutually exclusive. There is no overlap between automobiles and trucks. "Automobile" includes sedans, SUVs, things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks.
Baseline results You can find some baseline replicable results on this dataset on the project page for cuda-convnet. These results were obtained with a convolutional neural network. Briefly, they are 18% test error without data augmentation and 11% with. Additionally, Jasper Snoek has a new paper in which he used Bayesian hyperparameter optimization to find nice settings of the weight decay and other hyperparameters, which allowed him to obtain a test error rate of 15% (without data augmentation) using the architecture of the net that got 18%.
Other results Rodrigo Benenson has collected results on CIFAR-10/100 and other datasets on his website; click here to view.
Dataset layout Python / Matlab versions I will describe the layout of the Python version of the dataset. The layout of the Matlab version is identical.
The archive contains the files data_batch_1, data_batch_2, ..., data_batch_5, as well as test_batch. Each of these files is a Python "pickled" object produced with cPickle. Here is a python2 routine which will open such a file and return a dictionary:
python
def unpickle(file):
import cPickle
with open(file, 'rb') as fo:
dict = cPickle.load(fo)
return dict
And a python3 version:
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
Loaded in this way, each of the batch files contains a dictionary with the following elements:
data -- a 10000x3072 numpy array of uint8s. Each row of the array stores a 32x32 colour image. The first 1024 entries contain the red channel values, the next 1024 the green, and the final 1024 the blue. The image is stored in row-major order, so that the first 32 entries of the array are the red channel values of the first row of the image.
labels -- a list of 10000 numbers in the range 0-9. The number at index i indicates the label of the ith image in the array data.
The dataset contains another file, called batches.meta. It too contains a Python dictionary object. It has the following entries: label_names -- a 10-element list which gives meaningful names to the numeric labels in the labels array described above. For example, label_names[0] == "airplane", label_names[1] == "automobile", etc. Binary version The binary version contains the files data_batch_1.bin, data_batch_2.bin, ..., data_batch_5.bin, as well as test_batch.bin. Each of these files is formatted as follows: <1 x label><3072 x pixel> ... <1 x label><3072 x pixel> In other words, the first byte is the label of the first image, which is a number in the range 0-9. The next 3072 bytes are the values of the pixels of the image. The first 1024 bytes are the red channel values, the next 1024 the green, and the final 1024 the blue. The values are stored in row-major order, so the first 32 bytes are the red channel values of the first row of the image.
Each file contains 10000 such 3073-byte "rows" of images, although there is nothing delimiting the rows. Therefore each file should be exactly 30730000 bytes long.
There is another file, called batches.meta.txt. This is an ASCII file that maps numeric labels in the range 0-9 to meaningful class names. It is merely a list of the 10 class names, one per row. The class name on row i corresponds to numeric label i.
The CIFAR-100 dataset This dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs). Her...
Facebook
TwitterFinancial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
National coverage
The target population is the civilian, non-institutionalized population 15 years and above.
Observation data/ratings [obs]
The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world's population (see Table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.
Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Sample excludes three hillistricts in Chittagong (Bandarban, Khagrachori, and Rangamati) for security reasons. The excluded areas represent about 1% of the population.
Sample size was 1000.
Computer Assisted Personal Interview [capi]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.
Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Egypt number dataset can be a great element for direct marketing nationwide right now. Also, this Egypt number dataset has thousands of active mobile numbers that help to increase sales in the company. Most importantly, you can develop your business by bringing many trustworthy B2C customers. Likewise, clients can send you a fast response whether they need it or not. Furthermore, this Egypt number dataset is a very essential tool for telemarketing. In other words, you get all these 95% valid leads at a very cheap price from us. Most importantly, our List To Data website still follows the full GDPR rules strictly. In addition, the return on investment (ROI) will give you satisfaction from the business. Egypt phone data is a very powerful contact database that you can get in your budget. Moreover, the Egypt phone data is very beneficial for fast business growth through direct marketing. In fact, our List To Data assures you that we give verified numbers at an affordable cost. As such, you can say that it brings you more profit than your expense. Additionally, the Egypt phone data has all the details like name, age, gender, location, and business. Anyway, people can connect with the largest group of consumers quickly through this. However, people can use these cell phone numbers without any worry. Thus, buy it from us as our experts are ready to present the most satisfactory service. Egypt phone number list is very helpful for any business and marketing. People can use this Egypt phone number list to develop their telemarketing. They can easily reach consumers through direct calls or SMS. In other words, we gather all the database and recheck it, so you should buy our packages right now. Furthermore, you can believe this correct directory to maximize your company’s growth rapidly. Also, we deliver the Egypt phone number list in an Excel and CSV file. Actually, the country’s mobile number library will help you in getting more profit than investment. Similarly, the List To Data expert team is ready to help you 24 hours with any necessary details that can help your business. Hence, buy this telemarketing lead at a very reasonable price to expand sales through B2C customers.