66 datasets found
  1. Cryptocurrency Market Sentiment & Price Data 2025

    • kaggle.com
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pratyush Puri (2025). Cryptocurrency Market Sentiment & Price Data 2025 [Dataset]. https://www.kaggle.com/datasets/pratyushpuri/crypto-market-sentiment-and-price-dataset-2025
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Kaggle
    Authors
    Pratyush Puri
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Description

    This dataset, titled "Cryptocurrency Market Sentiment & Prediction," is a synthetic collection of real-time crypto market data designed for advanced analysis and predictive modeling. It captures a comprehensive range of features including price movements, social sentiment, news impact, and trading patterns for 10 major cryptocurrencies. Tailored for data scientists and analysts, this dataset is ideal for exploring market volatility, sentiment analysis, and price prediction, particularly in the context of significant events like the Bitcoin halving in 2024 and increasing institutional adoption.

    Key Features Overview: - Price Movements: Tracks current prices and 24-hour price change percentages to reflect market dynamics. - Social Sentiment: Measures sentiment scores from social media platforms, ranging from -1 (negative) to 1 (positive), to gauge public perception. - News Sentiment and Impact: Evaluates sentiment from news sources and quantifies their potential impact on market behavior. - Trading Patterns: Includes data on 24-hour trading volumes and market capitalization, crucial for understanding market activity. - Technical Indicators: Features metrics like the Relative Strength Index (RSI), volatility index, and fear/greed index for in-depth technical analysis. - Prediction Confidence: Provides a confidence score for predictive models, aiding in assessing forecast reliability.

    Purpose and Applications: - Perfect for machine learning tasks such as price prediction, sentiment-price correlation studies, and volatility classification. - Supports time series analysis for forecasting price movements and identifying volatility clusters. - Valuable for research into the influence of social media and news on cryptocurrency markets, especially during high-impact events.

    Dataset Scope: - Covers a simulated 30-day period, offering a snapshot of market behavior under varying conditions. - Focuses on major cryptocurrencies including Bitcoin, Ethereum, Cardano, Solana, and others, ensuring relevance to current market trends.

    Dataset Structure Table:

    Column NameDescriptionData TypeRange/Value Example
    timestampDate and time of data recorddatetimeLast 30 days (e.g., 2025-06-04 20:36:49)
    cryptocurrencyName of the cryptocurrencystring10 major cryptos (e.g., Bitcoin)
    current_price_usdCurrent trading price in USDfloatMarket-realistic (e.g., 47418.4096)
    price_change_24h_percent24-hour price change percentagefloat-25% to +27% (e.g., 1.05)
    trading_volume_24h24-hour trading volumefloatVariable (e.g., 1800434.38)
    market_cap_usdMarket capitalization in USDfloatCalculated (e.g., 343755257516049.1)
    social_sentiment_scoreSentiment score from social mediafloat-1 to 1 (e.g., -0.728)
    news_sentiment_scoreSentiment score from news sourcesfloat-1 to 1 (e.g., -0.274)
    news_impact_scoreQuantified impact of news on marketfloat0 to 10 (e.g., 2.73)
    social_mentions_countNumber of mentions on social mediaintegerVariable (e.g., 707)
    fear_greed_indexMarket fear and greed indexfloat0 to 100 (e.g., 35.3)
    volatility_indexPrice volatility indexfloat0 to 100 (e.g., 36.0)
    rsi_technical_indicatorRelative Strength Indexfloat0 to 100 (e.g., 58.3)
    prediction_confidenceConfidence level of predictive modelsfloat0 to 100 (e.g., 88.7)

    Dataset Statistics Table:

    StatisticValue
    Total Rows2,063
    Total Columns14
    Cryptocurrencies10 major tokens
    Time RangeLast 30 days
    File FormatCSV
    Data QualityRealistic correlations between features

    This dataset is a powerful resource for machine learning projects, sentiment analysis, and crypto market research, providing a robust foundation for AI/ML model development and testing.

  2. Will the S&P Bitcoin Index Revolutionize Cryptocurrency? (Forecast)

    • kappasignal.com
    Updated Oct 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the S&P Bitcoin Index Revolutionize Cryptocurrency? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/will-s-bitcoin-index-revolutionize.html
    Explore at:
    Dataset updated
    Oct 10, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the S&P Bitcoin Index Revolutionize Cryptocurrency?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  3. Will the S&P Bitcoin index redefine the crypto markets? (Forecast)

    • kappasignal.com
    Updated Apr 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the S&P Bitcoin index redefine the crypto markets? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/will-s-bitcoin-index-redefine-crypto.html
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the S&P Bitcoin index redefine the crypto markets?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. Bitcoin BTC/USD price history up to Aug 6, 2025

    • statista.com
    Updated Aug 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Bitcoin BTC/USD price history up to Aug 6, 2025 [Dataset]. https://www.statista.com/statistics/326707/bitcoin-price-index/
    Explore at:
    Dataset updated
    Aug 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 15, 2020 - Aug 6, 2025
    Area covered
    Worldwide
    Description

    The Bitcoin (BTC) price again reached an all-time high in 2025, as values exceeded over 114,128.35 USD on August 6, 2025. Price hikes in early 2025 were connected to the approval of Bitcoin ETFs in the United States, while previous hikes in 2021 were due to events involving Tesla and Coinbase, respectively. Tesla's announcement in March 2021 that it had acquired 1.5 billion U.S. dollars' worth of the digital coin, for example, as well as the IPO of the U.S.'s biggest crypto exchange, fueled mass interest. The market was noticeably different by the end of 2022, however, after another crypto exchange, FTX, filed for bankruptcy.Is the world running out of Bitcoin?Unlike fiat currency like the U.S. dollar - as the Federal Reserve can simply decide to print more banknotes - Bitcoin's supply is finite: BTC has a maximum supply embedded in its design, of which roughly 89 percent had been reached in April 2021. It is believed that Bitcoin will run out by 2040, despite more powerful mining equipment. This is because mining becomes exponentially more difficult and power-hungry every four years, a part of Bitcoin's original design. Because of this, a Bitcoin mining transaction could equal the energy consumption of a small country in 2021.Bitcoin's price outlook: a potential bubble?Cryptocurrencies have few metrics available that allow for forecasting, if only because it is rumored that only a few cryptocurrency holders own a large portion of the available supply. These large holders - referred to as 'whales'-are' said to make up two percent of anonymous ownership accounts, while owning roughly 92 percent of BTC. On top of this, most people who use cryptocurrency-related services worldwide are retail clients rather than institutional investors. This means outlooks on whether Bitcoin prices will fall or grow are difficult to measure, as movements from one large whale are already having a significant impact on this market.

  5. Dataset for Multivariate Bitcoin Price Forecasting.

    • figshare.com
    txt
    Updated Apr 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anny Mardjo; Chidchanok Choksuchat (2023). Dataset for Multivariate Bitcoin Price Forecasting. [Dataset]. http://doi.org/10.6084/m9.figshare.22678540.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Apr 22, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Anny Mardjo; Chidchanok Choksuchat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset was collected for the period spanning between 01/07/2019 and 31/12/2022.The historical Twitter volume were retrieved using ‘‘Bitcoin’’ (case insensitive) as the keyword from bitinfocharts.com. Google search volume was retrieved using library Gtrends. 2000 tweets per day using 4 times interval were crawled by employing Twitter API with the keyword “Bitcoin. The daily closing prices of Bitcoin, oil price, gold price, and U.S stock market indexes (S&P 500, NASDAQ, and Dow Jones Industrial Average) were collected using R libraries either Quantmod or Quandl.

  6. Colony Avalanche Index Price Prediction for 2025-08-27

    • coinunited.io
    Updated Aug 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinUnited.io (2025). Colony Avalanche Index Price Prediction for 2025-08-27 [Dataset]. https://coinunited.io/en/data/prices/crypto/colony-avalanche-index-cai/price-prediction
    Explore at:
    Dataset updated
    Aug 7, 2025
    Dataset provided by
    CoinUnited.io
    Description

    Based on professional technical analysis and AI models, deliver precise price‑prediction data for Colony Avalanche Index on 2025-08-27. Includes multi‑scenario analysis (bullish, baseline, bearish), risk assessment, technical‑indicator insights and market‑trend forecasts to help investors make informed trading decisions and craft sound investment strategies.

  7. Is the S&P Bitcoin Index the Future of Crypto Investment? (Forecast)

    • kappasignal.com
    Updated Oct 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Is the S&P Bitcoin Index the Future of Crypto Investment? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/is-s-bitcoin-index-future-of-crypto.html
    Explore at:
    Dataset updated
    Oct 29, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Is the S&P Bitcoin Index the Future of Crypto Investment?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. Integrated Cryptocurrency Historical Data for a Predictive Data-Driven...

    • cryptodata.center
    Updated Dec 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    cryptodata.center (2024). Integrated Cryptocurrency Historical Data for a Predictive Data-Driven Decision-Making Algorithm - Dataset - CryptoData Hub [Dataset]. https://cryptodata.center/dataset/integrated-cryptocurrency-historical-data-for-a-predictive-data-driven-decision-making-algorithm
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    CryptoDATA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cryptocurrency historical datasets from January 2012 (if available) to October 2021 were obtained and integrated from various sources and Application Programming Interfaces (APIs) including Yahoo Finance, Cryptodownload, CoinMarketCap, various Kaggle datasets, and multiple APIs. While these datasets used various formats of time (e.g., minutes, hours, days), in order to integrate the datasets days format was used for in this research study. The integrated cryptocurrency historical datasets for 80 cryptocurrencies including but not limited to Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Cardano (ADA), Tether (USDT), Ripple (XRP), Solana (SOL), Polkadot (DOT), USD Coin (USDC), Dogecoin (DOGE), Tron (TRX), Bitcoin Cash (BCH), Litecoin (LTC), EOS (EOS), Cosmos (ATOM), Stellar (XLM), Wrapped Bitcoin (WBTC), Uniswap (UNI), Terra (LUNA), SHIBA INU (SHIB), and 60 more cryptocurrencies were uploaded in this online Mendeley data repository. Although the primary attribute of including the mentioned cryptocurrencies was the Market Capitalization, a subject matter expert i.e., a professional trader has also guided the initial selection of the cryptocurrencies by analyzing various indicators such as Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), MYC Signals, Bollinger Bands, Fibonacci Retracement, Stochastic Oscillator and Ichimoku Cloud. The primary features of this dataset that were used as the decision-making criteria of the CLUS-MCDA II approach are Timestamps, Open, High, Low, Closed, Volume (Currency), % Change (7 days and 24 hours), Market Cap and Weighted Price values. The available excel and CSV files in this data set are just part of the integrated data and other databases, datasets and API References that was used in this study are as follows: [1] https://finance.yahoo.com/ [2] https://coinmarketcap.com/historical/ [3] https://cryptodatadownload.com/ [4] https://kaggle.com/philmohun/cryptocurrency-financial-data [5] https://kaggle.com/deepshah16/meme-cryptocurrency-historical-data [6] https://kaggle.com/sudalairajkumar/cryptocurrencypricehistory [7] https://min-api.cryptocompare.com/data/price?fsym=BTC&tsyms=USD [8] https://min-api.cryptocompare.com/ [9] https://p.nomics.com/cryptocurrency-bitcoin-api [10] https://www.coinapi.io/ [11] https://www.coingecko.com/en/api [12] https://cryptowat.ch/ [13] https://www.alphavantage.co/ This dataset is part of the CLUS-MCDA (Cluster analysis for improving Multiple Criteria Decision Analysis) and CLUS-MCDAII Project: https://aimaghsoodi.github.io/CLUSMCDA-R-Package/ https://github.com/Aimaghsoodi/CLUS-MCDA-II https://github.com/azadkavian/CLUS-MCDA

  9. Estimate of monthly number of crypto users worldwide 2016-2024, with 2025...

    • statista.com
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Estimate of monthly number of crypto users worldwide 2016-2024, with 2025 forecast [Dataset]. https://www.statista.com/statistics/1202503/global-cryptocurrency-user-base/
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2024
    Area covered
    Worldwide
    Description

    The global user base of cryptocurrencies increased by nearly *** percent between 2018 and 2020, only to accelerate further in 2022. This is according to calculations from various sources, based on information from trading platforms and on-chain wallets. Increasing demographics might initially be attributed to a rise in the number of accounts and improvements in identification. In 2021, however, crypto adoption continued as companies like Tesla and Mastercard announced their interest in cryptocurrency. Consumers in Africa, Asia, and South America were most likely to be owners of cryptocurrencies, such as Bitcoin, in 2022. How many of these users have Bitcoin? User figures for individual cryptocurrencies are unavailable. Bitcoin, for instance, was created not to be tracked by banks and governments. What comes closest is the trading volume of Bitcoin against domestic fiat currencies. The source assumed, however, that UK residents were the most likely to make Bitcoin transactions with British pounds. This assumption might not be accurate for popular fiat currencies worldwide. Moreover, coins such as Tether or Binance Coin - referred to as "stablecoins"—are" often used to buy and sell Bitcoin. Those coins were not included in that particular statistic. Wallet usage declined Total crypto wallet downloads were significantly lower in 2022 than in 2021. The number of downloads of Coinbase, Blockchain.com, and MetaMask, among others, declined as the market hit a "crypto winter" over the year. The crypto market also suffered bad press when FTX, one of the largest crypto exchanges based on market share, collapsed in November 2022. Binance, on the other hand, regained some of the market share it had lost between September and October 2022, growing by *** percentage points in November. As of 2025, the highest forecast for the global user base of cryptocurrencies is projected to reach *** million.

  10. Ethereum ETH/USD price history up to Jul 22, 2025

    • statista.com
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Ethereum ETH/USD price history up to Jul 22, 2025 [Dataset]. https://www.statista.com/statistics/806453/price-of-ethereum/
    Explore at:
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 31, 2020 - Jul 22, 2025
    Area covered
    Worldwide
    Description

    Ethereum's price history suggests that that crypto was worth more in 2025 than during late 2021, although nowhere near the highest price recorded. Much like Bitcoin (BTC), the price of ETH went up in 2021 but for different reasons altogether: Ethereum, for instance, hit the news when a digital art piece was sold as the world's most expensive NFT for over 38,000 ETH - or 69.3 million U.S. dollars. Unlike Bitcoin, of which the price growth was fueled by the IPO of the U.S.'s biggest crypto trader, Coinbase, the rally on Ethereum came from technological developments that caused much excitement among traders. First, the so-called 'Berlin update' rolled out on the Ethereum network in April 2021, an update that would eventually lead to the Ethereum Merge in 2022 and reduced ETH gas prices - or reduced transaction fees. The collapse of FTX in late 2022, however, changed much for the cryptocurrency. As of July 22, 2025, Ethereum was worth 3,765.45 U.S. dollars - significantly less than the 4,400 U.S. dollars by the end of 2021.Ethereum's future and the DeFi industryPrice developments on Ethereum are difficult to predict but cannot be seen without the world of DeFi, or decentralized finance. This industry used technology to remove intermediaries between parties in a financial transaction. One example includes crypto wallets such as Coinbase Wallet that grew in popularity recently, with other examples including smart contractor Uniswap, Maker (responsible for stablecoin DAI), moneylender Dharma and market protocol Compound. Ethereum's future developments are tied with this industry: Unlike Bitcoin and Ripple, Ethereum is technically not a currency but an open-source software platform for blockchain applications, with Ether being the cryptocurrency that is used inside the Ethereum network. Essentially, Ethereum facilitates DeFi, meaning that if DeFi does well, so does Ethereum.NFTs: the most well-known application of EthereumNFTs or non-fungible tokens, grew nearly tenfold between 2018 and 2020, as can be seen in the market cap of NFTs worldwide. These digital blockchain assets can essentially function as a unique code connected to a digital file, allowing to distinguish the original file from any potential copies. This application is especially prominent in crypto art, although there are other applications: gaming, sports, and collectibles are other segments where NFT sales occur.

  11. Shiba Inu SHIB/USD price history up to May 19, 2025

    • statista.com
    Updated May 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Shiba Inu SHIB/USD price history up to May 19, 2025 [Dataset]. https://www.statista.com/statistics/1271588/shiba-inu-price-index/
    Explore at:
    Dataset updated
    May 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Memecoin Shiba Inu saw its price grow by more than 300 percent within one and the same month, marking a trading fury reminiscent of Dogecoin in early 2021. Indeed, the SHIB coin ranked as one of the biggest crypto in the world based on 24h trading volume in October 2021 - with trading activity being almost as high as that of Ethereum. Originally starting out as a fun token based on the famous Japanese dog breed, the digital currency grabbed mainstream attention in 2021 probably due to its low barrier of entry: Even after its price spikes, Shiba Inu was one of the cheapest coins available, especially when compared to the price of 99 other cryptocurrencies. Combine this with survey information that most consumers in the U.S. and the UK invest in crypto either for growth or fun, and Shiba Inu is probably seen by many as a relatively simple, "quick win" investment. As of May 19, 2025, the price of one million Shiba Inu is 14.08.

  12. S&P Bitcoin Index: A Gateway to Crypto Legitimacy? (Forecast)

    • kappasignal.com
    Updated Apr 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). S&P Bitcoin Index: A Gateway to Crypto Legitimacy? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/s-bitcoin-index-gateway-to-crypto.html
    Explore at:
    Dataset updated
    Apr 13, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    S&P Bitcoin Index: A Gateway to Crypto Legitimacy?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. Fashion Token Index Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Fashion Token Index Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/fashion-token-index-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jun 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Fashion Token Index Market Outlook




    According to our latest research, the global Fashion Token Index market size reached USD 1.28 billion in 2024, reflecting a robust expansion driven by the digital transformation in the fashion and retail sectors. The market is projected to grow at a compelling CAGR of 22.7% from 2025 to 2033, reaching an estimated value of USD 9.02 billion by the end of the forecast period. This remarkable growth trajectory is primarily fueled by increased adoption of blockchain technology, rising consumer interest in digital assets, and the proliferation of virtual fashion experiences. As per the latest research, the Fashion Token Index market is witnessing rapid evolution, with both established fashion houses and emerging digital-native brands leveraging tokenization to enhance customer engagement, drive loyalty, and unlock new revenue streams.




    One of the key growth factors propelling the Fashion Token Index market is the increasing convergence of fashion and technology. The integration of blockchain-based tokens within the fashion industry enables brands to offer unique digital experiences, authenticate products, and facilitate transparent supply chains. Utility tokens and NFTs are being utilized to provide exclusive access to digital fashion shows, limited-edition collections, and immersive virtual environments. This trend is particularly pronounced among Gen Z and millennial consumers, who are highly receptive to digital ownership and the gamification of brand interactions. The ability to tokenize fashion assets not only enhances consumer engagement but also opens up innovative monetization pathways for designers and brands, further accelerating market growth.




    Another significant driver of the Fashion Token Index market is the rise of virtual goods and digital fashion. The burgeoning popularity of the metaverse and online gaming platforms has created a thriving market for digital apparel and accessories, which can be bought, sold, and traded using fashion tokens. Non-fungible tokens (NFTs) are at the forefront of this movement, allowing consumers to own verifiable, scarce digital fashion items. As virtual environments become increasingly sophisticated, brands are investing in NFT collaborations, digital runway events, and avatar customization, thereby expanding the utility and appeal of fashion tokens. The seamless integration of payment and loyalty tokens into these ecosystems further incentivizes consumer participation and fosters brand loyalty.




    Furthermore, the Fashion Token Index market is benefiting from the growing emphasis on sustainability and transparency within the fashion industry. Blockchain-powered tokens facilitate traceability, enabling consumers to verify the provenance and ethical credentials of their purchases. Security tokens are being leveraged to fractionalize ownership of high-value fashion assets, democratizing investment opportunities and fostering greater inclusivity. Additionally, the adoption of tokenized loyalty programs is streamlining customer rewards and enhancing the overall shopping experience. As regulatory frameworks around digital assets mature, institutional adoption is expected to rise, paving the way for sustained market expansion.




    Regionally, North America and Europe are leading the Fashion Token Index market, driven by advanced digital infrastructure, high consumer awareness, and a vibrant ecosystem of fashion-tech startups. The Asia Pacific region is emerging as a high-growth market, fueled by rapid urbanization, a burgeoning middle class, and widespread adoption of mobile payment solutions. Latin America and the Middle East & Africa are also witnessing increasing interest, with local brands experimenting with tokenization to differentiate their offerings and tap into global audiences. While regional dynamics vary, the overarching trend is clear: the fusion of blockchain technology and fashion is transforming industry paradigms, creating new value propositions for stakeholders across the value chain.





    Token Type Analysis


    &

  14. S&P Bitcoin Index: A New Era of Crypto Legitimacy? (Forecast)

    • kappasignal.com
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). S&P Bitcoin Index: A New Era of Crypto Legitimacy? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/s-bitcoin-index-new-era-of-crypto.html
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    S&P Bitcoin Index: A New Era of Crypto Legitimacy?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. Will the S&P Bitcoin Index Usher in a New Era of Cryptocurrency Adoption?...

    • kappasignal.com
    Updated Aug 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the S&P Bitcoin Index Usher in a New Era of Cryptocurrency Adoption? (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/will-s-bitcoin-index-usher-in-new-era.html
    Explore at:
    Dataset updated
    Aug 18, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the S&P Bitcoin Index Usher in a New Era of Cryptocurrency Adoption?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. S&P Bitcoin Index: A Gateway to Crypto Adoption? (Forecast)

    • kappasignal.com
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). S&P Bitcoin Index: A Gateway to Crypto Adoption? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/s-bitcoin-index-gateway-to-crypto_29.html
    Explore at:
    Dataset updated
    Apr 29, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    S&P Bitcoin Index: A Gateway to Crypto Adoption?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. Bitcoin Price Prediction: Analyzing Trends and Factors Shaping the Future...

    • kappasignal.com
    Updated May 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Bitcoin Price Prediction: Analyzing Trends and Factors Shaping the Future (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/bitcoin-price-prediction-analyzing.html
    Explore at:
    Dataset updated
    May 24, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Bitcoin Price Prediction: Analyzing Trends and Factors Shaping the Future

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. Will the S&P Ethereum Index Reshape the Cryptocurrency Landscape? (Forecast)...

    • kappasignal.com
    Updated Nov 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the S&P Ethereum Index Reshape the Cryptocurrency Landscape? (Forecast) [Dataset]. https://www.kappasignal.com/2024/11/will-s-ethereum-index-reshape.html
    Explore at:
    Dataset updated
    Nov 11, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the S&P Ethereum Index Reshape the Cryptocurrency Landscape?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. S&P Ethereum Index: The Future of Crypto? (Forecast)

    • kappasignal.com
    Updated Aug 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). S&P Ethereum Index: The Future of Crypto? (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/s-ethereum-index-future-of-crypto.html
    Explore at:
    Dataset updated
    Aug 15, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    S&P Ethereum Index: The Future of Crypto?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. Will the S&P Ethereum Index Lead the Crypto Market? (Forecast)

    • kappasignal.com
    Updated Aug 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the S&P Ethereum Index Lead the Crypto Market? (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/will-s-ethereum-index-lead-crypto-market.html
    Explore at:
    Dataset updated
    Aug 24, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the S&P Ethereum Index Lead the Crypto Market?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Pratyush Puri (2025). Cryptocurrency Market Sentiment & Price Data 2025 [Dataset]. https://www.kaggle.com/datasets/pratyushpuri/crypto-market-sentiment-and-price-dataset-2025
Organization logo

Cryptocurrency Market Sentiment & Price Data 2025

Realtime cryptocurrency prices, social sentiment, news impact & trading patterns

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jul 4, 2025
Dataset provided by
Kaggle
Authors
Pratyush Puri
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Description

This dataset, titled "Cryptocurrency Market Sentiment & Prediction," is a synthetic collection of real-time crypto market data designed for advanced analysis and predictive modeling. It captures a comprehensive range of features including price movements, social sentiment, news impact, and trading patterns for 10 major cryptocurrencies. Tailored for data scientists and analysts, this dataset is ideal for exploring market volatility, sentiment analysis, and price prediction, particularly in the context of significant events like the Bitcoin halving in 2024 and increasing institutional adoption.

Key Features Overview: - Price Movements: Tracks current prices and 24-hour price change percentages to reflect market dynamics. - Social Sentiment: Measures sentiment scores from social media platforms, ranging from -1 (negative) to 1 (positive), to gauge public perception. - News Sentiment and Impact: Evaluates sentiment from news sources and quantifies their potential impact on market behavior. - Trading Patterns: Includes data on 24-hour trading volumes and market capitalization, crucial for understanding market activity. - Technical Indicators: Features metrics like the Relative Strength Index (RSI), volatility index, and fear/greed index for in-depth technical analysis. - Prediction Confidence: Provides a confidence score for predictive models, aiding in assessing forecast reliability.

Purpose and Applications: - Perfect for machine learning tasks such as price prediction, sentiment-price correlation studies, and volatility classification. - Supports time series analysis for forecasting price movements and identifying volatility clusters. - Valuable for research into the influence of social media and news on cryptocurrency markets, especially during high-impact events.

Dataset Scope: - Covers a simulated 30-day period, offering a snapshot of market behavior under varying conditions. - Focuses on major cryptocurrencies including Bitcoin, Ethereum, Cardano, Solana, and others, ensuring relevance to current market trends.

Dataset Structure Table:

Column NameDescriptionData TypeRange/Value Example
timestampDate and time of data recorddatetimeLast 30 days (e.g., 2025-06-04 20:36:49)
cryptocurrencyName of the cryptocurrencystring10 major cryptos (e.g., Bitcoin)
current_price_usdCurrent trading price in USDfloatMarket-realistic (e.g., 47418.4096)
price_change_24h_percent24-hour price change percentagefloat-25% to +27% (e.g., 1.05)
trading_volume_24h24-hour trading volumefloatVariable (e.g., 1800434.38)
market_cap_usdMarket capitalization in USDfloatCalculated (e.g., 343755257516049.1)
social_sentiment_scoreSentiment score from social mediafloat-1 to 1 (e.g., -0.728)
news_sentiment_scoreSentiment score from news sourcesfloat-1 to 1 (e.g., -0.274)
news_impact_scoreQuantified impact of news on marketfloat0 to 10 (e.g., 2.73)
social_mentions_countNumber of mentions on social mediaintegerVariable (e.g., 707)
fear_greed_indexMarket fear and greed indexfloat0 to 100 (e.g., 35.3)
volatility_indexPrice volatility indexfloat0 to 100 (e.g., 36.0)
rsi_technical_indicatorRelative Strength Indexfloat0 to 100 (e.g., 58.3)
prediction_confidenceConfidence level of predictive modelsfloat0 to 100 (e.g., 88.7)

Dataset Statistics Table:

StatisticValue
Total Rows2,063
Total Columns14
Cryptocurrencies10 major tokens
Time RangeLast 30 days
File FormatCSV
Data QualityRealistic correlations between features

This dataset is a powerful resource for machine learning projects, sentiment analysis, and crypto market research, providing a robust foundation for AI/ML model development and testing.

Search
Clear search
Close search
Google apps
Main menu