100+ datasets found
  1. U.S. wealth distribution Q2 2024

    • statista.com
    • ai-chatbox.pro
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. wealth distribution Q2 2024 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
    Explore at:
    Dataset updated
    Oct 29, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the first quarter of 2024, almost two-thirds percent of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest 50 percent of earners only owned 2.5 percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2023, 7.4 percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States follows closely behind China as the country with the most billionaires in the world. Elon Musk alone held around 219 billion U.S. dollars in 2022. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

  2. U.S. Gini gap between rich and poor 2023, by state

    • statista.com
    • ai-chatbox.pro
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. Gini gap between rich and poor 2023, by state [Dataset]. https://www.statista.com/statistics/227249/greatest-gap-between-rich-and-poor-by-us-state/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    New York was the state with the greatest gap between rich and poor, with a Gini coefficient score of 0.52 in 2023. Although not a state, District of Columbia was among the highest Gini coefficients in the United States that year.

  3. a

    Income Disparity: Concentrations of Wealth and Poverty in the USA

    • hub.arcgis.com
    • chi-phi-nmcdc.opendata.arcgis.com
    Updated Apr 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Income Disparity: Concentrations of Wealth and Poverty in the USA [Dataset]. https://hub.arcgis.com/maps/1d4bab3a6ed74c17a2d99645ffdc931f
    Explore at:
    Dataset updated
    Apr 27, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    This map shows households within high ($200,000 or more) and low (less than $25,000) annual income ranges. This is shown as a percentage of total households. The data is attached to tract, county, and state centroids and shows:Percent of households making less than $25,000 annuallyPercent of households making $200,000 or more annuallyThe data shown is household income in the past 12 months. These are the American Community Survey (ACS) most current 5-year estimates: Table B19001. The data layer is updated annually, so this map always shows the most current values from the U.S. Census Bureau. To find the layer used in this map and see the full metadata, visit this Living Atlas item.These categories were constructed using an Arcade expression, which groups the lowest census income categories and normalizes them by total households.

  4. d

    Income Inequality

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Income Inequality [Dataset]. https://catalog.data.gov/dataset/income-inequality-d6ae1
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Public Health
    Description

    This table contains data on income inequality. The primary measure is the Gini index – a measure of the extent to which the distribution of income among families/households within a community deviates from a perfectly equal distribution. The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers. More information about the data table and a data dictionary can be found in the About/Attachments section.

  5. Income Inequality in U.S. Counties

    • hub.arcgis.com
    Updated Sep 29, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2015). Income Inequality in U.S. Counties [Dataset]. https://hub.arcgis.com/maps/b2db6f24618d4aad9885d2dd51024842
    Explore at:
    Dataset updated
    Sep 29, 2015
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    Income InequalityThe level of income inequality among households in a county can be measured using the Gini index. A Gini index varies between zero and one. A value of one indicates perfect inequality, where only one household in the county has any income. A value of zero indicates perfect equality, where all households in the county have equal income.The United States, as a country, has a Gini Index of 0.47 for this time period. For comparision in this map, the purple counties have greater income inequality, while orange counties have less inequality of incomes. For reference, Brazil has an index of 0.58 (relatively high inequality) and Denmark has an index of 0.24 (relatively low inequality).The 5-year Gini index for the U.S. was 0.4695 in 2007-2011 and 0.467 in 2006-2010. Appalachian Regional Commission, September 2013Data source: U.S. Census Bureau, 5-Year American Community Survey, 2006-2010 & 2007-2011

  6. U.S. quarterly wealth distribution 1989-2024, by income percentile

    • statista.com
    • ai-chatbox.pro
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, U.S. quarterly wealth distribution 1989-2024, by income percentile [Dataset]. https://www.statista.com/statistics/299460/distribution-of-wealth-in-the-united-states/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the third quarter of 2024, the top ten percent of earners in the United States held over ** percent of total wealth. This is fairly consistent with the second quarter of 2024. Comparatively, the wealth of the bottom ** percent of earners has been slowly increasing since the start of the *****, though remains low. Wealth distribution in the United States by generation can be found here.

  7. F

    Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles)...

    • fred.stlouisfed.org
    json
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBSTP1300
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) (WFRBSTP1300) from Q3 1989 to Q1 2025 about shares, net worth, wealth, percentile, Net, and USA.

  8. N

    United States annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). United States annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a53c92b0-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in United States. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In United States, the median income for all workers aged 15 years and older, regardless of work hours, was $48,138 for males and $32,546 for females.

    These income figures highlight a substantial gender-based income gap in United States. Women, regardless of work hours, earn 68 cents for each dollar earned by men. This significant gender pay gap, approximately 32%, underscores concerning gender-based income inequality in the country of United States.

    - Full-time workers, aged 15 years and older: In United States, among full-time, year-round workers aged 15 years and older, males earned a median income of $67,966, while females earned $54,999, leading to a 19% gender pay gap among full-time workers. This illustrates that women earn 81 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in United States.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States median household income by race. You can refer the same here

  9. F

    Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles)

    • fred.stlouisfed.org
    json
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBST01134
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) (WFRBST01134) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.

  10. U.S. household income Gini Index 1990-2023

    • statista.com
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. household income Gini Index 1990-2023 [Dataset]. https://www.statista.com/statistics/219643/gini-coefficient-for-us-individuals-families-and-households/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, according to the Gini coefficient, household income distribution in the United States was 0.47. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. The Gini coefficient helps to visualize income inequality in a more digestible way. For example, according to the Gini coefficient, the District of Columbia and the state of New York have the greatest amount of income inequality in the U.S. with a score of 0.51, and Utah has the greatest income equality with a score of 0.43. The Gini coefficient around the world The Gini coefficient is also an effective measure to help picture income inequality around the world. For example, in 2018 income inequality was highest in South Africa, while income inequality was lowest in Slovenia.

  11. o

    Data from: GEOWEALTH-US: Spatial wealth inequality data for the United...

    • openicpsr.org
    delimited
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joel Suss; Dylan Connor; Tom Kemeny (2023). GEOWEALTH-US: Spatial wealth inequality data for the United States, 1960-2020 [Dataset]. http://doi.org/10.3886/E192306V4
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Jun 23, 2023
    Dataset provided by
    London School of Economics
    University of Toronto
    Arizona State University
    Authors
    Joel Suss; Dylan Connor; Tom Kemeny
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1960 - 2020
    Area covered
    United States
    Description

    Wealth inequality has been sharply rising in the United States and across many other high-income countries. Due to a lack of data, we know little about how this trend has unfolded across locations within countries. Investigating this subnational geography of wealth is crucial, as from one generation to the next, wealth powerfully shapes opportunity and disadvantage across individuals and communities. Using machine-learning-based imputation to link newly assembled national historical surveys conducted by the U.S. Federal Reserve to population survey microdata, the data presented in this paper addresses this gap. The Geographic Wealth Inequality Database ("GEOWEALTH-US") provides the first estimates of the level and distribution of wealth at various geographical scales within the United States from 1960 to 2020. The GEOWEALTH-US database enables new lines investigation into the contribution of inter-regional wealth patterns to major societal challenges including wealth concentration, spatial income inequality, equality of opportunity, housing unaffordability, and political polarization.

  12. H

    Replication Code for "Income Inequality in the United States: Using Tax Data...

    • dataverse.harvard.edu
    Updated Nov 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gerald Auten; David Splinter (2023). Replication Code for "Income Inequality in the United States: Using Tax Data to Measure Long-Term Trends" [Dataset]. http://doi.org/10.7910/DVN/NZ8YIT
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 13, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Gerald Auten; David Splinter
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This is the replication code package for "Income Inequality in the United States: Using Tax Data to Measure Long-Term Trends," accepted in 2023 by the Journal of Political Economy.

  13. T

    Income Inequality in Westchester County, NY

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). Income Inequality in Westchester County, NY [Dataset]. https://tradingeconomics.com/united-states/income-inequality-in-westchester-county-ny-fed-data.html
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Mar 12, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Westchester County, New York
    Description

    Income Inequality in Westchester County, NY was 25.51079 Ratio in January of 2023, according to the United States Federal Reserve. Historically, Income Inequality in Westchester County, NY reached a record high of 25.51079 in January of 2023 and a record low of 21.21995 in January of 2010. Trading Economics provides the current actual value, an historical data chart and related indicators for Income Inequality in Westchester County, NY - last updated from the United States Federal Reserve on June of 2025.

  14. T

    Income Inequality in Broward County, FL

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Aug 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2018). Income Inequality in Broward County, FL [Dataset]. https://tradingeconomics.com/united-states/income-inequality-in-broward-county-fl-fed-data.html
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Aug 24, 2018
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Broward County, Florida
    Description

    Income Inequality in Broward County, FL was 17.32913 Ratio in January of 2023, according to the United States Federal Reserve. Historically, Income Inequality in Broward County, FL reached a record high of 17.32913 in January of 2023 and a record low of 14.78784 in January of 2010. Trading Economics provides the current actual value, an historical data chart and related indicators for Income Inequality in Broward County, FL - last updated from the United States Federal Reserve on June of 2025.

  15. H

    The Politics of Income Inequality in the United States

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Mar 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nathan J. Kelly (2018). The Politics of Income Inequality in the United States [Dataset]. http://doi.org/10.7910/DVN/HEBC6G
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 10, 2018
    Dataset provided by
    Harvard Dataverse
    Authors
    Nathan J. Kelly
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/HEBC6Ghttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/HEBC6G

    Time period covered
    1947 - 2000
    Area covered
    United States
    Description

    This file contains data needed to replicate all time series analyses from my book The Politics of Income Inequality in the United States.

  16. F

    GINI Index for the United States

    • fred.stlouisfed.org
    json
    Updated Jun 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). GINI Index for the United States [Dataset]. https://fred.stlouisfed.org/series/SIPOVGINIUSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 5, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for GINI Index for the United States (SIPOVGINIUSA) from 1963 to 2023 about gini, indexes, and USA.

  17. N

    Income Distribution by Quintile: Mean Household Income in United States //...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in United States // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/4845fa5d-f81d-11ef-a994-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in United States, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 16,840, while the mean income for the highest quintile (20% of households with the highest income) is 285,351. This indicates that the top earners earn 17 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 515,555, which is 180.67% higher compared to the highest quintile, and 3061.49% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States median household income. You can refer the same here

  18. Survey on the income gap between the poor and rich in the United States 2012...

    • statista.com
    Updated Aug 27, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2012). Survey on the income gap between the poor and rich in the United States 2012 [Dataset]. https://www.statista.com/statistics/241884/the-growing-gap-between-the-rich-and-poor-in-the-past-ten-years-in-the-united-states/
    Explore at:
    Dataset updated
    Aug 27, 2012
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This survey represents the thoughts of the U.S. population concerning the income gap between the rich and the poor in 2012. In 2012, 65 percent of the respondents thought that the income gap between the rich and the poor in the United States has gotten larger in the past ten years. The number of ultra high net worth individuals in each region worldwide can be accessed here.

  19. c

    Gender Wage Gap

    • data.ccrpc.org
    csv
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Gender Wage Gap [Dataset]. https://data.ccrpc.org/dataset/gender-wage-gap
    Explore at:
    csv(1958)Available download formats
    Dataset updated
    Oct 22, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The gender wage gap indicator compares the median earnings between male and female workers in Champaign County.

    Two worker populations are analyzed: all workers, including part-time and seasonal workers and those that were not employed for the full survey year; and full-time, year-round workers. The gender wage gap is included because it blends economics and equity, and illustrates that a major economic talking point on the national level is just as relevant at the local scale.

    For all four populations (male full-time, year-round workers; female full-time, year-round workers; all male workers; and all female workers), the estimated median earnings were higher in 2023 than in 2005. The greatest increase in a population’s estimated median earnings between 2005 and 2023 was for female full-time, year-round workers; the smallest increase between 2005 and 2023 was for all female workers. In both categories (all and full-time, year-round), the estimated median annual earnings for male workers was consistently higher than for female workers.

    The gender gap between the two estimates in 2023 was larger for full-time, year-round workers than all workers. For full-time, year-round workers, the difference was $11,863; for all workers, it was approaching $9,700.

    The Associated Press wrote this article in October 2024 about how Census Bureau data shows that in 2023 in the United States, the gender wage gap between men and women working full-time widened year-over-year for the first time in 20 years.

    Income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Earnings in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) by Sex by Work Experience in the Past 12 Months for the Population 16 Years and Over with Earnings in the Past 12 Months.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (20 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (21 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).

  20. F

    Income Inequality in Orleans County, NY

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Income Inequality in Orleans County, NY [Dataset]. https://fred.stlouisfed.org/series/2020RATIO036073
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Orleans County, New York
    Description

    Graph and download economic data for Income Inequality in Orleans County, NY (2020RATIO036073) from 2010 to 2023 about Orleans County, NY; Rochester; inequality; NY; income; and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). U.S. wealth distribution Q2 2024 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
Organization logo

U.S. wealth distribution Q2 2024

Explore at:
21 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Oct 29, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In the first quarter of 2024, almost two-thirds percent of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest 50 percent of earners only owned 2.5 percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2023, 7.4 percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States follows closely behind China as the country with the most billionaires in the world. Elon Musk alone held around 219 billion U.S. dollars in 2022. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

Search
Clear search
Close search
Google apps
Main menu