5 datasets found
  1. C

    Competitive Analysis of Industry Rivals Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Competitive Analysis of Industry Rivals Report [Dataset]. https://www.archivemarketresearch.com/reports/competitive-analysis-of-industry-rivals-38541
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Competitive Analysis of Industry Rivals The market for competitive analysis is expected to grow significantly over the forecast period, driven by increasing need for businesses to understand their competitive landscape. Key players in the market include BuiltWith, WooRank, SEMrush, Google, SpyFu, Owletter, SimilarWeb, Moz, SunTec Data, and TrendSource. These companies offer a range of services to help businesses track their competitors' online performance, including website traffic, social media engagement, and search engine rankings. Some of the key trends driving the growth of the market include the increasing adoption of digital marketing by businesses, the growing importance of social media, and the increasing availability of data and analytics tools. The market is segmented by type, application, and region. In terms of type, the market is divided into product analysis, traffic analytics, sales analytics, and others. In terms of application, the market is divided into SMEs and large enterprises. In terms of region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. The North American region is expected to dominate the market during the forecast period, due to the presence of a large number of established players in the market. The Asia Pacific region is expected to grow at the highest CAGR during the forecast period, due to the increasing adoption of digital marketing by businesses in the region. This report provides a comprehensive analysis of the industry rivals, encompassing their concentration, product insights, regional trends, and key industry developments.

  2. W

    Website Traffic Analysis Tool Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Website Traffic Analysis Tool Report [Dataset]. https://www.datainsightsmarket.com/reports/website-traffic-analysis-tool-1455386
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 25, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global website traffic analysis tool market is experiencing robust growth, driven by the increasing reliance on digital marketing and the need for businesses of all sizes to understand their online audience. The market, estimated at $15 billion in 2025, is projected to grow at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $45 billion by 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based solutions provides scalability and cost-effectiveness for businesses, particularly SMEs seeking affordable analytics. Moreover, the evolution of sophisticated analytics features, including advanced user behavior tracking and predictive analytics, enhances the value proposition for both SMEs and large enterprises. The market is segmented by application (SMEs and large enterprises) and by type (cloud-based and web-based), with cloud-based solutions dominating due to their accessibility and flexibility. Competitive pressures among numerous vendors, including established players like Google Analytics, Semrush, and Ahrefs, as well as emerging niche players, drive innovation and affordability, benefiting users. Geographic distribution shows strong growth across North America and Europe, with Asia-Pacific emerging as a high-growth region. However, factors such as data privacy concerns and the increasing complexity of website analytics can act as potential restraints. Despite these challenges, the continued expansion of e-commerce and digital marketing strategies across various industries will solidify the demand for robust website traffic analysis tools. The market is expected to witness further consolidation through mergers and acquisitions, with leading players investing heavily in research and development to enhance their offerings. The increasing need for real-time data analysis and integration with other marketing automation platforms will further shape market evolution. The emergence of AI-powered analytics, providing predictive insights and automated reporting, is transforming the industry and will continue to drive market expansion in the coming years. This makes this market an attractive landscape for investors and technology providers looking for strong future growth.

  3. Similarweb's Surge: A Sign of Digital Dominance? (SMWB) (Forecast)

    • kappasignal.com
    Updated May 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Similarweb's Surge: A Sign of Digital Dominance? (SMWB) (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/similarwebs-surge-sign-of-digital.html
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Similarweb's Surge: A Sign of Digital Dominance? (SMWB)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. k

    SimilarWeb (SMWB) - Tracking Digital Trends: Will it Drive Growth?...

    • kappasignal.com
    Updated Oct 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). SimilarWeb (SMWB) - Tracking Digital Trends: Will it Drive Growth? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/similarweb-smwb-tracking-digital-trends.html
    Explore at:
    Dataset updated
    Oct 5, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    SimilarWeb (SMWB) - Tracking Digital Trends: Will it Drive Growth?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. k

    SMWB Similarweb Ltd. Ordinary Shares (Forecast)

    • kappasignal.com
    Updated Dec 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). SMWB Similarweb Ltd. Ordinary Shares (Forecast) [Dataset]. https://www.kappasignal.com/2022/12/smwb-similarweb-ltd-ordinary-shares.html
    Explore at:
    Dataset updated
    Dec 7, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    SMWB Similarweb Ltd. Ordinary Shares

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Archive Market Research (2025). Competitive Analysis of Industry Rivals Report [Dataset]. https://www.archivemarketresearch.com/reports/competitive-analysis-of-industry-rivals-38541

Competitive Analysis of Industry Rivals Report

Explore at:
ppt, doc, pdfAvailable download formats
Dataset updated
Feb 21, 2025
Dataset authored and provided by
Archive Market Research
License

https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

Competitive Analysis of Industry Rivals The market for competitive analysis is expected to grow significantly over the forecast period, driven by increasing need for businesses to understand their competitive landscape. Key players in the market include BuiltWith, WooRank, SEMrush, Google, SpyFu, Owletter, SimilarWeb, Moz, SunTec Data, and TrendSource. These companies offer a range of services to help businesses track their competitors' online performance, including website traffic, social media engagement, and search engine rankings. Some of the key trends driving the growth of the market include the increasing adoption of digital marketing by businesses, the growing importance of social media, and the increasing availability of data and analytics tools. The market is segmented by type, application, and region. In terms of type, the market is divided into product analysis, traffic analytics, sales analytics, and others. In terms of application, the market is divided into SMEs and large enterprises. In terms of region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. The North American region is expected to dominate the market during the forecast period, due to the presence of a large number of established players in the market. The Asia Pacific region is expected to grow at the highest CAGR during the forecast period, due to the increasing adoption of digital marketing by businesses in the region. This report provides a comprehensive analysis of the industry rivals, encompassing their concentration, product insights, regional trends, and key industry developments.

Search
Clear search
Close search
Google apps
Main menu