100+ datasets found
  1. U.S. wealth distribution Q1 2025

    • statista.com
    Updated Jun 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). U.S. wealth distribution Q1 2025 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
    Explore at:
    Dataset updated
    Jun 18, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the first quarter of 2025, almost ********** of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest ** percent of earners only owned *** percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2024, *** percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States was the country with the most billionaires in the world in 2025. Elon Musk, with a net worth of *** billion U.S. dollars, was among the richest people in the United States in 2025. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

  2. U.S. quarterly wealth distribution 1989-2024, by income percentile

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. quarterly wealth distribution 1989-2024, by income percentile [Dataset]. https://www.statista.com/statistics/299460/distribution-of-wealth-in-the-united-states/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the third quarter of 2024, the top ten percent of earners in the United States held over ** percent of total wealth. This is fairly consistent with the second quarter of 2024. Comparatively, the wealth of the bottom ** percent of earners has been slowly increasing since the start of the *****, though remains low. Wealth distribution in the United States by generation can be found here.

  3. H

    Data from: The Standardized World Income Inequality Database, Versions 8-9

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Jun 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frederick Solt (2025). The Standardized World Income Inequality Database, Versions 8-9 [Dataset]. http://doi.org/10.7910/DVN/LM4OWF
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 22, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Frederick Solt
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    1960 - 2024
    Dataset funded by
    NSF
    Description

    Cross-national research on the causes and consequences of income inequality has been hindered by the limitations of the existing inequality datasets: greater coverage across countries and over time has been available from these sources only at the cost of significantly reduced comparability across observations. The goal of the Standardized World Income Inequality Database (SWIID) is to meet the needs of those engaged in broadly cross-national research by maximizing the comparability of income inequality data while maintaining the widest possible coverage across countries and over time. The SWIID’s income inequality estimates are based on thousands of reported Gini indices from hundreds of published sources, including the OECD Income Distribution Database, the Socio-Economic Database for Latin America and the Caribbean generated by CEDLAS and the World Bank, Eurostat, the World Bank’s PovcalNet, the UN Economic Commission for Latin America and the Caribbean, national statistical offices around the world, and academic studies while minimizing reliance on problematic assumptions by using as much information as possible from proximate years within the same country. The data collected and harmonized by the Luxembourg Income Study is employed as the standard. The SWIID currently incorporates comparable Gini indices of disposable and market income inequality for 199 countries for as many years as possible from 1960 to the present; it also includes information on absolute and relative redistribution.

  4. Global Income Inequality

    • kaggle.com
    zip
    Updated Sep 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    George Hany Fouad (2024). Global Income Inequality [Dataset]. https://www.kaggle.com/datasets/georgehanyfouad/global-income-inequality
    Explore at:
    zip(17988 bytes)Available download formats
    Dataset updated
    Sep 11, 2024
    Authors
    George Hany Fouad
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Global Income Inequality Dataset (2000–2023)

    Overview

    This dataset provides a comprehensive look at global income inequality from the year 2000 to 2023. It includes key indicators such as Gini index, average income, income distribution across different population percentiles, and income group classifications for 30 countries worldwide. The dataset offers insights into how income is distributed within nations and highlights disparities across different economic groups.

    Data Features

    • Country: The name of the country.
    • Year: The year of the data point (2000–2023).
    • Population: The estimated population for the given year.
    • Gini Index: A measure of income inequality, where 0 represents perfect equality and 1 represents maximum inequality.
    • Average Income (USD): The average income in USD for the country in the given year.
    • Top 10% Income Share (%): The percentage of total income held by the top 10% of the population.
    • Bottom 10% Income Share (%): The percentage of total income held by the bottom 10% of the population.
    • Income Group: Categorization of the country’s income group (Low Income, Lower Middle Income, Upper Middle Income, High Income).

    Potential Uses

    • Economic Analysis: Understand global income inequality trends and how they vary by country and region.
    • Predictive Modeling: Use the dataset to build machine learning models predicting future income inequality based on historical data.
    • Policy Research: Study the impact of income distribution on policy decisions and economic growth in different nations.
    • Visualization: Create heatmaps, time series charts, and more to visualize the income inequality across various countries and years.

    Source

    The data has been generated to simulate realistic income inequality patterns based on publicly available data on global economic trends.

  5. o

    Data and Code for "Epidemics, inequality and poverty in preindustrial and...

    • openicpsr.org
    Updated Aug 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guido Alfani (2020). Data and Code for "Epidemics, inequality and poverty in preindustrial and early industrial times " [Dataset]. http://doi.org/10.3886/E120904V1
    Explore at:
    Dataset updated
    Aug 31, 2020
    Dataset provided by
    American Economic Association
    Authors
    Guido Alfani
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe and Mediterranean
    Description

    Recent research has explored the distributive consequences of major historical epidemics, and the current crisis triggered by Covid-19 prompts us to look at the past for insights about how pandemics can affect inequalities in income, wealth, and health. The fourteenth-century Black Death, which is usually believed to have led to a significant reduction in economic inequality, has attracted the greatest attention. However, the picture becomes much more complex if other epidemics are considered. This article covers the worst epidemics of preindustrial times, from Justinian’s Plague of 540-41 to the last great European plagues of the seventeenth century, as well as the cholera waves of the nineteenth. It shows how the distributive outcomes of lethal epidemics do not only depend upon mortality rates, but are mediated by a range of factors, chief among them the institutional framework in place at the onset of each crisis. It then explores how past epidemics affected poverty, arguing that highly lethal epidemics could reduce its prevalence through two deeply different mechanisms: redistribution towards the poor, or extermination of the poor. It concludes by recalling the historical connection between the progressive weakening and spacing in time of lethal epidemics and improvements in life expectancy, and by discussing how epidemics affected inequality in health and living standards.

  6. w

    Income Distribution Database

    • data360.worldbank.org
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Income Distribution Database [Dataset]. https://data360.worldbank.org/en/dataset/OECD_IDD
    Explore at:
    Dataset updated
    Apr 18, 2025
    Time period covered
    1974 - 2023
    Area covered
    Portugal, Denmark, Hungary, Luxembourg, Slovak Republic, Romania, Croatia, Iceland, Belgium, Lithuania
    Description

    The OECD Income Distribution database (IDD) has been developed to benchmark and monitor countries' performance in the field of income inequality and poverty. It contains a number of standardised indicators based on the central concept of "equivalised household disposable income", i.e. the total income received by the households less the current taxes and transfers they pay, adjusted for household size with an equivalence scale. While household income is only one of the factors shaping people's economic well-being, it is also the one for which comparable data for all OECD countries are most common. Income distribution has a long-standing tradition among household-level statistics, with regular data collections going back to the 1980s (and sometimes earlier) in many OECD countries.

    Achieving comparability in this field is a challenge, as national practices differ widely in terms of concepts, measures, and statistical sources. In order to maximise international comparability as well as inter-temporal consistency of data, the IDD data collection and compilation process is based on a common set of statistical conventions (e.g. on income concepts and components). The information obtained by the OECD through a network of national data providers, via a standardized questionnaire, is based on national sources that are deemed to be most representative for each country.

    Small changes in estimates between years should be treated with caution as they may not be statistically significant.

    Fore more details, please refer to: https://www.oecd.org/els/soc/IDD-Metadata.pdf and https://www.oecd.org/social/income-distribution-database.htm

  7. Gini coefficient income distribution inequality in Latin America 2023, by...

    • statista.com
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gini coefficient income distribution inequality in Latin America 2023, by country [Dataset]. https://www.statista.com/statistics/980285/income-distribution-gini-coefficient-latin-america-caribbean-country/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Americas, Latin America
    Description

    Based on the degree of inequality in income distribution measured by the Gini coefficient, Colombia was the most unequal country in Latin America as of 2022. Colombia's Gini coefficient amounted to 54.8. The Dominican Republic recorded the lowest Gini coefficient at 37, even below Uruguay and Chile, which are some of the countries with the highest human development indexes in Latin America. The Gini coefficient explained The Gini coefficient measures the deviation of the distribution of income among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality. This measurement reflects the degree of wealth inequality at a certain moment in time, though it may fail to capture how average levels of income improve or worsen over time. What affects the Gini coefficient in Latin America? Latin America, as other developing regions in the world, generally records high rates of inequality, with a Gini coefficient ranging between 37 and 55 points according to the latest available data from the reporting period 2010-2023. According to the Human Development Report, wealth redistribution by means of tax transfers improves Latin America's Gini coefficient to a lesser degree than it does in advanced economies. Wider access to education and health services, on the other hand, have been proven to have a greater direct effect in improving Gini coefficient measurements in the region.

  8. o

    Data and Code for: Wealth Inequality, Aggregate Consumption, and...

    • openicpsr.org
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Byoungchan Lee (2024). Data and Code for: Wealth Inequality, Aggregate Consumption, and Macroeconomic Trends under Incomplete Markets [Dataset]. http://doi.org/10.3886/E197062V1
    Explore at:
    Dataset updated
    Jan 9, 2024
    Dataset provided by
    American Economic Association
    Authors
    Byoungchan Lee
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1983 - 2018
    Area covered
    US
    Description

    I construct an incomplete market model featuring a closed-form expression for optimal consumption. In the model, individual consumption is an isoelastic function of wealth, inclusive of income, yielding partial consumption smoothing based on borrowing and lending in response to income shocks. I show that the model replicates several empirical characteristics of inequality in consumption, income, and wealth and their dynamics at the individual level. Using the model, I show that the rising wealth inequality since the 1980s, induced by an increase in idiosyncratic income risk, has substantially contributed to trend-level changes in real interest rates, capital-to-income ratios, and consumption-to-wealth ratios.

  9. F

    Income Inequality in New York County, NY

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Income Inequality in New York County, NY [Dataset]. https://fred.stlouisfed.org/series/2020RATIO036061
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Manhattan, New York, New York, New York County
    Description

    Graph and download economic data for Income Inequality in New York County, NY (2020RATIO036061) from 2010 to 2023 about New York County, NY; inequality; New York; NY; income; and USA.

  10. a

    Income Disparity: Concentrations of Wealth and Poverty in the USA

    • chi-phi-nmcdc.opendata.arcgis.com
    Updated Apr 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Income Disparity: Concentrations of Wealth and Poverty in the USA [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/maps/1d4bab3a6ed74c17a2d99645ffdc931f
    Explore at:
    Dataset updated
    Apr 27, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    This map shows households within high ($200,000 or more) and low (less than $25,000) annual income ranges. This is shown as a percentage of total households. The data is attached to tract, county, and state centroids and shows:Percent of households making less than $25,000 annuallyPercent of households making $200,000 or more annuallyThe data shown is household income in the past 12 months. These are the American Community Survey (ACS) most current 5-year estimates: Table B19001. The data layer is updated annually, so this map always shows the most current values from the U.S. Census Bureau. To find the layer used in this map and see the full metadata, visit this Living Atlas item.These categories were constructed using an Arcade expression, which groups the lowest census income categories and normalizes them by total households.

  11. F

    Income Gini Ratio for Households by Race of Householder, All Races

    • fred.stlouisfed.org
    json
    Updated Sep 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Income Gini Ratio for Households by Race of Householder, All Races [Dataset]. https://fred.stlouisfed.org/series/GINIALLRH
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 9, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Income Gini Ratio for Households by Race of Householder, All Races (GINIALLRH) from 1967 to 2024 about gini, households, income, and USA.

  12. H

    On Income and Wealth Inequality in Turkey

    • dataverse.harvard.edu
    • dataone.org
    Updated Dec 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Orhan Torul; Oğuz Öztunalı (2023). On Income and Wealth Inequality in Turkey [Dataset]. http://doi.org/10.7910/DVN/AHL2X9
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 27, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Orhan Torul; Oğuz Öztunalı
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Türkiye
    Description

    Computation Codes for On Income and Wealth Inequality in Turkey

  13. o

    Data from: Generations Of Advantage. Multigenerational Correlations in...

    • openicpsr.org
    stata
    Updated Oct 17, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Pfeffer; Alexandra Killewald (2017). Generations Of Advantage. Multigenerational Correlations in Family Wealth [Dataset]. http://doi.org/10.3886/E101094V1
    Explore at:
    stataAvailable download formats
    Dataset updated
    Oct 17, 2017
    Dataset provided by
    University of Michigan
    Department of Sociology
    Department of Sociology & Institute for Social Research
    Harvard University
    Authors
    Fabian Pfeffer; Alexandra Killewald
    Time period covered
    1968 - 2015
    Area covered
    United States
    Description

    Inequality in family wealth is high, yet we know little about how much and how wealth inequality is maintained across generations. We argue that a long-term perspective reflective of wealth’s cumulative nature is crucial to understand the extent and channels of wealth reproduction across generations. Using data from the Panel Study of Income Dynamics that span nearly half a century, we show that a one decile increase in parental wealth position is associated with an increase of about 4 percentiles in offspring wealth position in adulthood. We show that grandparental wealth is a unique predictor of grandchildren’s wealth, above and beyond the role of parental wealth, suggesting that a focus on only parent-child dyads understates the importance of family wealth lineages. Second, considering five channels of wealth transmission — gifts and bequests, education, marriage, homeownership, and business ownership — we find that most of the advantages arising from family wealth begin much earlier in the life-course than the common focus on bequests implies, even when we consider the wealth of grandparents. We also document the stark disadvantage of African-American households in terms of not only their wealth attainment but also their intergenerational downward wealth mobility compared to whites.

  14. o

    Data from: Growing Wealth Gaps in Education

    • openicpsr.org
    • datasearch.gesis.org
    stata
    Updated Mar 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian T. Pfeffer (2018). Growing Wealth Gaps in Education [Dataset]. http://doi.org/10.3886/E101105V2
    Explore at:
    stataAvailable download formats
    Dataset updated
    Mar 21, 2018
    Dataset provided by
    University of Michigan
    Authors
    Fabian T. Pfeffer
    Time period covered
    1984 - 2015
    Dataset funded by
    Spencer Foundation
    National Institutes of Health
    National Science Foundation
    Russell Sage Foundation
    Description
  15. T

    Finland - Inequality of income distribution

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Aug 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). Finland - Inequality of income distribution [Dataset]. https://tradingeconomics.com/finland/inequality-of-income-distribution-eurostat-data.html
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Aug 24, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Finland
    Description

    Finland - Inequality of income distribution was 3.73 in December of 2024, according to the EUROSTAT. Trading Economics provides the current actual value, an historical data chart and related indicators for Finland - Inequality of income distribution - last updated from the EUROSTAT on November of 2025. Historically, Finland - Inequality of income distribution reached a record high of 3.78 in December of 2023 and a record low of 3.54 in December of 2017.

  16. f

    Table_1_Perceptions of Economic Inequality in Colombian Daily Life: More...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Sep 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rentería-Pérez, Erico; García-Sánchez, Efraín; Rodríguez-Bailón, Rosa; Polo, Jean; Willis, Guillermo B.; García-Castro, Juan Diego; Palacio-Sañudo, Jorge (2018). Table_1_Perceptions of Economic Inequality in Colombian Daily Life: More Than Unequal Distribution of Economic Resources.DOCX [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000653180
    Explore at:
    Dataset updated
    Sep 6, 2018
    Authors
    Rentería-Pérez, Erico; García-Sánchez, Efraín; Rodríguez-Bailón, Rosa; Polo, Jean; Willis, Guillermo B.; García-Castro, Juan Diego; Palacio-Sañudo, Jorge
    Description

    Research on perceptions of economic inequality focuses on estimations of the distribution of financial resources, such as perceived income gaps or wealth distribution. However, we argue that perceiving inequality is not limited to an economic idea but also includes other dimensions related to people’s daily life. We explored this idea by conducting an online survey (N = 601) in Colombia, where participants responded to an open-ended question regarding how they perceived economic inequality. We performed a content analysis of 1,624 responses to identify relevant topics and used network analysis tools to explore how such topics were interrelated. We found that perceived economic inequality is mainly represented by identifying social classes (e.g., the elites vs. the poor), intergroup relations based on discrimination and social exclusion, public spaces (e.g., beggars on streets, spatial segregation), and some dynamics about the distribution of economic resources and the quality of work (e.g., income inequality, precarious jobs). We discuss how different perceptions of economic inequality may frame how people understand and respond to inequality.

  17. Intergenerational Economic Mobility and the Racial Wealth Gap

    • openicpsr.org
    Updated Jan 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jermaine Toney; Cassandra Robertson (2021). Intergenerational Economic Mobility and the Racial Wealth Gap [Dataset]. http://doi.org/10.3886/E130341V1
    Explore at:
    Dataset updated
    Jan 6, 2021
    Dataset provided by
    American Economic Associationhttp://www.aeaweb.org/
    Authors
    Jermaine Toney; Cassandra Robertson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A growing body of research documents the importance of wealth and the racial wealth gap in perpetuating inequality across generations. We add to this literature by examining the impact of wealth on child income by race, while also extending our analysis to three generations. Our two stage least squares regressions reveal that grandparental and parental wealth and the younger generation’s household income is strongly positively correlated. We further explore the relationship between income and wealth by decomposing the child’s income by race. We find that the disparity in income between black and white respondents is mainly attributable to differences in family background. In context, differences in family background are stronger than differences in educational attainment. When we examine different income percentiles, however, we find that the effect of grandparental and parental wealth endowment is much stronger at the top of the income distribution. These findings indicate that wealth is an important source of income inequality.

  18. F

    Income Inequality in Santa Fe County, NM

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Income Inequality in Santa Fe County, NM [Dataset]. https://fred.stlouisfed.org/series/2020RATIO035049
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Santa Fe County, New Mexico
    Description

    Graph and download economic data for Income Inequality in Santa Fe County, NM (2020RATIO035049) from 2010 to 2023 about Santa Fe County, NM; Santa Fe; inequality; NM; income; and USA.

  19. Economic Indicators: GDP and Gini Index

    • kaggle.com
    zip
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shahriar Kabir (2024). Economic Indicators: GDP and Gini Index [Dataset]. https://www.kaggle.com/datasets/shahriarkabir/economic-indicators-gdp-and-gini-index/code
    Explore at:
    zip(2973 bytes)Available download formats
    Dataset updated
    Aug 30, 2024
    Authors
    Shahriar Kabir
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset captures key economic indicators for various countries, providing insights into their economic performance and income distribution. The data includes information on GDP per capita, Gini Index (a measure of income inequality), and the total Gross Domestic Product (GDP) for each country. This dataset can be utilized for comparative economic analysis, research on global inequality, and understanding economic trends across different regions.

    Columns Description:

    Region: The name of the country or region for which the data is recorded.

    GDP Per Capita: The average economic output per person, calculated as the Gross Domestic Product (GDP) divided by the population. It is expressed in USD.

    Gini Index: A measure of income inequality within a country, where 0 represents perfect equality and 1 indicates maximal inequality.

    Gross Domestic Product (GDP): The total monetary value of all goods and services produced within a country's borders in a specific time period, expressed in USD.

    This dataset can be used for analyzing global economic disparities, studying the relationship between GDP and income inequality, and conducting country-level comparisons of economic performance. It is valuable for economic research, policy-making, and academic studies focused on development and inequality.

  20. c

    Data from: Income Inequality and Income-Class Consumption Patterns

    • clevelandfed.org
    Updated Jun 10, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve Bank of Cleveland (2014). Income Inequality and Income-Class Consumption Patterns [Dataset]. https://www.clevelandfed.org/publications/economic-commentary/2014/ec-201418-income-inequality-and-income-class-consumption-patterns
    Explore at:
    Dataset updated
    Jun 10, 2014
    Dataset authored and provided by
    Federal Reserve Bank of Cleveland
    Description

    This Commentary investigates whether there has been a growing divergence in the consumption of luxury and necessity goods across income classes. The analysis shows that while necessities represent a majority of the consumption basket for lower and middle income quintiles, their consumption of necessities in inflation-adjusted dollars has been declining in the face of higher prices of such goods and stagnant income growth. Higher income quintiles have seen increases in their consumption of luxuries, simultaneous with a decline in their consumption of necessities.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2020). U.S. wealth distribution Q1 2025 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
Organization logo

U.S. wealth distribution Q1 2025

Explore at:
Dataset updated
Jun 18, 2020
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In the first quarter of 2025, almost ********** of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest ** percent of earners only owned *** percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2024, *** percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States was the country with the most billionaires in the world in 2025. Elon Musk, with a net worth of *** billion U.S. dollars, was among the richest people in the United States in 2025. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

Search
Clear search
Close search
Google apps
Main menu