100+ datasets found
  1. Income of the richest 20 percent of the population in LAC 2024, by country

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Income of the richest 20 percent of the population in LAC 2024, by country [Dataset]. https://www.statista.com/statistics/1050681/latin-america-income-inequality-country/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Latin America
    Description

    In 2024, Colombia ranked first by percentage of income held by the richest 20 percent of the population among the 22 countries presented in the ranking. Colombia's percentage of income held amounted to 58.70 percent, while Brazil and Panama, the second and third countries, had records amounting to 56.60 percent and 53.50 percent, respectively.

  2. Gini coefficient income distribution inequality in Latin America 2023, by...

    • statista.com
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gini coefficient income distribution inequality in Latin America 2023, by country [Dataset]. https://www.statista.com/statistics/980285/income-distribution-gini-coefficient-latin-america-caribbean-country/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Americas, Latin America
    Description

    Based on the degree of inequality in income distribution measured by the Gini coefficient, Colombia was the most unequal country in Latin America as of 2022. Colombia's Gini coefficient amounted to 54.8. The Dominican Republic recorded the lowest Gini coefficient at 37, even below Uruguay and Chile, which are some of the countries with the highest human development indexes in Latin America. The Gini coefficient explained The Gini coefficient measures the deviation of the distribution of income among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality. This measurement reflects the degree of wealth inequality at a certain moment in time, though it may fail to capture how average levels of income improve or worsen over time. What affects the Gini coefficient in Latin America? Latin America, as other developing regions in the world, generally records high rates of inequality, with a Gini coefficient ranging between 37 and 55 points according to the latest available data from the reporting period 2010-2023. According to the Human Development Report, wealth redistribution by means of tax transfers improves Latin America's Gini coefficient to a lesser degree than it does in advanced economies. Wider access to education and health services, on the other hand, have been proven to have a greater direct effect in improving Gini coefficient measurements in the region.

  3. H

    Data from: The Standardized World Income Inequality Database, Versions 8-9

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Jun 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frederick Solt (2025). The Standardized World Income Inequality Database, Versions 8-9 [Dataset]. http://doi.org/10.7910/DVN/LM4OWF
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 22, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Frederick Solt
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    1960 - 2024
    Dataset funded by
    NSF
    Description

    Cross-national research on the causes and consequences of income inequality has been hindered by the limitations of the existing inequality datasets: greater coverage across countries and over time has been available from these sources only at the cost of significantly reduced comparability across observations. The goal of the Standardized World Income Inequality Database (SWIID) is to meet the needs of those engaged in broadly cross-national research by maximizing the comparability of income inequality data while maintaining the widest possible coverage across countries and over time. The SWIID’s income inequality estimates are based on thousands of reported Gini indices from hundreds of published sources, including the OECD Income Distribution Database, the Socio-Economic Database for Latin America and the Caribbean generated by CEDLAS and the World Bank, Eurostat, the World Bank’s PovcalNet, the UN Economic Commission for Latin America and the Caribbean, national statistical offices around the world, and academic studies while minimizing reliance on problematic assumptions by using as much information as possible from proximate years within the same country. The data collected and harmonized by the Luxembourg Income Study is employed as the standard. The SWIID currently incorporates comparable Gini indices of disposable and market income inequality for 199 countries for as many years as possible from 1960 to the present; it also includes information on absolute and relative redistribution.

  4. Gini index worldwide 2024, by country

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gini index worldwide 2024, by country [Dataset]. https://www.statista.com/forecasts/1171540/gini-index-by-country
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2024 - Dec 31, 2024
    Area covered
    Albania
    Description

    Comparing the *** selected regions regarding the gini index , South Africa is leading the ranking (**** points) and is followed by Namibia with **** points. At the other end of the spectrum is Slovakia with **** points, indicating a difference of *** points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from * (=total equality of incomes) to *** (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than *** countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).

  5. Global Income Inequality

    • kaggle.com
    zip
    Updated Sep 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    George Hany Fouad (2024). Global Income Inequality [Dataset]. https://www.kaggle.com/datasets/georgehanyfouad/global-income-inequality
    Explore at:
    zip(17988 bytes)Available download formats
    Dataset updated
    Sep 11, 2024
    Authors
    George Hany Fouad
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Global Income Inequality Dataset (2000–2023)

    Overview

    This dataset provides a comprehensive look at global income inequality from the year 2000 to 2023. It includes key indicators such as Gini index, average income, income distribution across different population percentiles, and income group classifications for 30 countries worldwide. The dataset offers insights into how income is distributed within nations and highlights disparities across different economic groups.

    Data Features

    • Country: The name of the country.
    • Year: The year of the data point (2000–2023).
    • Population: The estimated population for the given year.
    • Gini Index: A measure of income inequality, where 0 represents perfect equality and 1 represents maximum inequality.
    • Average Income (USD): The average income in USD for the country in the given year.
    • Top 10% Income Share (%): The percentage of total income held by the top 10% of the population.
    • Bottom 10% Income Share (%): The percentage of total income held by the bottom 10% of the population.
    • Income Group: Categorization of the country’s income group (Low Income, Lower Middle Income, Upper Middle Income, High Income).

    Potential Uses

    • Economic Analysis: Understand global income inequality trends and how they vary by country and region.
    • Predictive Modeling: Use the dataset to build machine learning models predicting future income inequality based on historical data.
    • Policy Research: Study the impact of income distribution on policy decisions and economic growth in different nations.
    • Visualization: Create heatmaps, time series charts, and more to visualize the income inequality across various countries and years.

    Source

    The data has been generated to simulate realistic income inequality patterns based on publicly available data on global economic trends.

  6. Gini Index - countries with the biggest inequality in income distribution...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Gini Index - countries with the biggest inequality in income distribution 2024 [Dataset]. https://www.statista.com/statistics/264627/ranking-of-the-20-countries-with-the-biggest-inequality-in-income-distribution/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    South Africa had the highest inequality in income distribution in 2024, with a Gini score of **. Its South African neighbor, Namibia, followed in second. The Gini coefficient measures the deviation of income (or consumption) distribution among individuals or households within a country from a perfectly equal distribution. A value of 0 represents absolute equality, and a value of 100 represents absolute inequality. All the 20 most unequal countries in the world were either located in Africa or Latin America & The Caribbean.

  7. Economic Indicators: GDP and Gini Index

    • kaggle.com
    zip
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shahriar Kabir (2024). Economic Indicators: GDP and Gini Index [Dataset]. https://www.kaggle.com/datasets/shahriarkabir/economic-indicators-gdp-and-gini-index/code
    Explore at:
    zip(2973 bytes)Available download formats
    Dataset updated
    Aug 30, 2024
    Authors
    Shahriar Kabir
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset captures key economic indicators for various countries, providing insights into their economic performance and income distribution. The data includes information on GDP per capita, Gini Index (a measure of income inequality), and the total Gross Domestic Product (GDP) for each country. This dataset can be utilized for comparative economic analysis, research on global inequality, and understanding economic trends across different regions.

    Columns Description:

    Region: The name of the country or region for which the data is recorded.

    GDP Per Capita: The average economic output per person, calculated as the Gross Domestic Product (GDP) divided by the population. It is expressed in USD.

    Gini Index: A measure of income inequality within a country, where 0 represents perfect equality and 1 indicates maximal inequality.

    Gross Domestic Product (GDP): The total monetary value of all goods and services produced within a country's borders in a specific time period, expressed in USD.

    This dataset can be used for analyzing global economic disparities, studying the relationship between GDP and income inequality, and conducting country-level comparisons of economic performance. It is valuable for economic research, policy-making, and academic studies focused on development and inequality.

  8. w

    Income Distribution Database

    • data360.worldbank.org
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Income Distribution Database [Dataset]. https://data360.worldbank.org/en/dataset/OECD_IDD
    Explore at:
    Dataset updated
    Apr 18, 2025
    Time period covered
    1974 - 2023
    Area covered
    Portugal, Croatia, Hungary, Luxembourg, Denmark, Iceland, Slovak Republic, Romania, Belgium, Lithuania
    Description

    The OECD Income Distribution database (IDD) has been developed to benchmark and monitor countries' performance in the field of income inequality and poverty. It contains a number of standardised indicators based on the central concept of "equivalised household disposable income", i.e. the total income received by the households less the current taxes and transfers they pay, adjusted for household size with an equivalence scale. While household income is only one of the factors shaping people's economic well-being, it is also the one for which comparable data for all OECD countries are most common. Income distribution has a long-standing tradition among household-level statistics, with regular data collections going back to the 1980s (and sometimes earlier) in many OECD countries.

    Achieving comparability in this field is a challenge, as national practices differ widely in terms of concepts, measures, and statistical sources. In order to maximise international comparability as well as inter-temporal consistency of data, the IDD data collection and compilation process is based on a common set of statistical conventions (e.g. on income concepts and components). The information obtained by the OECD through a network of national data providers, via a standardized questionnaire, is based on national sources that are deemed to be most representative for each country.

    Small changes in estimates between years should be treated with caution as they may not be statistically significant.

    Fore more details, please refer to: https://www.oecd.org/els/soc/IDD-Metadata.pdf and https://www.oecd.org/social/income-distribution-database.htm

  9. Inequality in Income Across the Globe

    • kaggle.com
    zip
    Updated Aug 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sourav Banerjee (2023). Inequality in Income Across the Globe [Dataset]. https://www.kaggle.com/datasets/iamsouravbanerjee/inequality-in-income-across-the-globe
    Explore at:
    zip(7663 bytes)Available download formats
    Dataset updated
    Aug 28, 2023
    Authors
    Sourav Banerjee
    Description

    Context

    Income inequality is a global issue reflecting the uneven distribution of wealth within and between countries. Developed nations exhibit varying income levels due to economic policies and labor dynamics, resulting in Gini coefficients of around 0.3 to 0.4. Conversely, developing nations often experience higher income disparities due to limited access to education, healthcare, and jobs, leading to Gini coefficients exceeding 0.4, exacerbating poverty cycles and social tensions. This inequality hampers economic growth, social cohesion, and upward mobility. Addressing it requires comprehensive policies, including progressive taxation and equitable resource distribution, to promote a more just and inclusive society.

    Content

    This dataset comprises historical information encompassing various indicators concerning Inequality in Income on a global scale. The dataset prominently features: ISO3, Country, Continent, Hemisphere, Human Development Groups, UNDP Developing Regions, HDI Rank (2021), and Inequality in Income from 2010 to 2021.

    Dataset Glossary (Column-wise)

    • ISO3 - ISO3 for the Country/Territory
    • Country - Name of the Country/Territory
    • Continent - Name of the Continent
    • Hemisphere - Name of the Hemisphere
    • Human Development Groups - Human Development Groups
    • UNDP Developing Regions - UNDP Developing Regions
    • HDI Rank (2021) - Human Development Index Rank for 2021
    • Inequality in Income from 2010 to 2021 - Inequality in Income from year 2010 to 2021

    Data Dictionary

    • UNDP Developing Regions:
      • SSA - Sub-Saharan Africa
      • LAC - Latin America and the Caribbean
      • EAP - East Asia and the Pacific
      • AS - Arab States
      • ECA - Europe and Central Asia
      • SA - South Asia

    Structure of the Dataset

    https://i.imgur.com/LIrXWPP.png" alt="">

    Acknowledgement

    This Dataset is created from Human Development Reports. This Dataset falls under the Creative Commons Attribution 3.0 IGO License. You can check the Terms of Use of this Data. If you want to learn more, visit the Website.

    Cover Photo by: Image by Image by pch.vector on Freepik

    Thumbnail by: Image by Salary icons created by Freepik - Flaticon

  10. w

    World Income Inequality Database

    • data.wu.ac.at
    xls
    Updated Oct 11, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global (2013). World Income Inequality Database [Dataset]. https://data.wu.ac.at/odso/datahub_io/NmE4MjM0MmEtMmE0MC00Y2RlLTlmMzktYjFhZTBmMTc1MWQz
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 11, 2013
    Dataset provided by
    Global
    Description

    The World Income Inequality Database (WIID) contains information on income inequality in various countries, and is maintained by the United Nations University-World Institute for Development Economics Research (UNU-WIDER). The database was originally compiled during 1997-99 for the research project Rising Income Inequality and Poverty Reduction, directed by Giovanni Andrea Corina. A revised and updated version of the database was published in June 2005 as part of the project Global Trends in Inequality and Poverty, directed by Tony Shorrocks and Guang Hua Wan. The database was revised in 2007 and a new version was launched in May 2008.

    The database contains data on inequality in the distribution of income in various countries. The central variable in the dataset is the Gini index, a measure of income distribution in a society. In addition, the dataset contains information on income shares by quintile or decile. The database contains data for 159 countries, including some historical entities. The temporal coverage varies substantially across countries. For some countries there is only one data entry; in other cases there are over 100 data points. The earliest entry is from 1867 (United Kingdom), the latest from 2003. The majority of the data (65%) cover the years from 1980 onwards. The 2008 update (version WIID2c) includes some major updates and quality improvements, in fact leading to a reduced number of variables in the new version. The new version has 334 new observations and several revisions/ corrections made in 2007 and 2008.

  11. GapMinder - Income Inequality

    • kaggle.com
    zip
    Updated Apr 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    psterk (2020). GapMinder - Income Inequality [Dataset]. https://www.kaggle.com/psterk/income-inequality
    Explore at:
    zip(151952 bytes)Available download formats
    Dataset updated
    Apr 11, 2020
    Authors
    psterk
    Description

    Content

    This analysis focuses on income inequailty as measured by the Gini Index* and its association with economic metrics such as GDP per capita, investments as a % of GDP, and tax revenue as a % of GDP. One polical metric, EIU democracy index, is also included.

    The data is for years 2006 - 2016

    This investigation can be considered a starting point for complex questions such as:

    1. Is a higher tax revenue as a % of GDP associated with less income inequality?
    2. Is a higher EIU democracy index associated with less income inequality?
    3. Is higher GDP per capita associated with less income inequality?
    4. Is higher investments as a % of GDP associated with less income inequality?

    This analysis uses the gapminder dataset from the Gapminder Foundation. The Gapminder Foundation is a non-profit venture registered in Stockholm, Sweden, that promotes sustainable global development and achievement of the United Nations Millennium Development Goals by increased use and understanding of statistics and other information about social, economic and environmental development at local, national and global levels.

    *The Gini Index is a measure of statistical dispersion intended to represent the income or wealth distribution of a nation's residents, and is the most commonly used measurement of inequality. It was developed by the Italian statistician and sociologist Corrado Gini and published in his 1912 paper Variability and Mutability.

    The dataset contains data from the following GapMinder datasets:

    EIU Democracy Index:

    "This democracy index is using the data from the Economist Inteligence Unit to express the quality of democracies as a number between 0 and 100. It's based on 60 different aspects of societies that are relevant to democracy universal suffrage for all adults, voter participation, perception of human rights protection and freedom to form organizations and parties. The democracy index is calculated from the 60 indicators, divided into five ""sub indexes"", which are:

    1. Electoral pluralism index;
    2. Government index;
    3. Political participation indexm;
    4. Political culture index;
    5. Civil liberty index.

    The sub-indexes are based on the sum of scores on roughly 12 indicators per sub-index, converted into a score between 0 and 100. (The Economist publishes the index with a scale from 0 to 10, but Gapminder has converted it to 0 to 100 to make it easier to communicate as a percentage.)" https://docs.google.com/spreadsheets/d/1d0noZrwAWxNBTDSfDgG06_aLGWUz4R6fgDhRaUZbDzE/edit#gid=935776888

    Income: GDP per capita, constant PPP dollars

    GDP per capita measures the value of everything produced in a country during a year, divided by the number of people. The unit is in international dollars, fixed 2011 prices. The data is adjusted for inflation and differences in the cost of living between countries, so-called PPP dollars. The end of the time series, between 1990 and 2016, uses the latest GDP per capita data from the World Bank, from their World Development Indicators. To go back in time before the World Bank series starts in 1990, we have used several sources, such as Angus Maddison. https://www.gapminder.org/data/documentation/gd001/

    Investments (% of GDP)

    Capital formation is a term used to describe the net capital accumulation during an accounting period for a particular country. The term refers to additions of capital goods, such as equipment, tools, transportation assets, and electricity. Countries need capital goods to replace the older ones that are used to produce goods and services. If a country cannot replace capital goods as they reach the end of their useful lives, production declines. Generally, the higher the capital formation of an economy, the faster an economy can grow its aggregate income.

    Tax revenue (% of GDP)

    refers to compulsory transfers to the central governement for public purposes. Does not include social security. https://data.worldbank.org/indicator/GC.TAX.TOTL.GD.ZS

    Context

    Gapminder is an independent Swedish foundation with no political, religious or economic affiliations. Gapminder is a fact tank, not a think tank. Gapminder fights devastating misconceptions about global development. Gapminder produces free teaching resources making the world understandable based on reliable statistics. Gapminder promotes a fact-based worldview everyone can understand. Gapminder collaborates with universities, UN, public agencies and non-governmental organizations. All Gapminder activities are governed by the board. We do not award grants. Gapminder Foundation is registered at Stockholm County Administration Board. Our constitution can be found here.

    Acknowledgements

    Thanks to gapminder.org for organizing the above datasets.

    Inspiration

    Below are some research questions associated with the data and some ...

  12. Gini index: inequality of income distribution in China 2005-2023

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Gini index: inequality of income distribution in China 2005-2023 [Dataset]. https://www.statista.com/statistics/250400/inequality-of-income-distribution-in-china-based-on-the-gini-index/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    This statistic shows the inequality of income distribution in China from 2005 to 2023 based on the Gini Index. In 2023, China reached a score of ************ points. The Gini Index is a statistical measure that is used to represent unequal distributions, e.g. income distribution. It can take any value between 1 and 100 points (or 0 and 1). The closer the value is to 100 the greater is the inequality. 40 or 0.4 is the warning level set by the United Nations. The Gini Index for South Korea had ranged at about **** in 2022. Income distribution in China The Gini coefficient is used to measure the income inequality of a country. The United States, the World Bank, the US Central Intelligence Agency, and the Organization for Economic Co-operation and Development all provide their own measurement of the Gini coefficient, varying in data collection and survey methods. According to the United Nations Development Programme, countries with the largest income inequality based on the Gini index are mainly located in Africa and Latin America, with South Africa displaying the world's highest value in 2022. The world's most equal countries, on the contrary, are situated mostly in Europe. The United States' Gini for household income has increased by around ten percent since 1990, to **** in 2023. Development of inequality in China Growing inequality counts as one of the biggest social, economic, and political challenges to many countries, especially emerging markets. Over the last 20 years, China has become one of the world's largest economies. As parts of the society have become more and more affluent, the country's Gini coefficient has also grown sharply over the last decades. As shown by the graph at hand, China's Gini coefficient ranged at a level higher than the warning line for increasing risk of social unrest over the last decade. However, the situation has slightly improved since 2008, when the Gini coefficient had reached the highest value of recent times.

  13. Gini Index

    • resourcewatch.org
    Updated Apr 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2018). Gini Index [Dataset]. https://resourcewatch.org/data/explore/GINI-Index
    Explore at:
    Dataset updated
    Apr 24, 2018
    Dataset authored and provided by
    World Bank Grouphttp://www.worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Global
    Description

    The Gini index measures economic inequality in a country. Specifically, it is the extent to which the distribution of income (or, in some cases, consumption expenditure) deviates from a perfectly equal distribution among individuals or households within an economy.

  14. F

    Income Inequality in Switzerland County, IN

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Income Inequality in Switzerland County, IN [Dataset]. https://fred.stlouisfed.org/series/2020RATIO018155
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Switzerland County
    Description

    Graph and download economic data for Income Inequality in Switzerland County, IN (2020RATIO018155) from 2010 to 2023 about Switzerland County, IN; inequality; IN; income; and USA.

  15. Gini coefficient of equivalised disposable income by age

    • ec.europa.eu
    Updated May 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Commission (2025). Gini coefficient of equivalised disposable income by age [Dataset]. https://ec.europa.eu/eurostat/databrowser/view/tessi190/default/table
    Explore at:
    Dataset updated
    May 19, 2025
    Dataset authored and provided by
    European Commissionhttp://ec.europa.eu/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The European Union Statistics on Income and Living Conditions (EU-SILC) collects timely and comparable multidimensional microdata on income, poverty, social exclusion and living conditions.

    The EU-SILC collection is a key instrument for providing information required by the European Semester ([1]) and the European Pillar of Social Rights, and the main source of data for microsimulation purposes and flash estimates of income distribution and poverty rates.

    AROPE remains crucial to monitor European social policies, especially to monitor the EU 2030 target on poverty and social exclusion. For more information, please consult EU social indicators.

    The EU-SILC instrument provides two types of data:

    • Cross-sectional data pertaining to a given time or a certain time period with variables on income, poverty, social exclusion and other living conditions.
    • Longitudinal data pertaining to individual-level changes over time, observed periodically over four‐or more year rotation scheme (Annex III (2) of 2019/1700).

    EU-SILC collects:

    • annual variables,
    • three-yearly modules,
    • six-yearly modules,
    • ad-hoc new policy needs modules,
    • optional variables.

    The variables collected are grouped by topic and detailed topic and transmitted to Eurostat in four main files (D-File, H-File, R-File and P-file).

    The domain ‘Income and Living Conditions’ covers the following topics: persons at risk of poverty or social exclusion, income inequality, income distribution and monetary poverty, living conditions, material deprivation, and EU-SILC ad-hoc modules, which are structured into collections of indicators on specific topics.

    In 2023, in addition to annual data, in EU-SILC were collected: the three yearly module on labour market and housing, the six yearly module on intergenerational transmission of advantages and disadvantages, housing difficulties, and the ad hoc subject on households energy efficiency.

    Starting from 2021 onwards, the EU quality reports use the structure of the Single Integrated Metadata Structure (SIMS).

    ([1]) The European Semester is the European Union’s framework for the coordination and surveillance of economic and social policies.

  16. Income distribution

    • ec.europa.eu
    • opendata.marche.camcom.it
    • +1more
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Income distribution [Dataset]. http://doi.org/10.2908/SDG_10_41
    Explore at:
    tsv, application/vnd.sdmx.data+xml;version=3.0.0, json, application/vnd.sdmx.data+csv;version=2.0.0, application/vnd.sdmx.data+csv;version=1.0.0, application/vnd.sdmx.genericdata+xml;version=2.1Available download formats
    Dataset updated
    Nov 14, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2003 - 2024
    Area covered
    Norway, Latvia, Montenegro, Poland, European Union, United Kingdom, Greece, North Macedonia, Hungary, Croatia
    Description

    The indicator is a measure of the inequality of income distribution. It is calculated as the ratio of total income received by the 20 % of the population with the highest income (the top quintile) to that received by the 20 % of the population with the lowest income (the bottom quintile).

  17. F

    Income Gini Ratio for Households by Race of Householder, All Races

    • fred.stlouisfed.org
    json
    Updated Sep 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Income Gini Ratio for Households by Race of Householder, All Races [Dataset]. https://fred.stlouisfed.org/series/GINIALLRH
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 9, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Income Gini Ratio for Households by Race of Householder, All Races (GINIALLRH) from 1967 to 2024 about gini, households, income, and USA.

  18. B

    Belarus BY: Gini Coefficient (GINI Index): World Bank Estimate

    • ceicdata.com
    Updated Mar 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). Belarus BY: Gini Coefficient (GINI Index): World Bank Estimate [Dataset]. https://www.ceicdata.com/en/belarus/social-poverty-and-inequality/by-gini-coefficient-gini-index-world-bank-estimate
    Explore at:
    Dataset updated
    Mar 15, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    Belarus
    Description

    Belarus BY: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 24.400 % in 2020. This records a decrease from the previous number of 25.300 % for 2019. Belarus BY: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 27.600 % from Dec 1998 (Median) to 2020, with 23 observations. The data reached an all-time high of 32.000 % in 1998 and a record low of 24.400 % in 2020. Belarus BY: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Belarus – Table BY.World Bank.WDI: Social: Poverty and Inequality. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  19. U.S. household income Gini Index 1990-2024

    • statista.com
    Updated Nov 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. household income Gini Index 1990-2024 [Dataset]. https://www.statista.com/statistics/219643/gini-coefficient-for-us-individuals-families-and-households/
    Explore at:
    Dataset updated
    Nov 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, the Gini coefficient of household income distribution in the United States was 0.49. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. Within the United States, the District of Columbia and the state of New York had the largest income gap between earners by Gini Index of about 0.52. Utah, on the other hand, had the greatest income equality with a score of 0.42. The Gini coefficient around the world The Gini coefficient is also an effective measure of income inequality around the world. In 2024, income inequality was highest in South Africa. Slovakia and Slovenia were on the other end of the scale, with high levels of income equality.

  20. Gini coefficient of equivalised disposable income

    • ec.europa.eu
    • db.nomics.world
    • +1more
    Updated May 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Gini coefficient of equivalised disposable income [Dataset]. http://doi.org/10.2908/TESSI190
    Explore at:
    application/vnd.sdmx.data+csv;version=2.0.0, tsv, application/vnd.sdmx.data+csv;version=1.0.0, json, application/vnd.sdmx.genericdata+xml;version=2.1, application/vnd.sdmx.data+xml;version=3.0.0Available download formats
    Dataset updated
    May 19, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2014 - 2024
    Area covered
    North Macedonia, Bulgaria, Euro area - 19 countries (2015-2022), Montenegro, United Kingdom, Finland, Portugal, Estonia, France, Italy
    Description

    The Gini coefficient is defined as the relationship of cumulative shares of the population arranged according to the level of equivalised disposable income, to the cumulative share of the equivalised total disposable income received by them.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Income of the richest 20 percent of the population in LAC 2024, by country [Dataset]. https://www.statista.com/statistics/1050681/latin-america-income-inequality-country/
Organization logo

Income of the richest 20 percent of the population in LAC 2024, by country

Explore at:
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
Latin America
Description

In 2024, Colombia ranked first by percentage of income held by the richest 20 percent of the population among the 22 countries presented in the ranking. Colombia's percentage of income held amounted to 58.70 percent, while Brazil and Panama, the second and third countries, had records amounting to 56.60 percent and 53.50 percent, respectively.

Search
Clear search
Close search
Google apps
Main menu