100+ datasets found
  1. U.S. wealth distribution Q1 2025

    • statista.com
    Updated Aug 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. wealth distribution Q1 2025 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
    Explore at:
    Dataset updated
    Aug 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the first quarter of 2025, almost two-thirds percent of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest 50 percent of earners only owned 2.5 percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2023, 7.4 percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States was the country with the most billionaires in the world in 2025. Elon Musk, with a net worth of 342 billion U.S. dollars, was among the richest people in the United States in 2025. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

  2. g

    Replication Data for: Understanding Public Perceptions of Growing Economic...

    • datasearch.gesis.org
    • dataverse-staging.rdmc.unc.edu
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Franko, William (2020). Replication Data for: Understanding Public Perceptions of Growing Economic Inequality [Dataset]. http://doi.org/10.15139/S3/D9ZUIB
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Odum Institute Dataverse Network
    Authors
    Franko, William
    Description

    While most Americans appear to acknowledge the large gap between the rich and the poor in the U.S., it is not clear if the public is aware of recent changes in income inequality. Even though economic inequality has grown substantially in recent decades, studies have shown that the public's perception of growing income disparities has remained mostly unchanged since the 1980s. This research offers an alternative approach to evaluating how public perceptions of inequality are developed. Centrally, it conceptualizes the public's response to growing economic disparities by applying theories of macro-political behavior and place-based contextual effects to the formation of aggregate perceptions about income inequality. It is argued that most of the public relies on basic information about the economy to form attitudes about inequality and that geographic context---in this case, the American states---plays a role in how views of income disparities are produced. A new measure of state perceptions of growing economic inequality over a 25-year period is used to examine whether the public is responsive to objective changes in economic inequality. Time-series cross-sectional analyses suggest that the public's perceptions of growing inequality are largely influenced by objective state economic indicators and state political ideology. This research has implications for how knowledgeable the public is of disparities between the rich and the poor, whether state context influences attitudes about inequality, and what role the public will have in determining how expanding income differences are addressed through government policy.

  3. U.S. quarterly wealth distribution 1989-2024, by income percentile

    • statista.com
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. quarterly wealth distribution 1989-2024, by income percentile [Dataset]. https://www.statista.com/statistics/299460/distribution-of-wealth-in-the-united-states/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the third quarter of 2024, the top ten percent of earners in the United States held over ** percent of total wealth. This is fairly consistent with the second quarter of 2024. Comparatively, the wealth of the bottom ** percent of earners has been slowly increasing since the start of the *****, though remains low. Wealth distribution in the United States by generation can be found here.

  4. g

    Data from: Growing Wealth Gaps in Education

    • datasearch.gesis.org
    • openicpsr.org
    Updated Oct 29, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pfeffer, Fabian T. (2018). Growing Wealth Gaps in Education [Dataset]. http://doi.org/10.3886/E101105V2-9042
    Explore at:
    Dataset updated
    Oct 29, 2018
    Dataset provided by
    da|ra (Registration agency for social science and economic data)
    Authors
    Pfeffer, Fabian T.
    Description

    Prior research on trends in educational inequality has focused chiefly on changing gaps in educational attainment by family income or parental occupation. In contrast, this contribution provides the first assessment of trends in educational attainment by family wealth and suggests that we should be at least as much concerned about growing wealth gaps in education. Despite overall growth in educational attainment and some signs of decreasing wealth gaps in high school attainment and college access, I find a large and rapidly increasing wealth gap in college attainment between cohorts born in the 1970 and 1980s, respectively. This growing wealth gap in higher educational attainment co-occurred with a rise in inequality in children's wealth backgrounds, though the analyses also suggest that the latter does not fully account for the former. Nevertheless, the results reported here raise concerns about the distribution of educational opportunity among today's children who grow up in a context of particularly extreme wealth inequality.

  5. o

    Intergenerational Economic Mobility and the Racial Wealth Gap

    • openicpsr.org
    Updated Jan 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jermaine Toney; Cassandra Robertson (2021). Intergenerational Economic Mobility and the Racial Wealth Gap [Dataset]. http://doi.org/10.3886/E130341V2
    Explore at:
    Dataset updated
    Jan 6, 2021
    Dataset provided by
    American Economic Association
    Authors
    Jermaine Toney; Cassandra Robertson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A growing body of research documents the importance of wealth and the racial wealth gap in perpetuating inequality across generations. We add to this literature by examining the impact of wealth on child income. Our two stage least squares regressions reveal that grandparental and parental wealth have an important effect on the younger generation’s stock (first stage results), which in turn affects the younger generation’s household income (second stage results). We further explore the relationship between income and wealth by decomposing the child’s income by race. We find that the intergroup disparity in income is mainly attributable to differences in family background. These findings indicate that wealth is an important source of income inequality.

  6. f

    DFI, IIS and urban–rural income disparity.

    • plos.figshare.com
    xls
    Updated Jun 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Changcun Wen; Yiping Xiao; Bao Hu (2024). DFI, IIS and urban–rural income disparity. [Dataset]. http://doi.org/10.1371/journal.pone.0303666.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 27, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Changcun Wen; Yiping Xiao; Bao Hu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Rising income inequality challenges economic and social stability in developing countries. For China, the fastest-growing global digital economy, it could be an effective tool to promote inclusive development, narrowing urban–rural income disparity. It investigates the role of digital financial inclusion (DFI) in narrowing the urban–rural income gap. The study uses panel data from 52 counties in Zhejiang Province, China, from 2014 to 2020. The results show that the development of DFI significantly reduces rural–urban and rural income inequality. The development of DFI helps optimize industrial structure and upgrade the internal structure of agriculture, facilitating income growth for people in rural areas. Such effects are greater in poorer counties. Our findings provide insights into why rapid DFI and the narrowing of the rural–urban income disparity exist in China. Moreover, our results provide clear policy implications on how to reduce the disparity. The most compelling suggestion is that promoting the optimization of industrial structure through DFI is crucial for narrowing the urban–rural income gap.

  7. Gini index: inequality of income distribution in China 2005-2023

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gini index: inequality of income distribution in China 2005-2023 [Dataset]. https://www.statista.com/statistics/250400/inequality-of-income-distribution-in-china-based-on-the-gini-index/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    This statistic shows the inequality of income distribution in China from 2005 to 2023 based on the Gini Index. In 2023, China reached a score of ************ points. The Gini Index is a statistical measure that is used to represent unequal distributions, e.g. income distribution. It can take any value between 1 and 100 points (or 0 and 1). The closer the value is to 100 the greater is the inequality. 40 or 0.4 is the warning level set by the United Nations. The Gini Index for South Korea had ranged at about **** in 2022. Income distribution in China The Gini coefficient is used to measure the income inequality of a country. The United States, the World Bank, the US Central Intelligence Agency, and the Organization for Economic Co-operation and Development all provide their own measurement of the Gini coefficient, varying in data collection and survey methods. According to the United Nations Development Programme, countries with the largest income inequality based on the Gini index are mainly located in Africa and Latin America, with South Africa displaying the world's highest value in 2022. The world's most equal countries, on the contrary, are situated mostly in Europe. The United States' Gini for household income has increased by around ten percent since 1990, to **** in 2023. Development of inequality in China Growing inequality counts as one of the biggest social, economic, and political challenges to many countries, especially emerging markets. Over the last 20 years, China has become one of the world's largest economies. As parts of the society have become more and more affluent, the country's Gini coefficient has also grown sharply over the last decades. As shown by the graph at hand, China's Gini coefficient ranged at a level higher than the warning line for increasing risk of social unrest over the last decade. However, the situation has slightly improved since 2008, when the Gini coefficient had reached the highest value of recent times.

  8. f

    IV Results.

    • plos.figshare.com
    xls
    Updated Jun 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Changcun Wen; Yiping Xiao; Bao Hu (2024). IV Results. [Dataset]. http://doi.org/10.1371/journal.pone.0303666.t011
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 27, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Changcun Wen; Yiping Xiao; Bao Hu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Rising income inequality challenges economic and social stability in developing countries. For China, the fastest-growing global digital economy, it could be an effective tool to promote inclusive development, narrowing urban–rural income disparity. It investigates the role of digital financial inclusion (DFI) in narrowing the urban–rural income gap. The study uses panel data from 52 counties in Zhejiang Province, China, from 2014 to 2020. The results show that the development of DFI significantly reduces rural–urban and rural income inequality. The development of DFI helps optimize industrial structure and upgrade the internal structure of agriculture, facilitating income growth for people in rural areas. Such effects are greater in poorer counties. Our findings provide insights into why rapid DFI and the narrowing of the rural–urban income disparity exist in China. Moreover, our results provide clear policy implications on how to reduce the disparity. The most compelling suggestion is that promoting the optimization of industrial structure through DFI is crucial for narrowing the urban–rural income gap.

  9. F

    Income Inequality in Orange County, FL

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Income Inequality in Orange County, FL [Dataset]. https://fred.stlouisfed.org/series/2020RATIO012095
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Florida, Orange County
    Description

    Graph and download economic data for Income Inequality in Orange County, FL (2020RATIO012095) from 2010 to 2023 about Orange County, FL; inequality; Orlando; FL; income; and USA.

  10. U.S. Gini gap between rich and poor 2023, by state

    • statista.com
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. Gini gap between rich and poor 2023, by state [Dataset]. https://www.statista.com/statistics/227249/greatest-gap-between-rich-and-poor-by-us-state/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    New York was the state with the greatest gap between rich and poor, with a Gini coefficient score of 0.52 in 2023. Although not a state, District of Columbia was among the highest Gini coefficients in the United States that year.

  11. F

    Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles)...

    • fred.stlouisfed.org
    json
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBSTP1300
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) (WFRBSTP1300) from Q3 1989 to Q1 2025 about shares, net worth, wealth, percentile, Net, and USA.

  12. N

    Grow, Wisconsin annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Grow, Wisconsin annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a5196421-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grow, Wisconsin
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Grow town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Grow town, the median income for all workers aged 15 years and older, regardless of work hours, was $46,250 for males and $26,563 for females.

    These income figures highlight a substantial gender-based income gap in Grow town. Women, regardless of work hours, earn 57 cents for each dollar earned by men. This significant gender pay gap, approximately 43%, underscores concerning gender-based income inequality in the town of Grow town.

    - Full-time workers, aged 15 years and older: In Grow town, among full-time, year-round workers aged 15 years and older, males earned a median income of $57,917, while females earned $37,500, leading to a 35% gender pay gap among full-time workers. This illustrates that women earn 65 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Grow town, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grow town median household income by race. You can refer the same here

  13. o

    Supplementary data for “Wealth Inequality and Endogenous Growth”

    • openicpsr.org
    delimited
    Updated Jan 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Byoungchan Lee (2024). Supplementary data for “Wealth Inequality and Endogenous Growth” [Dataset]. http://doi.org/10.3886/E197241V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset provided by
    Hong Kong University of Science and Technology
    Authors
    Byoungchan Lee
    Time period covered
    1983 - 2016
    Area covered
    US
    Description

    Advanced economies have been experiencing productivity slowdowns, rising inequality, and low consumption-to-wealth ratios in recent decades. Using an analytically tractable endogenous growth model with heterogeneous households, I emphasize a channel that connects inequality with productivity growth through aggregate consumption demand and the returns to R&D. Given realistic increases in wealth (inclusive of income) inequality, the calibrated model generates transition dynamics featuring productivity slowdowns, low aggregate demand, and low real interest rates, consistent with the empirical trends. The welfare cost of rising inequality is substantial and is nearly equally split between changes in the consumption distribution and slow growth.

  14. Income inequality statistics across Canada: Canada, provinces and...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Jul 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2022). Income inequality statistics across Canada: Canada, provinces and territories, census divisions and census subdivisions [Dataset]. http://doi.org/10.25318/9810009601-eng
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Statistics on income inequality based on the Gini index and the p90/p10 ratio on various household income concepts (market income, total income, after-tax income) for Canada, provinces and territories, census divisions and census subdivisions.

  15. Changes in the Distribution of Wealth: Increasing Inequality

    • icpsr.umich.edu
    Updated Aug 27, 1998
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Weicher, John C. (1998). Changes in the Distribution of Wealth: Increasing Inequality [Dataset]. http://doi.org/10.3886/ICPSR01145.v1
    Explore at:
    Dataset updated
    Aug 27, 1998
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Weicher, John C.
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/1145/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/1145/terms

    Area covered
    United States
    Description

    The data collection describes changes in the distribution of wealth among United States households that occurred between 1983 and 1989 and analyzes the role of several demographic and economic factors in contributing to the changes.

  16. The Wealth Gap In London - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Mar 23, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2017). The Wealth Gap In London - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/the-wealth-gap-in-london
    Explore at:
    Dataset updated
    Mar 23, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    Area covered
    London
    Description

    This GLA Intelligence Update takes a brief look at evidence around the wealth gap in London and examines how this has changed in recent years. Key Findings There is a significant gap between the rich and poor in London, both in terms of their wealth and their income. A higher proportion of the wealthiest households are in the South East of England than in London. Pension wealth accounts for more than half the wealth of the richest ten per cent of the population. In London, the tenth of the population with the highest income have weekly income after housing costs of over £1,000 while people in the lowest tenth have under £94 per week. The gap between rich and poor is growing, with the difference between the average income for the second highest tenth and second lowest tenth growing around 14 per cent more than inflation since 2003.

  17. H

    Replication Data for: The Pitfalls of Convergence Analysis: Is the Income...

    • dataverse.harvard.edu
    Updated Jan 2, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eric Neumayer (2016). Replication Data for: The Pitfalls of Convergence Analysis: Is the Income Gap Really Increasing? (together with Matthew A. Cole), Applied Economics Letters, 10 (6), 2003, pp. 355-357 [Dataset]. http://doi.org/10.7910/DVN/RGJRST
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 2, 2016
    Dataset provided by
    Harvard Dataverse
    Authors
    Eric Neumayer
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    A number of studies have tested whether, globally, per capita incomes are converging over time. To date, the majority of studies find no evidence of absolute convergence, but many find evidence of conditional convergence, i.e. convergence having controlled for differences in technological and behavioural parameters. The lack of evidence of absolute convergence has led to claims that global income inequality is deteriorating. This is believed to be untrue. Most convergence studies are aimed at proving or disproving the neoclassical growth model and hence take the ‘country’ as the unit of measurement. However, if inferences are being made about world income distribution the focus should be on ‘people’ rather than ‘countries’ to prevent China and Luxembourg, for example, receiving equal weighting in the analysis. The beta-convergence method and two different measures of per capita income are used and it is shown that there is indeed evidence of income divergence between countries. However, crucially, convincing evidence is found of income convergence if the regressions are weighted by population. Thus, it is found that poor peoples’ incomes are growing faster than rich peoples’ incomes, suggesting that global income inequality is in fact improving.

  18. N

    Income Distribution by Quintile: Mean Household Income in Grow, Wisconsin //...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Grow, Wisconsin // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/grow-wi-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grow, Wisconsin
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Grow, Wisconsin, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 24,920, while the mean income for the highest quintile (20% of households with the highest income) is 291,431. This indicates that the top earners earn 12 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 591,479, which is 202.96% higher compared to the highest quintile, and 2373.51% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grow town median household income. You can refer the same here

  19. H

    Replication Data for: "Occupational Licensing and Income Inequality in the...

    • dataverse.harvard.edu
    Updated Dec 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert J. McGrath; Wendy Chen; Franko, William W, (2024). Replication Data for: "Occupational Licensing and Income Inequality in the States" [Dataset]. http://doi.org/10.7910/DVN/OACTQG
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 18, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Robert J. McGrath; Wendy Chen; Franko, William W,
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The decades-long rise of economic inequality in the U.S. has led to a growing body of literature examining the role of policy in shaping income differences. We examine one such policy: occupational licensing regulations. Licensing can restrict employment and reduce market competition, which can then inflate wages for those in licensed professions. Existing research demonstrates that occupational licensure does increase wages in specific industries, leading some scholars to argue that licensing makes income inequality worse. We add nuance by arguing that the effect of licensing on inequality is dependent on which occupation classes experience the largest wage premiums. Using a comprehensive over-time database of state licensing regulations, we first demonstrate that medium- and low-wage jobs garner larger wage premiums than high-wage occupations. Second, consistent with this result we then show that the occupational licensing regulations have the overall effect of reducing state income inequality. This research contributes to our understanding of the causes of growing inequality and how public policy can shape economic disparities through sometimes unintended and indirect ways.

  20. f

    DFI, AIS and urban–rural income disparity in different regions.

    • plos.figshare.com
    xls
    Updated Jun 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Changcun Wen; Yiping Xiao; Bao Hu (2024). DFI, AIS and urban–rural income disparity in different regions. [Dataset]. http://doi.org/10.1371/journal.pone.0303666.t009
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 27, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Changcun Wen; Yiping Xiao; Bao Hu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    DFI, AIS and urban–rural income disparity in different regions.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). U.S. wealth distribution Q1 2025 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
Organization logo

U.S. wealth distribution Q1 2025

Explore at:
24 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 18, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In the first quarter of 2025, almost two-thirds percent of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest 50 percent of earners only owned 2.5 percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2023, 7.4 percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States was the country with the most billionaires in the world in 2025. Elon Musk, with a net worth of 342 billion U.S. dollars, was among the richest people in the United States in 2025. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

Search
Clear search
Close search
Google apps
Main menu