69 datasets found
  1. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  2. Data from: Cost of Living in the United States, 1917-1919

    • icpsr.umich.edu
    ascii, sas, spss
    Updated Feb 16, 1992
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Labor. Bureau of Labor Statistics (1992). Cost of Living in the United States, 1917-1919 [Dataset]. http://doi.org/10.3886/ICPSR08299.v5
    Explore at:
    ascii, sas, spssAvailable download formats
    Dataset updated
    Feb 16, 1992
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Labor. Bureau of Labor Statistics
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/8299/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8299/terms

    Time period covered
    1917 - 1919
    Area covered
    United States
    Description

    This collection contains data obtained from families of wage earners or salaried workers in industrial locales scattered throughout the United States. The purpose of the survey was to estimate the cost of living of a "typical" American family. The completed questionnaires contain information about income sources and family expenditures including specific quantities and costs of food, housing, clothing, fuel, furniture, and miscellaneous household items for the calendar year. Demographic characteristics recorded for each household member include relationship to head, age, sex, occupation, weeks spent in the household and employed, wage rate, and total earnings.

  3. Living Cost Citywise India

    • kaggle.com
    zip
    Updated Nov 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivanshu Pande (2025). Living Cost Citywise India [Dataset]. https://www.kaggle.com/datasets/shivanshupande/living-cost-citywise-india
    Explore at:
    zip(3922 bytes)Available download formats
    Dataset updated
    Nov 13, 2025
    Authors
    Shivanshu Pande
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    About This Dataset

    This dataset is the original 70-city version used in my first published research paper: “A Data-Driven Survey on Cost of Living and Salary Affordability in Indian Cities” (IJRASET, 2025) Link: https://www.ijraset.com/best-journal/a-datadriven-survey-on-cost-of-livingsalary-affordability-in-indian-cities

    It was created using web-scraping techniques from LivingCost.org and converted to INR using a consistent USD→INR exchange rate. This dataset forms the foundational base for affordability analysis, exploratory data analysis (EDA), and benchmarking cost-of-living patterns across India.

    The dataset includes 70+ Indian cities, with fields covering living cost, rent, salary, affordability ratio (“months covered”), and derived financial indicators. It is clean, structured, and suitable for beginner to intermediate analytics projects.

    Why This Dataset?

    This dataset is ideal for:

    EDA practice for college & school projects

    Correlation and regression analysis

    Basic ML tasks (predicting salary, affordability, rent, etc.)

    Urban economics mini-projects

    Dashboard creation (PowerBI, Tableau)

    Data cleaning and preprocessing assignments

    It is designed to be simple enough for students but structured enough for real-world analysis.

    Features Included

    Each row represents a city/state-level affordability profile with:

    Cost of living (USD & INR)

    Rent for a single person (USD & INR)

    Monthly after-tax salary (USD & INR)

    Income after rent

    “Months Covered” affordability ratio

    Source URLs for verification

    Exchange rate used

    This makes the dataset both transparent and reliable for academic usage.

    Data Quality

    Web-scraped directly from LivingCost.org

    Cleaned and standardized

    Currency converted uniformly

    Non-city entries flagged

    Fully reproducible from the source

    This dataset served as the master input for my peer-reviewed paper and has been validated through statistical analysis.

    Intended Audience

    Students (school, undergraduate, postgraduate)

    Data science beginners

    Educators needing real datasets for teaching

    Analysts looking for quick EDA practice

    Researchers exploring affordability or urban economics

    Note

    A more comprehensive 200+ city enhanced dataset (used in my second paper) will be uploaded soon, including ICT metrics, GDP, and extended affordability indicators.

  4. U.S. consumer price index: medical professional and hospital services...

    • statista.com
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). U.S. consumer price index: medical professional and hospital services 1970-2025 [Dataset]. https://www.statista.com/topics/768/cost-of-living/
    Explore at:
    Dataset updated
    Mar 13, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    In 2025, the Consumer Price Index (CPI) for medical professional services in the United States was at 432.46, compared to the period from 1982 to 1984 (=100). The CPI for hospital services was at 1,102.12.

  5. Housing cost overburden rate by income quintile - EU-SILC survey

    • ec.europa.eu
    • db.nomics.world
    • +2more
    Updated Oct 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Housing cost overburden rate by income quintile - EU-SILC survey [Dataset]. http://doi.org/10.2908/TESSI162
    Explore at:
    application/vnd.sdmx.data+csv;version=2.0.0, application/vnd.sdmx.genericdata+xml;version=2.1, tsv, application/vnd.sdmx.data+xml;version=3.0.0, json, application/vnd.sdmx.data+csv;version=1.0.0Available download formats
    Dataset updated
    Oct 10, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2013 - 2024
    Area covered
    Poland, Lithuania, Euro area – 20 countries (from 2023), Estonia, Netherlands, Switzerland, Portugal, Türkiye, Bulgaria, Germany
    Description

    This indicator is defined as the percentage of the population living in a household where the total housing costs (net of housing allowances) represent more than 40% of the total disposable household income (net of housing allowances) presented by income quintile.

  6. US Cost of Living Dataset (1877 Counties)

    • kaggle.com
    zip
    Updated Feb 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    asaniczka (2024). US Cost of Living Dataset (1877 Counties) [Dataset]. https://www.kaggle.com/datasets/asaniczka/us-cost-of-living-dataset-3171-counties
    Explore at:
    zip(1282159 bytes)Available download formats
    Dataset updated
    Feb 17, 2024
    Authors
    asaniczka
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    The US Family Budget Dataset provides insights into the cost of living in different US counties based on the Family Budget Calculator by the Economic Policy Institute (EPI).

    This dataset offers community-specific estimates for ten family types, including one or two adults with zero to four children, in all 1877 counties and metro areas across the United States.

    Interesting Task Ideas:

    1. See how family budgets compare to the federal poverty line and the Supplemental Poverty Measure in different counties.
    2. Look into the money challenges faced by different types of families using the budgets provided.
    3. Find out which counties have the most affordable places to live, food, transportation, healthcare, childcare, and other things people need.
    4. Explore how the average income of families relates to the overall cost of living in different counties.
    5. Investigate how family size affects the estimated budget and find counties where bigger families have higher costs.
    6. Create visuals showing how the cost of living varies across different states and big cities.
    7. Check whether specific counties are affordable for families of different sizes and types.
    8. Use the dataset to compare living standards and economic security in different US counties.

    If you find this dataset valuable, don't forget to hit the upvote button! 😊💝

    Checkout my other datasets

    Employment-to-Population Ratio for USA

    Productivity and Hourly Compensation

    130K Kindle Books

    900K TMDb Movies

    USA Unemployment Rates by Demographics & Race

    Photo by Alev Takil on Unsplash

  7. C

    Housing Affordability

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Housing Affordability [Dataset]. https://data.ccrpc.org/dataset/housing-affordability
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]

    How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.

    The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.

    Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.

    Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.

    [1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.

    [2] Ibid.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  8. Consumer Sentiment Index in the U.S. 2012-2025

    • statista.com
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Consumer Sentiment Index in the U.S. 2012-2025 [Dataset]. https://www.statista.com/topics/768/cost-of-living/
    Explore at:
    Dataset updated
    Mar 13, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The Consumer Sentiment Index in the United States stood at 51 in November 2025. This reflected a drop of 2.6 point from the previous survey. Furthermore, this was its lowest level measured since June 2022. The index is normalized to a value of 100 in December 1964 and based on a monthly survey of consumers, conducted in the continental United States. It consists of about 50 core questions which cover consumers' assessments of their personal financial situation, their buying attitudes and overall economic conditions.

  9. House price to income ratio in Europe 2024, by country

    • statista.com
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House price to income ratio in Europe 2024, by country [Dataset]. https://www.statista.com/statistics/1106669/house-price-to-income-ratio-europe/
    Explore at:
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    The house price to income index in Europe declined in 13 of the 28 European countries in 2024, indicating that income grew faster than house prices. Portugal had the highest house price to income index ranking, with values exceeding ***** index points. Romania and Finland were on the other side of the spectrum, with less than 100 index points. The house price to income ratio is an indicator for the development of housing affordability across OECD countries and is calculated as the nominal house prices divided by nominal disposable income per head, with 2015 chosen as a base year. A ratio higher than 100 means that the nominal house price growth since 2015 has outpaced the nominal disposable income growth, and housing is therefore comparatively less affordable. In 2024, the OECD average stood at ***** index points.

  10. Shelter-cost-to-income ratio by tenure: Canada, provinces and territories,...

    • www150.statcan.gc.ca
    • datasets.ai
    • +1more
    Updated Sep 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2022). Shelter-cost-to-income ratio by tenure: Canada, provinces and territories, census metropolitan areas and census agglomerations [Dataset]. http://doi.org/10.25318/9810025201-eng
    Explore at:
    Dataset updated
    Sep 23, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Shelter-cost-to-income ratio by tenure for Canada, provinces and territories, census metropolitan areas and census agglomerations. Includes household total income groups, household type including census family structure, housing suitability and dwelling condition.

  11. Living Cost Citywise India (MasterDataset)

    • kaggle.com
    zip
    Updated Nov 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivanshu Pande (2025). Living Cost Citywise India (MasterDataset) [Dataset]. https://www.kaggle.com/datasets/shivanshupande/living-cost-citywise-india-masterdataset
    Explore at:
    zip(12037 bytes)Available download formats
    Dataset updated
    Nov 22, 2025
    Authors
    Shivanshu Pande
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Dataset Description: Indian Urban Affordability and Economic Productivity (221 Cities) About the Dataset

    This dataset represents the comprehensive 221-city version developed and utilized in the research paper “Predicting Urban Affordability and Economic Productivity in India: A Data-Driven KNN and Random Forest Framework with Insights from Selected Major Cities.”

    It builds upon the author’s earlier 70-city affordability dataset and significantly expands its scope.

    The dataset provides a unified framework to study how urban affordability, digital readiness, and GDP specialization jointly influence economic livability and productivity across different city tiers.

    Data Provenance and Construction

    Primary Source: Extended web-scraped affordability data originally compiled from LivingCost.org and other verified open-data platforms.

    Cleaning & Standardization: City names normalized (e.g., “Bengaluru” → “Bangalore”), and all numeric fields standardized to INR using a consistent USD→INR conversion rate for comparability.

    Features Included

    Each record (row) corresponds to one city and contains the following metrics:

    Cost of Living (INR)

    Monthly Rent (INR)

    Monthly After-Tax Salary (INR)

    Income After Rent (INR)

    Affordability Ratio (“Months Covered”)

    Intended Applications

    This dataset can be used for:

    🧮 Cross-city affordability and livability analysis

    🤖 Machine Learning model development (affordability or salary prediction)

    🌆 Urban economics and policy simulation studies

    📈 Correlation and regression-based research in ICT and GDP domains

    📊 Dashboard and visualization projects (Power BI, Tableau, SAP SAC, etc.)

    It is designed for use by researchers, policymakers, educators, and data analysts seeking a reliable, structured, and multi-domain dataset on Indian urban dynamics.

    Data Quality and Transparency

    ✅ Uniform currency and value scaling

    ✅ Reproducible preprocessing (Python-based pipelines with Scikit-Learn)

    ✅ Missing values imputed using KNN-based methodology

    ✅ Verified against baseline datasets used in prior research

    ✅ Released under Creative Commons Attribution 4.0 International (CC BY 4.0) license

    Significance

    This dataset forms the empirical backbone of the author’s second research paper, providing the quantitative base for the KNN baseline model and the Random Forest multi-output regressor used to predict salary and affordability across Indian cities.

    It enables city-level insight generation for policymakers and supports reproducible, data-driven research in urban economics, digital inclusion, and sustainable development.

    Future Extensions

    An upcoming enhancement will include:

    Complete AQI integration for all 221 cities to examine the affordability–environment linkage.

    Time-series extension for multi-year trend analysis.

    Inclusion of healthcare, safety, and green infrastructure indicators for a broader livability framework.

    A additional file used in my paper on T30 cities of India with justification is also attached.

  12. Housing cost overburden rate by household type - EU-SILC survey

    • ec.europa.eu
    • opendata.marche.camcom.it
    • +1more
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Housing cost overburden rate by household type - EU-SILC survey [Dataset]. http://doi.org/10.2908/TESSI166
    Explore at:
    application/vnd.sdmx.genericdata+xml;version=2.1, application/vnd.sdmx.data+csv;version=2.0.0, application/vnd.sdmx.data+csv;version=1.0.0, application/vnd.sdmx.data+xml;version=3.0.0, json, tsvAvailable download formats
    Dataset updated
    Nov 14, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2013 - 2024
    Area covered
    Luxembourg, Denmark, Montenegro, Latvia, Netherlands, Lithuania, Bulgaria, European Union, European Union, European Union
    Description

    This indicator is defined as the percentage of the population living in a household where the total housing costs (net of housing allowances) represent more than 40% of the total disposable household income (net of housing allowances) presented by household type.

  13. U.S. median household income 1990-2024

    • statista.com
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. median household income 1990-2024 [Dataset]. https://www.statista.com/statistics/200838/median-household-income-in-the-united-states/
    Explore at:
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, the median household income in the United States was 83,730 U.S. dollars. This reflected an increase from the previous year. Household income The median household income depicts the income of households, including the income of the householder and all other individuals aged 15 years or over living in the household. Income includes wages and salaries, unemployment insurance, disability payments, child support payments received, regular rental receipts, as well as any personal business, investment, or other kinds of income received routinely. The median household income in the United States varied from state to state. In 2024, Massachusetts recorded the highest median household income in the country, at 113,900 U.S. dollars. On the other hand, Mississippi, recorded the lowest, at 55,980 U.S. dollars.Household income is also used to determine the poverty rate in the United States. In 2024, 10.6 percent of the U.S. population was living below the national poverty line. This was the lowest level since 2019. Similarly, the child poverty rate, which represents people under the age of 18 living in poverty, reached a three-decade low of 14.3 percent of the children. The state with the widest gap between the rich and the poor was New York, with a Gini coefficient score of 0.52 in 2024. The Gini coefficient is calculated by looking at average income rates. A score of zero would reflect perfect income equality, while a score of one indicates complete inequality.

  14. Housing cost overburden rate by degree of urbanisation - EU-SILC survey

    • ec.europa.eu
    • db.nomics.world
    • +2more
    Updated Oct 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Housing cost overburden rate by degree of urbanisation - EU-SILC survey [Dataset]. http://doi.org/10.2908/TESSI165
    Explore at:
    application/vnd.sdmx.genericdata+xml;version=2.1, tsv, application/vnd.sdmx.data+csv;version=1.0.0, application/vnd.sdmx.data+xml;version=3.0.0, json, application/vnd.sdmx.data+csv;version=2.0.0Available download formats
    Dataset updated
    Oct 10, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2013 - 2024
    Area covered
    Iceland, Germany, Latvia, Euro area - 19 countries (2015-2022), Cyprus, Hungary, Euro area – 20 countries (from 2023), Sweden, Denmark, Switzerland
    Description

    This indicator is defined as the percentage of the population living in a household where the total housing costs (net of housing allowances) represent more than 40% of the total disposable household income (net of housing allowances) presented by degree of urbanisation.

  15. Housing cost overburden rate

    • data.europa.eu
    • db.nomics.world
    • +2more
    csv, html, tsv, xml
    Updated Dec 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2024). Housing cost overburden rate [Dataset]. https://data.europa.eu/data/datasets/o8o5zdalo7wogo78gooqsw?locale=en
    Explore at:
    csv(2654), xml(9198), tsv(1129), xml(2563), htmlAvailable download formats
    Dataset updated
    Dec 30, 2024
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Percentage of the population living in a household where total housing costs (net of housing allowances) represent more than 40% of the total disposable household income (net of housing allowances).

  16. n

    Data from: Country Rankings

    • n26.com
    Updated Nov 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Country Rankings [Dataset]. https://n26.com/en-de/liveability-index
    Explore at:
    Dataset updated
    Nov 6, 2023
    Description

    Table showing the country rankings based in the different metrics analysed

  17. Number of persons by shelter-cost-to-income ratio, tenure and First Nations...

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Number of persons by shelter-cost-to-income ratio, tenure and First Nations people living off reserve, Métis and Inuit [Dataset]. http://doi.org/10.25318/4110007001-eng
    Explore at:
    Dataset updated
    Aug 14, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of persons by shelter-cost-to-income ratio, tenure, First Nations people living off reserve, Métis and Inuit and gender, Canada, provinces and territories.

  18. g

    Percentage of owner households spending 30% or more income on shelter costs...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Percentage of owner households spending 30% or more income on shelter costs by census subdivision, 2016 | gimi9.com [Dataset]. https://gimi9.com/dataset/ca_3011104c-05d9-4f77-bf55-b04be3b089dd/
    Explore at:
    Description

    This service shows the proportion of average total income of households which is spent on shelter costs by census subdivision. The data is from the Census Profile, Statistics Canada Catalogue no. 98-316-X2016001. Shelter-cost-to-income ratio is calculated for private households living in owned or rented dwellings who reported a total household income greater than zero. Private households living in band housing, located on an agricultural operation that is operated by a member of the household, and households who reported a zero or negative total household income are excluded. The relatively high shelter-costs-to-household income ratios for some households may have resulted from the difference in the reference period for shelter costs and household total income data. The reference period for shelter cost data is 2016, while household total income is reported for the year 2015. As well, for some households, the 2015 household total income may represent income for only part of a year. For additional information refer to the 2016 Census Dictionary for 'Total income' and 'Shelter cost'. To have a cartographic representation of the ecumene with this socio-economic indicator, it is recommended to add as the first layer, the “NRCan - 2016 population ecumene by census subdivision” web service, accessible in the data resources section below.

  19. w

    Ratio of House Prices to Earnings, Borough

    • data.wu.ac.at
    xls
    Updated Sep 26, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    London Datastore Archive (2015). Ratio of House Prices to Earnings, Borough [Dataset]. https://data.wu.ac.at/schema/datahub_io/Y2U0Y2MzMjItYTU1MS00YTJjLTkxMDYtMDcwZWMwYzFhMzFk
    Explore at:
    xls(69632.0)Available download formats
    Dataset updated
    Sep 26, 2015
    Dataset provided by
    London Datastore Archive
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    This table shows the average House Price/Earnings ratio, which is an important indicator of housing affordability. Ratios are calculated by dividing house price by the median earnings of a borough.

    The Annual Survey of Hours and Earnings (ASHE) is based on a 1 per cent sample of employee jobs. Information on earnings and hours is obtained in confidence from employers. It does not cover the self-employed nor does it cover employees not paid during the reference period. Information is as at April each year. The statistics used are workplace based full-time individual earnings.

    Land Registry housing data are for the first half of the year only, so that they comparable to the ASHE data which are as at April.
    Prior to 2006 data are not available for Inner and Outer London.

    The lowest 25 per cent of prices are below the lower quartile; the highest 75 per cent are above the lower quartile.
    The "lower quartile" property price/income is determined by ranking all property prices/incomes in ascending order.
    The 'median' property price/income is determined by ranking all property prices/incomes in ascending order. The point at which one half of the values are above and one half are below is the median.

    Regional data has not been published by DCLG since 2012. Data for regions has been calculated by the GLA. Data for 2014 has been calculated by the GLA.

    Link to DCLG Live Tables

  20. Housing cost overburden rate by age group - EU-SILC survey

    • ec.europa.eu
    • db.nomics.world
    Updated Oct 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Housing cost overburden rate by age group - EU-SILC survey [Dataset]. http://doi.org/10.2908/TESSI161
    Explore at:
    application/vnd.sdmx.genericdata+xml;version=2.1, application/vnd.sdmx.data+csv;version=2.0.0, application/vnd.sdmx.data+xml;version=3.0.0, application/vnd.sdmx.data+csv;version=1.0.0, json, tsvAvailable download formats
    Dataset updated
    Oct 10, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2013 - 2024
    Area covered
    France, Greece, Bulgaria, Czechia, Spain, Hungary, Sweden, European Union, Switzerland, North Macedonia
    Description

    This indicator is defined as the percentage of the population living in a household where the total housing costs (net of housing allowances) represent more than 40% of the total disposable household income (net of housing allowances) presented by age groups.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
Organization logo

House-price-to-income ratio in selected countries worldwide 2024

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 29, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
Worldwide
Description

Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

Search
Clear search
Close search
Google apps
Main menu