Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Housing Affordability Data System (HADS) is a set of files derived from the 1985 and later national American Housing Survey (AHS) and the 2002 and later Metro AHS. This system categorizes housing units by affordability and households by income, with respect to the Adjusted Median Income, Fair Market Rent (FMR), and poverty income. It also includes housing cost burden for owner and renter households. These files have been the basis for the worst case needs tables since 2001. The data files are available for public use, since they were derived from AHS public use files and the published income limits and FMRs. We are providing these files give the community of housing analysts the opportunity to use a consistent set of affordability measures.This data set appears to not be upated after 2013
The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]
How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.
The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.
Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.
Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.
[1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.
[2] Ibid.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).
https://catalog.dvrpc.org/dvrpc_data_license.htmlhttps://catalog.dvrpc.org/dvrpc_data_license.html
A commonly accepted threshold for affordable housing costs at the household level is 30% of a household's income. Accordingly, a household is considered cost burdened if it pays more than 30% of its income on housing. Households paying more than 50% are considered severely cost burdened. These thresholds apply to both homeowners and renters.
The Housing Affordability indicator only measures cost burden among the region's households, and not the supply of affordable housing. The directionality of cost burden trends can be impacted by changes in both income and housing supply. If lower income households are priced out of a county or the region, it would create a downward trend in cost burden, but would not reflect a positive trend for an inclusive housing market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Housing Affordability Index: Median Family Income data was reported at 77,021.000 USD in Oct 2018. This records an increase from the previous number of 76,754.000 USD for Sep 2018. United States Housing Affordability Index: Median Family Income data is updated monthly, averaging 53,251.500 USD from Jan 1989 (Median) to Oct 2018, with 358 observations. The data reached an all-time high of 77,021.000 USD in Oct 2018 and a record low of 33,287.000 USD in Jan 1989. United States Housing Affordability Index: Median Family Income data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.
The Housing Affordability Index value in the United States plummeted in 2022, surpassing the historical record of ***** index points in 2006. In 2024, the housing affordability index measured **** index points, making it the second-worst year for homebuyers since the start of the observation period. What does the Housing Affordability Index mean? The Housing Affordability Index uses data provided by the National Association of Realtors (NAR). It measures whether a family earning the national median income can afford the monthly mortgage payments on a median-priced existing single-family home. An index value of 100 means that a family has exactly enough income to qualify for a mortgage on a home. The higher the index value, the more affordable a house is to a family. Key factors that drive the real estate market Income, house prices, and mortgage rates are some of the most important factors influencing homebuyer sentiment. When incomes increase, consumer power also increases. The median household income in the United States declined in 2022, affecting affordability. Additionally, mortgage interest rates have soared, adding to the financial burden of homebuyers. The sales price of existing single-family homes in the U.S. has increased year-on-year since 2011 and reached ******* U.S. dollars in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Housing Affordability Index: Payment as a % of Income data was reported at 17.000 % in Oct 2018. This stayed constant from the previous number of 17.000 % for Sep 2018. United States Housing Affordability Index: Payment as a % of Income data is updated monthly, averaging 19.200 % from Jan 1989 (Median) to Oct 2018, with 358 observations. The data reached an all-time high of 24.700 % in Jul 2006 and a record low of 11.700 % in Jan 2013. United States Housing Affordability Index: Payment as a % of Income data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Affordability Index (Fixed) (FIXHAI) from Apr 2024 to Apr 2025 about fixed, housing, indexes, and USA.
Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.
The Housing Affordability Index, calculated by the Runstad Center for Real Estate Studies, measures the ability of a middle-income family to carry the mortgage payments on a median-price home. When the index is 100 there is a balance between the family’s ability to pay and the cost. Higher indexes indicate housing is more affordable.
For example, an index of 126 means that a median-income family has 26 percent more income than the bare minimum required to qualify for a mortgage on a median-price home. An index of 80 means that a median-income family has less income than the minimum required.
VITAL SIGNS INDICATOR
Housing Affordability (EQ2)
FULL MEASURE NAME
Housing Affordability
LAST UPDATED
December 2022
DATA SOURCE
U.S. Census Bureau: Decennial Census - https://nhgis.org
Form STF3 – https://nhgis.org (1980-1990)
Form SF3a – https://nhgis.org (2000)
U.S. Census Bureau: American Community Survey - https://data.census.gov/
Form B25074 (2009-2021)
Form B25095 (2009-2021)
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The share of income brackets used for different Census and American Community Survey (ACS) forms vary over time. To allow for historical comparisons, the Census Bureau merges housing expenditure brackets into three consistent bins (less than 20 percent, 20 percent to 34 percent, and more than 35 percent) that work for all years. The highest income bracket for renters in the ACS data was $100,000 or more, while the homeowner dataset included brackets for $100,000 to $149,999 and $150,000 and above. These brackets were merged together to allow for uniform comparison across tenure. While some studies use 30 percent as the affordability threshold, Vital Signs uses 35 percent as this is the closest break point using the standardized affordability brackets above.
ACS 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
Income breakdown data is only provided for one year as it is not possible to compare consistent inflation-adjusted income brackets over time given Census data limitations. For the county breakdown, Napa was missing ACS 1-Year renter data for all years except 2012 and 2013, and Marin was missing ACS 1-Year renter data for 2019 — these counties used 5-Year data for those years.
This map uses a two-color thematic shading to emphasize where areas experience the least to the most affordable housing across the US. This web map is part of the How Affordable is the American Dream story map.
Esri’s Housing Affordability Index (HAI) is a powerful tool to analyze local real estate markets. Esri’s housing affordability index measures the financial ability of a typical household to purchase an existing home in an area. A HAI of 100 represents an area that on average has sufficient household income to qualify for a loan on a home valued at the median home price. An index greater than 100 suggests homes are easily afforded by the average area resident. A HAI less than 100 suggests that homes are less affordable. The housing affordability index is not applicable in areas with no households or in predominantly rental markets . Esri’s home value estimates cover owner-occupied homes only. For a full demographic analysis of US growth refer to Esri's Trending in 2017: The Selectivity of Growth.
The pop-up is configured to show the following 2017 demographics for each County and ZIP Code:
Total Households 2010-17 Annual Pop Change Median Age Percent Owner-Occupied Housing Units Median Household Income Median Home Value Housing Affordability Index Share of Income to Mortgage
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Housing Affordability Index: Qualifying Income data was reported at 52,320.000 USD in Sep 2018. This records a decrease from the previous number of 53,904.000 USD for Aug 2018. United States Housing Affordability Index: Qualifying Income data is updated monthly, averaging 37,488.000 USD from Jan 1989 (Median) to Sep 2018, with 357 observations. The data reached an all-time high of 57,936.000 USD in Jul 2006 and a record low of 27,264.000 USD in Feb 1994. United States Housing Affordability Index: Qualifying Income data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.
https://www.icpsr.umich.edu/web/ICPSR/studies/25204/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/25204/terms
The Housing Affordability Data System (HADS) is a set of housing unit level datasets that measures the affordability of housing units and the housing cost burdens of households, relative to area median incomes, poverty level incomes, and Fair Market Rents. The purpose of these datasets is to provide housing analysts with consistent measures of affordability and burdens over a long period. The datasets are based on the American Housing Survey (AHS) national files from 1985 through 2005 and the metropolitan files for 2002 and 2004. Users can link records in HADS files to AHS records, allowing access to all of the AHS variables. Housing-level variables include information on the number of rooms in the housing unit, the year the unit was built, whether it was occupied or vacant, whether the unit was rented or owned, whether it was a single family or multiunit structure, the number of units in the building, the current market value of the unit, and measures of relative housing costs. The dataset also includes variables describing the number of people living in the household, household income, and the type of residential area (e.g., urban or suburban).
In 2023, Ahmedabad had the most affordable housing market of the eight biggest metropolitan areas in India with a proportion of 21 percent of income to monthly instalment of a housing unit. In Mumbai the affordability index was at 51 percent, the only city with higher than threshold affordability ratio set at 50 percent. However, the affordability index has significantly improved from pre-pandemic times in 2019 for many cities including Mumbai, Bengaluru and NCR.
In the financial year 2023, the balance of property prices by annual income resulted in an affordability of 3.3 for housing in India. The recent period has witnessed the best affordability in last two decades.
https://www.icpsr.umich.edu/web/ICPSR/studies/25203/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/25203/terms
The Housing Affordability Data System (HADS), 2002, is a housing-unit level dataset that measures the affordability of housing units and the housing cost burdens of households, relative to area median incomes, poverty level incomes, and Fair Market Rents. The dataset contains selected variables from the AMERICAN HOUSING SURVEY, 2002: METROPOLITAN MICRODATA (ICPSR 4589), as well as custom, derived variables measuring monthly housing costs, housing cost burdens, assisted housing, and total salary income. Housing-level variables include information on the number of rooms in the housing unit, the year the unit was built, whether it was occupied or vacant, whether the unit was rented or owned, whether it was a single family or multi-unit structure, the number of units in the building, the current market value of the unit, and measures of relative housing costs. The dataset also includes variables describing the number of people living in the household, household income, and the type of residential area (e.g., urban or suburban).
Comprehensive Housing Affordability Strategy (CHAS) data documenting the extent of housing problems and housing needs, particularly for low income households, at the Place level. This is estimated by the number of households that have certain housing problems and have income low enough to qualify for HUD’s programs (primarily 30, 50, and 80 percent of median income).
The U.S. Department of Housing and Urban Development (HUD) periodically receives custom tabulations of data from the U.S. Census Bureau that are largely not available through standard Census products. These data, known as the CHAS data (Comprehensive Housing Affordability Strategy), demonstrate the extent of housing problems and housing needs, particularly for low income households. The CHAS data are used by local governments to plan how to spend HUD funds, and may also be used by HUD to distribute grant funds
This table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.
The U.S. Department of Housing and Urban Development (HUD) periodically receives "custom tabulations" of Census data from the U.S. Census Bureau that are largely not available through standard Census products. These datasets, known as "CHAS" (Comprehensive Housing Affordability Strategy) data, demonstrate the extent of housing problems and housing needs, particularly for low income households. The primary purpose of CHAS data is to demonstrate the number of households in need of housing assistance. This is estimated by the number of households that have certain housing problems and have income low enough to qualify for HUD’s programs (primarily 30, 50, and 80 percent of median income). CHAS data provides counts of the numbers of households that fit these HUD-specified characteristics in a variety of geographic areas. In addition to estimating low-income housing needs, CHAS data contributes to a more comprehensive market analysis by documenting issues like lead paint risks, "affordability mismatch," and the interaction of affordability with variables like age of homes, number of bedrooms, and type of building.This dataset is a special tabulation of the 2016-2020 American Community Survey (ACS) and reflects conditions over that time period. The dataset uses custom HUD Area Median Family Income (HAMFI) figures calculated by HUD PDR staff based on 2016-2020 ACS income data. CHAS datasets are used by Federal, State, and Local governments to plan how to spend, and distribute HUD program funds. To learn more about the Comprehensive Housing Affordability Strategy (CHAS), visit: https://www.huduser.gov/portal/datasets/cp.html, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs Data Dictionary: DD_ACS 5-Year CHAS Estimate Data by County Date of Coverage: 2016-2020
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Housing Affordability Data System (HADS) is a set of files derived from the 1985 and later national American Housing Survey (AHS) and the 2002 and later Metro AHS. This system categorizes housing units by affordability and households by income, with respect to the Adjusted Median Income, Fair Market Rent (FMR), and poverty income. It also includes housing cost burden for owner and renter households. These files have been the basis for the worst case needs tables since 2001. The data files are available for public use, since they were derived from AHS public use files and the published income limits and FMRs. We are providing these files give the community of housing analysts the opportunity to use a consistent set of affordability measures.This data set appears to not be upated after 2013