Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
PyPSA-Eur is an open model dataset of the European power system at the transmission network level that covers the full ENTSO-E area. It can be built using the code provided at https://github.com/PyPSA/PyPSA-eur.
It contains alternating current lines at and above 220 kV voltage level and all high voltage direct current lines, substations, an open database of conventional power plants, time series for electrical demand and variable renewable generator availability, and geographic potentials for the expansion of wind and solar power.
Not all data dependencies are shipped with the code repository, since git is not suited for handling large changing files. Instead we provide separate data bundles to be downloaded and extracted as noted in the documentation.
This is the full data bundle to be used for rigorous research. It includes large bathymetry and natural protection area datasets.
While the code in PyPSA-Eur is released as free software under the MIT, different licenses and terms of use apply to the various input data, which are summarised below:
corine/*
CORINE Land Cover (CLC) database
Source: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/
Terms of Use: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012?tab=metadata
natura/*
Natura 2000 natural protection areas
Source: https://www.eea.europa.eu/data-and-maps/data/natura-10
Terms of Use: https://www.eea.europa.eu/data-and-maps/data/natura-10#tab-metadata
gebco/GEBCO_2014_2D.nc
GEBCO bathymetric dataset
Source: https://www.gebco.net/data_and_products/gridded_bathymetry_data/version_20141103/
Terms of Use: https://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/gebco_2014_historic.pdf
je-e-21.03.02.xls
Population and GDP data for Swiss Cantons
Source: https://www.bfs.admin.ch/bfs/en/home/news/whats-new.assetdetail.7786557.html
Terms of Use:
https://www.bfs.admin.ch/bfs/en/home/fso/swiss-federal-statistical-office/terms-of-use.html
https://www.bfs.admin.ch/bfs/de/home/bfs/oeffentliche-statistik/copyright.html
nama_10r_3popgdp.tsv.gz
Population by NUTS3 region
Source: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3popgdp&lang=en
Terms of Use:
https://ec.europa.eu/eurostat/about/policies/copyright
GDP_per_capita_PPP_1990_2015_v2.nc
Gross Domestic Product per capita (PPP) from years 1999 to 2015
Rectangular cutout for European countries in PyPSA-Eur, including a 10 km buffer
Kummu et al. "Data from: Gridded global datasets for Gross Domestic Product and Human Development Index over 1990-2015"
Source: https://doi.org/10.1038/sdata.2018.4 and associated dataset https://doi.org/10.1038/sdata.2018.4
ppp_2019_1km_Aggregated.tif
The spatial distribution of population in 2020: Estimated total number of people per grid-cell. The dataset is available to download in Geotiff format at a resolution of 30 arc (approximately 1km at the equator). The projection is Geographic Coordinate System, WGS84. The units are number of people per pixel. The mapping approach is Random Forest-based dasymetric redistribution.
Rectangular cutout for non-NUTS3 countries in PyPSA-Eur, i.e. MD and UA, including a 10 km buffer
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00647
Source: https://data.humdata.org/dataset/worldpop-population-counts-for-world and https://hub.worldpop.org/geodata/summary?id=24777
License: Creative Commons Attribution 4.0 International Licens
data/bundle/era5-HDD-per-country.csv
data/bundle/era5-runoff-per-country.csv
shipdensity_global.zip
Global Shipping Traffic Density
Creative Commons Attribution 4.0
https://datacatalog.worldbank.org/search/dataset/0037580/Global-Shipping-Traffic-Density
seawater_temperature.nc
Global Ocean Physics Reanalysis
Seawater temperature at 5m depth
Link: https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_030/services
License: https://marine.copernicus.eu/user-corner/service-commitments-and-licence
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP PER CAPITA PPP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for INFLATION RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
The role of Pre- and Protohistoric anthropogenic land cover changes needs to be quantified i) to establish a baseline for comparison with current human impact on the environment and ii) to separate it from naturally occurring changes in our environment. Results are presented from the simple, adaptation-driven, spatially explicit Global Land Use and technological Evolution Simulator (GLUES) for pre-Bronze age demographic, technological and economic change. Using scaling parameters from the History Database of the Global Environment as well as GLUES-simulated population density and subsistence style, the land requirement for growing crops is estimated. The intrusion of cropland into potentially forested areas is translated into carbon loss due to deforestation with the dynamic global vegetation model VECODE. The land demand in important Prehistoric growth areas - converted from mostly forested areas - led to large-scale regional (country size) deforestation of up to 11% of the potential forest. In total, 29 Gt carbon were lost from global forests between 10 000 BC and 2000 BC and were replaced by crops; this value is consistent with other estimates of Prehistoric deforestation. The generation of realistic (agri-)cultural development trajectories at a regional resolution is a major strength of GLUES. Most of the pre-Bronze age deforestation is simulated in a broad farming belt from Central Europe via India to China. Regional carbon loss is, e.g., 5 Gt in Europe and the Mediterranean, 6 Gt on the Indian subcontinent, 18 Gt in East and Southeast Asia, or 2.3 Gt in subsaharan Africa. Global subsistence style and technological progress for the period 9500 BC to 2000 BC were hindcasted with the Global Land Use and technological Evolution Simulator (GLUES) for 685 land regions of the world. The intensification of subsistence is visible in the transition from hunting-gathering to agropastoral life style in many world regions. This transition is based on an increase of domesticated plant and animal resources and technological progress, and can sustain much higher population densities than the foraging life style.The advent of agriculture creates an areal demand for growing crops; where the crop area is occupied by forest in potential vegetation estimated with a dynamical global vegetation model (VECODE), the aboveground and belowground carbon pools are reallocated; the net release of carbon to the atmosphere is calculated.Initial values for each prognostic variable are identical at simulation start (9500 BC), but the background vegetation varies. Vegetation productivity in terms of net primary production (NPP) was derived from Climber-2 climate anomalies on the IIASA database for mean monthly precipitation and temperature and subsequent application of the Miami model.Data are presented as 50-year averages with time indicating the central year of each 50-year period (i.e. -2425 denotes the period 2450 BC - 2401 BC), and geographically on a half degree grid with latitude and longitude values denoting the central value within each grid cell.Model data are from sub-project GLUES (Global Land Use and Technological Evolution Simulations on New Paleoclimate data: Quantified impact of Holocene climate change on land use, regional agrarianisation and anthropogenic deforestation with feedback, see: hdl:10013/epic.35233.d001).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for INTEREST RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP GROWTH RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORRUPTION INDEX reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
https://opendata.euskadi.eus/AVComun/r01gContainerVA/html/opendata/r01gLicencia_es.htmlhttps://opendata.euskadi.eus/AVComun/r01gContainerVA/html/opendata/r01gLicencia_es.html
The operation Trade Index in Large Areas and Food Chains (IGSC) provides a short-term indicator of the commercial evolution of sales and staff employed in the large-scale trade sector and food chains in the Basque Country. Commercial establishments with a sales area of 2.500 m² or more are considered a large area, while all companies in at least three premises, including large stores if they had one, and more than 100 employees are referred to as food chains. The information is disseminated at historical territory level from 2015 onwards.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GOVERNMENT DEBT TO GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
European Union Imports from China was US$560.36 Billion during 2024, according to the United Nations COMTRADE database on international trade. European Union Imports from China - data, historical chart and statistics - was last updated on September of 2025.
Comparing the *** selected regions regarding the gini index , South Africa is leading the ranking (**** points) and is followed by Namibia with **** points. At the other end of the spectrum is Slovakia with **** points, indicating a difference of *** points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from * (=total equality of incomes) to *** (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than *** countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.