Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Affordability ratios calculated by dividing house prices by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.
Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.
The Global Housing Watch tracks developments in housing markets across the world on a quarterly basis. It provides current data on house prices as well as metrics used to assess valuation in housing markets, such as house price‑to‑rent and house-price‑to‑income ratios.
This collection includes only a subset of indicators from the source dataset.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Affordability ratios calculated by dividing house prices by gross annual workplace-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in Price. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Price. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in Price, householders within the 25 to 44 years age group have the highest median household income at $59,052, followed by those in the 45 to 64 years age group with an income of $51,968. Meanwhile householders within the 65 years and over age group report the second lowest median household income of $30,972. Notably, householders within the under 25 years age group, had the lowest median household income at $27,850.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Price median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Price. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Price population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 84.64% of the total residents in Price. Notably, the median household income for White households is $46,777. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $46,777.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Price median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan JP: Standardised Price-Income Ratio: sa data was reported at 87.536 Ratio in 2024. This records a decrease from the previous number of 89.289 Ratio for 2023. Japan JP: Standardised Price-Income Ratio: sa data is updated yearly, averaging 113.262 Ratio from Dec 1960 (Median) to 2024, with 65 observations. The data reached an all-time high of 163.202 Ratio in 1973 and a record low of 73.471 Ratio in 2009. Japan JP: Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Japan – Table JP.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]
How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.
The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.
Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.
Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.
[1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.
[2] Ibid.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Price to Rent Ratio in the United States increased to 134.20 in the fourth quarter of 2024 from 133.60 in the third quarter of 2024. This dataset includes a chart with historical data for the United States Price to Rent Ratio.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
About this file add_comment Add Suggestion The California housing dataset contains information on various socio-economic features of block groups in California. Each row in the dataset represents a single block group, and there are 20,640 observations, each with 10 attributes.The Features are as follows: 1.Longitude: The longitude of the center of each block group in California. 2.Latitude: The latitude of the center of each block group in California. 3.Housing Median Age: The median age of the housing units in each block group. 4.Total Rooms: The total number of rooms in the housing units in each block group. 5.Total Bedrooms: The total number of bedrooms in the housing units in each block group. 6.Population: The total population of the block group. 7.Households: The total number of households in the block group. 8.Median Income: The median income of the block group. 9.Median House Value: The median value of the housing units in the block group. 10.Ocean Proximity: The proximity of the block group to the ocean or other bodies of water. Table
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Australia Standardised Price-Income Ratio: sa data was reported at 149.268 Ratio in Dec 2024. This records a decrease from the previous number of 152.371 Ratio for Sep 2024. Australia Standardised Price-Income Ratio: sa data is updated quarterly, averaging 82.643 Ratio from Mar 1970 (Median) to Dec 2024, with 220 observations. The data reached an all-time high of 153.422 Ratio in Jun 2024 and a record low of 62.554 Ratio in Sep 1983. Australia Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Australia – Table AU.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Quarterly. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Residential Property Prices for Japan (QJPN628BIS) from Q1 1955 to Q1 2025 about Japan, residential, HPI, housing, price index, indexes, and price.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Price, spanning the years from 2010 to 2021, with all figures adjusted to 2022 inflation-adjusted dollars. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2021, the median household income for Price decreased by $2,429 (4.71%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $4,559 (6.51%) between 2010 and 2021.
Analyzing the trend in median household income between the years 2010 and 2021, spanning 11 annual cycles, we observed that median household income, when adjusted for 2022 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 5 years and declined for 6 years.
https://i.neilsberg.com/ch/price-ut-median-household-income-trend.jpeg" alt="Price, UT median household income trend (2010-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Price median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in China decreased by 2.80 percent in July from -3.20 percent in June of 2025. This dataset provides the latest reported value for - China Newly Built House Prices YoY Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Poland increased to 213.20 points in the first quarter of 2025 from 211.65 points in the fourth quarter of 2024. This dataset provides the latest reported value for - Poland Housing Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in South Korea remained unchanged at 93 points in July. This dataset provides - South Korea House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.
EnhancedHousingMarketData.csv is an auxiliary dataset for the "Housing Prices" competition, containing key economic and demographic indicators vital for real estate market analysis. It includes data on non-farm employment, housing price index, per capita income, total quarterly wages, quantitative indexes of real GDP, total GDP, real GDP, stable population, employed individuals, and the average weekly wage in the private sector, along with the unemployment rate. This dataset aids in better understanding the factors influencing housing prices and allows for a more in-depth analysis of the real estate market.
"**TotalNonfarmEmployees**" - reflects the total number of employees working outside the agricultural sector. This figure includes workers in industries such as manufacturing, construction, trade, transportation, education, healthcare, and other non-agricultural sectors, making it a key indicator of economic activity and employment in the region.
"**HousingPriceIndex**" - represents a housing price index, reflecting changes in real estate prices in a specific region for a given month. This index can be used to analyze trends in the real estate market and assess the overall economic conditions.
"**AnnualPerCapitaIncome**" - represents the annual per capita income, measured yearly. This indicator reflects the average income per resident in a specific region over a year, serving as an important measure of the population's economic well-being.
"**QuarterlyTotalWages**" - represents the total quarterly wages, measured in dollars and adjusted for seasonal variations. This metric reflects the sum of wages paid by employers insured for unemployment insurance over a calendar quarter. It includes components such as vacation pay, bonuses, and tips.
"**TotalRealGDPChainIndex**" - represents the total annual quantitative index of real GDP, encompassing data from all private sectors and the government. It is based on the Fisher chain-weighted method, tracking changes in production volume or expenditures while eliminating the effects of price changes. This index is useful for comparing the volumes of production or expenditures across different time periods.
"**TotalGDP**" - describes the total Gross Domestic Product (GDP), measured in millions of dollars and calculated annually without seasonal adjustments. This metric encompasses all private sectors and the government, reflecting the market value of all final goods and services produced within an agglomeration. The agglomeration GDP represents the gross output minus intermediate costs, serving as a key indicator of economic activity and production volume.
"**TotalRealGDP**" - represents the total real Gross Domestic Product, measured in millions of chained 2012 dollars and calculated annually without seasonal adjustments. This metric includes data from all private sectors and the government. The real GDP for agglomerations is a measure of the gross product of each agglomeration, adjusted for inflation, and based on national prices for goods and services produced in the agglomeration.
"**StablePopulation**" - reflects the stable population, measured in thousands of people and calculated annually without seasonal adjustments. This metric represents population estimates as of July 1st each year, providing reliable data for analyzing demographic trends and planning purposes.
"**EmployedIndividuals**" - represents the number of employed individuals, measured in persons without seasonal adjustment and updated monthly. The data are derived from the Current Population Survey (CPS). Employed individuals include those who did any paid work, owned a business or farm, worked 15 hours or more as unpaid workers in a family business, or were temporarily absent from their job for various reasons. This metric is important for analyzing employment levels and the economic activity of the population.
"**AverageWeeklyWagePrivate**" - denotes the average weekly wage of private enterprise employees, measured in dollars per week and calculated quarterly without seasonal adjustment. It includes payments made by employers insured against unemployment over the quarter, encompassing vacation pay, bonuses, stock options, tips, and other components. This metric is important for assessing the level of wages in the private sector.
"**UnemploymentRate**" - represents the unemployment rate, measured in percentages and calculated monthly without seasonal adjustments. This metric indicates the proportion of the unemployed within the total labor force, providing key information about the labor market's condition and the population's economic activity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in Price township. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Price township. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in Price township, the median household income stands at $127,908 for householders within the 25 to 44 years age group, followed by $123,500 for the 45 to 64 years age group. Notably, householders within the 65 years and over age group, had the lowest median household income at $56,614.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Price township median household income by age. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Utah (UTSTHPI) from Q1 1975 to Q1 2025 about UT, appraisers, HPI, housing, price index, indexes, price, and USA.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Affordability ratios calculated by dividing house prices by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.