100+ datasets found
  1. l

    Place Vulnerability Analysis Solution for ArcGIS Pro (BETA)

    • visionzero.geohub.lacity.org
    • opendata.rcmrd.org
    • +2more
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2019). Place Vulnerability Analysis Solution for ArcGIS Pro (BETA) [Dataset]. https://visionzero.geohub.lacity.org/content/ee44dd7cd11c4017a67d43fcbb1cb467
    Explore at:
    Dataset updated
    Feb 12, 2019
    Dataset authored and provided by
    NAPSG Foundation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Purpose: This is an ArcGIS Pro template that GIS Specialists can use to identify vulnerable populations and special needs infrastructure most at risk to flooding events.How does it work?Determine and understand the Place Vulnerability (based on Cutter et al. 1997) and the Special Needs Infrastructure for an area of interest based on Special Flood Hazard Zones, Social Vulnerability Index, and the distribution of its Population and Housing units. The final product will be charts of the data distribution and a Hosted Feature Layer. See this Story Map example for a more detailed explanation.This uses the FEMA National Flood Hazard Layer as an input (although you can substitute your own flood hazard data), check availability for your County before beginning the Task: FEMA NFHL ViewerThe solution consists of several tasks that allow you to:Select an area of interest for your Place Vulnerability Analysis. Select a Hazard that may occur within your area of interest.Select the Social Vulnerability Index (SVI) features contained within your area of interest using the CDC’s Social Vulnerability Index (SVI) – 2016 overall SVI layer at the census tract level in the map.Determine and understand the Social Vulnerability Index for the hazard zones identified within you area of interest.Identify the Special Needs Infrastructure features located within the hazard zones identified within you area of interest.Share your data to ArcGIS Online as a Hosted Feature Layer.FIRST STEPS:Create a folder C:\GIS\ if you do not already have this folder created. (This is a suggested step as the ArcGIS Pro Tasks does not appear to keep relative paths)Download the ZIP file.Extract the ZIP file and save it to the C:\GIS\ location on your computer. Open the PlaceVulnerabilityAnalysis.aprx file.Once the Project file (.aprx) opens, we suggest the following setup to easily view the Tasks instructions, the Map and its Contents, and the Databases (.gdb) from the Catalog pane.The following public web map is included as a Template in the ArcGIS Pro solution file: Place Vulnerability Template Web MapNote 1:As this is a beta version, please take note of some pain points:Data input and output locations may need to be manually populated from the related workspaces (.gdb) or the tools may fail to run. Make sure to unzip/extract the file to the C:\GIS\ location on your computer to avoid issues.Switching from one step to the next may not be totally seamless yet.If you are experiencing any issues with the Flood Hazard Zones service provided, or if the data is not available for your area of interest, you can also download your Flood Hazard Zones data from the FEMA Flood Map Service Center. In the search, use the FEMA ID. Once downloaded, save the data in your project folder and use it as an input.Note 2:In this task, the default hazard being used are the National Flood Hazard Zones. If you would like to use a different hazard, you will need to add the new hazard layer to the map and update all query expressions accordingly.For questions, bug reports, or new requirements contact pdoherty@publicsafetygis.org

  2. Spatial Map Series in ArcGIS Pro

    • support-esrinl-support.hub.arcgis.com
    Updated Nov 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri_NL_Support (2023). Spatial Map Series in ArcGIS Pro [Dataset]. https://support-esrinl-support.hub.arcgis.com/datasets/spatial-map-series-in-arcgis-pro
    Explore at:
    Dataset updated
    Nov 27, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri_NL_Support
    Description

    Laatste update: 3 juni 2024Een Spatial Map Series is een collectie van pagina's die opgebouwd zijn uit een enkele lay-out waarbij elke pagina een bepaalde kaartomvang (extent) toont. De extent wordt bepaald door de features in de index layer. De pagina's van de map series kunnen dynamische elementen bevatten die voor elke pagina worden bijgewerkt, zoals de schaal of de kaarttitel, en statische elementen die voor alle pagina's constant zijn. In ArcGIS Pro kan een Map Series worden gemaakt door de in dit artikel beschreven stappen te volgen.

  3. Terrain Ruggedness Index (TRI)

    • cacgeoportal.com
    • africageoportal.com
    • +3more
    Updated Sep 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Terrain Ruggedness Index (TRI) [Dataset]. https://www.cacgeoportal.com/content/28360713391948af9303c0aeabb45afd
    Explore at:
    Dataset updated
    Sep 27, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Terrain Ruggedness Index (TRI) is used to express the amount of elevation difference between adjacent cells of a DEM. This raster function template is used to generate a visual representation of the TRI with your elevation data. The results are interpreted as follows:0-80m is considered to represent a level terrain surface81-116m represents a nearly level surface117-161m represents a slightly rugged surface162-239m represents an intermediately rugged surface240-497m represents a moderately rugged surface498-958m represents a highly rugged surface959-4367m represents an extremely rugged surfaceWhen to use this raster function templateThe main value of this measurement is that it gives a relatively accurate view of the vertical change taking place in the terrain model from cell to cell. The TRI provides data on the relative change in height of the hillslope (rise), such as the side of a canyon.How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual TRI representation of your imagery. This index supports elevation data.References:Raster functionsApplicable geographiesThe index is a standard index which is designed to work globally.

  4. Digital Geologic-GIS Map of Mount Rainier National Park, Washington (NPS,...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Mount Rainier National Park, Washington (NPS, GRD, GRI, MORA, MORA_geology digital map) adapted from a U.S. Geological Survey Miscellaneous Geologic Investigations Map by Fiske, Hopson and Waters (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-mount-rainier-national-park-washington-nps-grd-gri-mora-mora-g
    Explore at:
    Dataset updated
    Nov 11, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Mount Rainier
    Description

    The Digital Geologic-GIS Map of Mount Rainier National Park, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mora_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mora_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mora_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mora_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mora_geology_metadata_faq.pdf). Please read the mora_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mora_geology_metadata.txt or mora_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth.

  5. Landsat 8-9 Normalized Difference Vegetation Index (NDVI) Colorized

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated Aug 11, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Landsat 8-9 Normalized Difference Vegetation Index (NDVI) Colorized [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/f6bb66f1c11e467f9a9a859343e27cf8
    Explore at:
    Dataset updated
    Aug 11, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer includes Landsat 8 and 9 imagery rendered on-the-fly as NDVI Colorized for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is NDVI Colorized, calculated as (b5 - b4) / (b5 + b4) with a colormap applied.Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral BandsThe table below lists all available multispectral OLI bands. NDVI Colorized consumes bands 4 and 5.BandDescriptionWavelength (µm)Spatial Resolution (m)1Coastal aerosol0.43 - 0.45302Blue0.45 - 0.51303Green0.53 - 0.59304Red0.64 - 0.67305Near Infrared (NIR)0.85 - 0.88306SWIR 11.57 - 1.65307SWIR 22.11 - 2.29308Cirrus (in OLI this is band 9)1.36 - 1.38309QA Band (available with Collection 1)*NA30*More about the Quality Assessment BandTIRS BandsBandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.

  6. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021

    • pacificgeoportal.com
    • gis-for-secondary-schools-schools-be.hub.arcgis.com
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 [Dataset]. https://www.pacificgeoportal.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Retirement Notice: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map Viewer To show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021 By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this: 4. Click the styles button.5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off. Showing just one pair of years in ArcGIS Pro To show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well. How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022 What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  7. r

    India: Land Cover

    • opendata.rcmrd.org
    • goa-state-gis-esriindia1.hub.arcgis.com
    • +1more
    Updated Mar 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Land Cover [Dataset]. https://opendata.rcmrd.org/maps/9aeb44fb438645e8ae8387231f5c2815
    Explore at:
    Dataset updated
    Mar 21, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years since 1992. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2019Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: AnnualWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  8. Digital Geologic-GIS Map of Johnstown Flood National Memorial and portions...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Johnstown Flood National Memorial and portions of Allegheny Portage Railroad National Historic Site, Pennsylvania (NPS, GRD, GRI, JOFL, JOFL_ALPO digital map) adapted from a Pennsylvania Geological Survey Water Resource Report map by McElroy (1998) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-johnstown-flood-national-memorial-and-portions-of-allegheny-po
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Allegheny Township, Pennsylvania
    Description

    The Digital Geologic-GIS Map of Johnstown Flood National Memorial and portions of Allegheny Portage Railroad National Historic Site, Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (jofl_alpo_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (jofl_alpo_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (jofl_alpo_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (alpo_jofl_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (alpo_jofl_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (jofl_alpo_geology_metadata_faq.pdf). Please read the alpo_jofl_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Pennsylvania Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (jofl_alpo_geology_metadata.txt or jofl_alpo_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  9. c

    Land Cover 1992-2020

    • cacgeoportal.com
    • opendata.rcmrd.org
    • +1more
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Land Cover 1992-2020 [Dataset]. https://www.cacgeoportal.com/maps/bb0e4bcd891c4679881f80997c9b8871
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  10. a

    United States of America National Commodity Crop Productivity Index, 2021

    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    • chi-phi-nmcdc.opendata.arcgis.com
    Updated Jul 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). United States of America National Commodity Crop Productivity Index, 2021 [Dataset]. https://supply-chain-data-hub-nmcdc.hub.arcgis.com/datasets/united-states-of-america-national-commodity-crop-productivity-index-2021-1
    Explore at:
    Dataset updated
    Jul 14, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    United States
    Description

    The National Commodity Crop Productivity Index (NCCPI) ranks the inherent capability of soils to produce agricultural crops without irrigation. For more information on how the NCCPI is calculated see User Guide for the National Commodity Crop Productivity Index.Dataset SummaryPhenomenon Mapped: National Commodity Crop Productivity Index version 3.0Units: Thousandths of nccpi3all index value, served as integers (this layer's value of 889 equals 0.889 in the nccpi3all)Cell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021, except Puerto Rico and US Virgin Islands which are July 2020.ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for the National Commodity Crop Productivity Index is derived from the gSSURGO valu1 table field nccpi3all.Note: This layer serves the National Commodity Crop Productivity Index value from the 2021 version for Puerto Rico and the US Virgin Islands. In 2022 the gNATSGO source was missing its Valu1 table for Puerto Rico and the US Virgin Islands.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "soil crop production" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "soil crop production" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  11. Atmospherically Resistant Vegetation Index (ARVI)

    • rwanda.africageoportal.com
    • agriculture.africageoportal.com
    • +5more
    Updated Sep 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Atmospherically Resistant Vegetation Index (ARVI) [Dataset]. https://rwanda.africageoportal.com/content/56a6db4cdd1c46988a1411d0365fd5f7
    Explore at:
    Dataset updated
    Sep 29, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Atmospherically Resistant Vegetation Index (ARVI) is a vegetation-based index that minimizes the effects of atmospheric scattering due to aerosols such as such as rain, fog, dust, smoke, or air pollution. This raster function template is used to generate a visual representation using ARVI with your data. The results cannot be used for analysis. To use this index, your imagery must have bands that collect data at wavelengths between 650nm and 865nm.References:Atmospherically Resistant Vegetation IndexRaster functionsWhen to use this raster function templateARVI is useful when working with imagery for regions with high atmospheric aerosol content. This makes it an effective visualization method to eliminate the effects of atmospheric aerosols. How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual ARVI representation of your imagery. This index supports many satellite sensors, such as Landsat-8, Sentinel-2, Quickbird, IKONOS, Geoeye-1, and Pleiades-1.Applicable geographiesThe index is a standard vegetation index which is designed to work globally.

  12. Chlorophyll Index - Red Edge (CIRE)

    • cacgeoportal.com
    • uneca.africageoportal.com
    • +7more
    Updated Sep 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Chlorophyll Index - Red Edge (CIRE) [Dataset]. https://www.cacgeoportal.com/content/7bfa9b2e530641c09e4e3ea3c9c0b872
    Explore at:
    Dataset updated
    Sep 27, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This index is developed to estimate the chlorophyll content of leaves, using the ratio of reflectivity in the near-infrared (NIR) and red-edge bands. Chlorophyll is a good indicator of the plant’s production potential. It can be also used to understand the plant’s nutrient status, stress due to water, disease outbreak, and more. This raster function template is used to generate a visual representation using CIRE with your data. The results cannot be used for analysis. To use this index, your imagery must have bands that collect data at wavelengths between 710nm and 805nm.References:Chlorophyll Index - Red Edge (CIRE)Raster functionsWhen to use this raster function templateCIRE is useful when working with imagery to determine general health of plants and productions potential. How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual CIRE representation of your imagery. This index supports many satellite sensors, such as Landsat-8, Sentinel-2, and RapidEye.Applicable geographiesThe index is a standard vegetation index which is designed to work globally.

  13. r

    ClaimLoc 2025 & MedianAge 2023

    • opendata.rcmrd.org
    Updated Jul 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Wisconsin-Milwaukee (2025). ClaimLoc 2025 & MedianAge 2023 [Dataset]. https://opendata.rcmrd.org/maps/52cee01a881d42d099fcbfa8db561504
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset authored and provided by
    University of Wisconsin-Milwaukee
    Area covered
    Description

    This map shows median age in the US by country, state, county, tract, and congressional district for 2023. ArcGIS Online account required for use.The pop-up is configured to show median age, median age by sex, child age (under 18) population, senior age (over 65) population, the age dependency ratio, and population by 5 year age increments. Blending is used at the Tract level to highlight areas of human settlement. Congressional district is turned off by default and can be enabled in the Layers pane.Esri 2023 Age Dependency Ratio is the estimated ratio of the child population (Age 0-17) and senior population (Age 65+) to the working-age population (Age 18-64) in the geographic area. This ratio is then multiplied by 100. Higher ratios denote that a greater burden is carried by working-age people. Lower ratios mean more people are working who can support the dependent population. Read more. See Updated Demographics for more information on Esri Demographic variables.Esri Updated Demographics represent the suite of annually updated U.S. demographic data that provides current-year and five-year forecasts for more than two thousand demographic and socioeconomic characteristics, a subset of which is included in this layer. Included are a host of tables covering key characteristics of the population, households, housing, age, race, income, and much more. Esri's Updated Demographics data consists of point estimates, representing July 1 of the current and forecast years.Get started with U.S. Updated DemographicsHow to use and interpret U.S. Updated DemographicsEsri Updated Demographics DocumentationMethodologyEssential Esri Demographics vocabularyThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. This layer requires an ArcGIS Online subscription and does not consume credits. Please cite Esri when using this data. For information about purchasing additional Esri's Updated Demographics data, contact datasales@esri.com. Feedback: we would like to hear from you while this layer is in beta release. If you have any feedback regarding this item or Esri Demographics, please use this survey. Fields available:GEOIDNameState NameState Abbreviation2023 Total Population (Esri)2023 Household Population (Esri)2023 Group Quarters Population (Esri)2023 Population Density (Pop per Square Mile) (Esri)2023 Total Households (Esri)2023 Average Household Size (Esri)2023 Total Housing Units (Esri)2023 Owner Occupied Housing Units (Esri)2023 Renter Occupied Housing Units (Esri)2023 Vacant Housing Units (Esri)2020-2023 Population: Compound Annual Growth Rate (Esri)2020-2023 Households: Compound Annual Growth Rate (Esri)2023 Housing Affordability Index (Esri)2023 Percent of Income for Mortgage (Esri)2023 Wealth Index (Esri)2023 Socioeconomic Status Index (Esri)2023 Generation Alpha Population (Born 2017 or Later) (Esri)2023 Generation Z Population (Born 1999 to 2016) (Esri)2023 Millennial Population (Born 1981 to 1998) (Esri)2023 Generation X Population (Born 1965 to 1980) (Esri)2023 Baby Boomer Population (Born 1946 to 1964) (Esri)2023 Silent & Greatest Generations Population (Born 1945/Earlier) (Esri)2023 Population by Generation Base (Esri)2023 Child Population (Age <18) (Esri)2023 Working-Age Population (Age 18-64) (Esri)2023 Senior Population (Age 65+) (Esri)2023 Child Dependency Ratio (Esri)2023 Age Dependency Ratio (Esri)2023 Senior Dependency Ratio (Esri)2023 Total Population Age 0-4 (Esri)2023 Total Population Age 5-9 (Esri)2023 Total Population Age 10-14 (Esri)2023 Total Population Age 15-19 (Esri)2023 Total Population Age 20-24 (Esri)2023 Total Population Age 25-29 (Esri)2023 Total Population Age 30-34 (Esri)2023 Total Population Age 35-39 (Esri)2023 Total Population Age 40-44 (Esri)2023 Total Population Age 45-49 (Esri)2023 Total Population Age 50-54 (Esri)2023 Total Population Age 55-59 (Esri)2023 Total Population Age 60-64 (Esri)2023 Total Population Age 65-69 (Esri)2023 Total Population Age 70-74 (Esri)2023 Total Population Age 75-79 (Esri)2023 Total Population Age 80-84 (Esri)2023 Total Population Age 85+ (Esri)2023 Median Age (Esri)2023 Male Population (Esri)2023 Median Male Age (Esri)2023 Female Population (Esri)2023 Median Female Age (Esri)2023 Total Population by Five-Year Age Base (Esri)2023 Total Daytime Population (Esri)2023 Daytime Population: Workers (Esri)2023 Daytime Population: Residents (Esri)2023 Daytime Population Density (Pop per Square Mile) (Esri)2023 Civilian Population Age 16+ in Labor Force (Esri)2023 Employed Civilian Population Age 16+ (Esri)2023 Unemployed Population Age 16+ (Esri)2023 Unemployment Rate (Esri)2023 Civilian Population 16-24 in Labor Force (Esri)2023 Employed Civilian Population Age 16-24 (Esri)2023 Unemployed Population Age 16-24 (Esri)2023 Unemployment Rate: Population Age 16-24 (Esri)2023 Civilian Population 25-54 in Labor Force (Esri)2023 Employed Civilian Population Age 25-54 (Esri)2023 Unemployed Population Age 25-54 (Esri)2023 Unemployment Rate: Population Age 25-54 (Esri)2023 Civilian Population 55-64 in Labor Force (Esri)2023 Employed Civilian Population Age 55-64 (Esri)2023 Unemployed Population Age 55-64 (Esri)2023 Unemployment Rate: Population Age 55-64 (Esri)2023 Civilian Population 65+ in Labor Force (Esri)2023 Employed Civilian Population Age 65+ (Esri)2023 Unemployed Population Age 65+ (Esri)2023 Unemployment Rate: Population Age 65+ (Esri)2023 Child Economic Dependency Ratio (Esri)2023 Working-Age Economic Dependency Ratio (Esri)2023 Senior Economic Dependency Ratio (Esri)2023 Economic Dependency Ratio (Esri)2023 Hispanic Population (Esri)2023 White Non-Hispanic Population (Esri)2023 Black/African American Non-Hispanic Population (Esri)2023 American Indian/Alaska Native Non-Hispanic Population (Esri)2023 Asian Non-Hispanic Population (Esri)2023 Pacific Islander Non-Hispanic Population (Esri)2023 Other Race Non-Hispanic Population (Esri)2023 Multiple Races Non-Hispanic Population (Esri)2023 Diversity Index (Esri)2023 Population by Race Base (Esri)2023 Population Age 25+: Less than 9th Grade (Esri)2023 Population Age 25+: 9-12th Grade/No Diploma (Esri)2023 Population Age 25+: High School Diploma (Esri)2023 Population Age 25+: GED/Alternative Credential (Esri)2023 Population Age 25+: Some College/No Degree (Esri)2023 Population Age 25+: Associate's Degree (Esri)2023 Population Age 25+: Bachelor's Degree (Esri)2023 Population Age 25+: Graduate/Professional Degree (Esri)2023 Educational Attainment Base (Pop 25+)(Esri)2023 Household Income less than $15,000 (Esri)2023 Household Income $15,000-$24,999 (Esri)2023 Household Income $25,000-$34,999 (Esri)2023 Household Income $35,000-$49,999 (Esri)2023 Household Income $50,000-$74,999 (Esri)2023 Household Income $75,000-$99,999 (Esri)2023 Household Income $100,000-$149,999 (Esri)2023 Household Income $150,000-$199,999 (Esri)2023 Household Income $200,000 or greater (Esri)2023 Median Household Income (Esri)2023 Average Household Income (Esri)2023 Per Capita Income (Esri)2023 Households by Income Base (Esri)2023 Gini Index (Esri)2023 P90-P10 Ratio of Income Inequality (Esri)2023 P90-P50 Ratio of Income Inequality (Esri)2023 P50-P10 Ratio of Income Inequality (Esri)2023 80-20 Share Ratio of Income Inequality (Esri)2023 90-40 Share Ratio of Income Inequality (Esri)2023 Households in Low Income Tier (Esri)2023 Households in Middle Income Tier (Esri)2023 Households in Upper Income Tier (Esri)2023 Disposable Income less than $15,000 (Esri)2023 Disposable Income $15,000-$24,999 (Esri)2023 Disposable Income $25,000-$34,999 (Esri)2023 Disposable Income $35,000-$49,999 (Esri)2023 Disposable Income $50,000-$74,999 (Esri)2023 Disposable Income $75,000-$99,999 (Esri)2023 Disposable Income $100,000-$149,999 (Esri)2023 Disposable Income $150,000-$199,999 (Esri)2023 Disposable Income $200,000 or greater (Esri)2023 Median Disposable Income (Esri)2023 Home Value less than $50,000 (Esri)2023 Home Value $50,000-$99,999 (Esri)2023 Home Value $100,000-$149,999 (Esri)2023 Home Value $150,000-$199,999 (Esri)2023 Home Value $200,000-$249,999 (Esri)2023 Home Value $250,000-$299,999 (Esri)2023 Home Value $300,000-$399,999 (Esri)2023 Home Value $400,000-$499,999 (Esri)2023 Home Value $500,000-$749,999 (Esri)2023 Home Value $750,000-$999,999 (Esri)2023 Home Value $1,000,000-$1,499,999 (Esri)2023 Home Value $1,500,000-$1,999,999 (Esri)2023 Home Value $2,000,000 or greater (Esri)2023 Median Home Value (Esri)2023 Average Home Value (Esri)2028 Total Population (Esri)2028 Household Population (Esri)2028 Population Density (Pop per Square Mile) (Esri)2028 Total Households (Esri)2028 Average Household Size (Esri)2023-2028 Population: Compound Annual Growth Rate (Esri)2023-2028 Households: Compound Annual Growth Rate (Esri)2023-2028 Per Capita Income: Compound Annual Growth Rate (Esri)2023-2028 Median Household Income: Compound Annual Growth Rate (Esri)2028 Diversity Index (Esri)2028 Median Household Income (Esri)2028 Average Household Income (Esri)2028 Per Capita Income (Esri)

  14. Digital Geologic-GIS Map of the Whistle Creek NW Quadrangle, Nebraska (NPS,...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Oct 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of the Whistle Creek NW Quadrangle, Nebraska (NPS, GRD, GRI, AGFO, WHCR digital map) adapted from a University of Nebraska Conservation and Survey Division Geologic Maps and Charts map by Dillon, Hanson and Howard (2013) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geologic-gis-map-of-the-whistle-creek-nw-quadrangle-nebraska-nps-grd-gri-agfo-whcr
    Explore at:
    Dataset updated
    Oct 4, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Nebraska, Whistle Creek Precinct
    Description

    The Digital Geologic-GIS Map of the Whistle Creek NW Quadrangle, Nebraska is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (whcr_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (whcr_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (whcr_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (agfo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (agfo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (whcr_geology_metadata_faq.pdf). Please read the agfo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: University of Nebraska Conservation and Survey Division. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (whcr_geology_metadata.txt or whcr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). Purpose: The data are intended to assist NPS personnel in the protection and management of Agate Fossil Beds National Monument.

  15. Digital Bedrock Geologic-GIS Map of Allegheny Portage Railroad National...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Bedrock Geologic-GIS Map of Allegheny Portage Railroad National Historic Site, Johnstown Flood National Memorial and Vicinity, Pennsylvania (NPS, GRD, GRI, ALPO, JOFL, ALPO_JOFL_bedrock digital map) adapted from a Pennsylvania Geological Survey published digital data by Berg, Edmunds, Geyer and others, plus compilers (2001) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-allegheny-portage-railroad-national-historic-site-john
    Explore at:
    Dataset updated
    Oct 16, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Pennsylvania
    Description

    The Digital Bedrock Geologic-GIS Map of Allegheny Portage Railroad National Historic Site, Johnstown Flood National Memorial and Vicinity, Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (alpo_jofl_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (alpo_jofl_bedrock_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (alpo_jofl_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (alpo_jofl_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (alpo_jofl_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (alpo_jofl_bedrock_geology_metadata_faq.pdf). Please read the alpo_jofl_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Pennsylvania Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (alpo_jofl_bedrock_geology_metadata.txt or alpo_jofl_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of the digital data, 1:62,500, and United States National Map Accuracy Standards features are within (horizontally) 31.75 meters or 104.17 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset.

  16. Digital Surficial Geologic-GIS Map of Minuteman National Historical Site and...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Oct 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Surficial Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts (NPS, GRD, GRI, MIMA, MIMA_surficial digital map) adapted from a U.S. Geological Survey Open-File Report map by Stone and Stone (2006) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-surficial-geologic-gis-map-of-minuteman-national-historical-site-and-vicinity-mass
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Surficial Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_surficial_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_surficial_geology_metadata.txt or mima_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  17. Digital Bedrock Geologic-GIS Map of Cuyahoga National Park and Vicinity,...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Oct 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Bedrock Geologic-GIS Map of Cuyahoga National Park and Vicinity, Ohio (NPS, GRD, GRI, CUVA, CUVA_bedrock digital map) adapted from Ohio Division of Geological Survey Open-File Bedrock-Geology Series Maps by Larsen, Slucher and Vorbau (1996 and 1997) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-cuyahoga-national-park-and-vicinity-ohio-nps-grd-gri-c
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Cuyahoga County, Ohio
    Description

    The Digital Bedrock Geologic-GIS Map of Cuyahoga National Park and Vicinity, Ohio is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (cuva_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (cuva_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (cuva_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cuva_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (cuva_bedrock_geology_metadata_faq.pdf). Please read the cuva_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Ohio Division of Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (cuva_bedrock_geology_metadata.txt or cuva_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  18. Digital Surficial Geologic-GIS Map for Cuyahoga Valley National Park and...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Surficial Geologic-GIS Map for Cuyahoga Valley National Park and Vicinity, Ohio (NPS, GRD, GRI, CUVA, CUVA_surficial digital map) adapted from a Ohio Division of Geological Survey Digital Map Series map by Pavey, Schumacher, Larsen, Swinford and Vorbau (2000) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-surficial-geologic-gis-map-for-cuyahoga-valley-national-park-and-vicinity-ohio-nps
    Explore at:
    Dataset updated
    Oct 16, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Ohio
    Description

    The Digital Surficial Geologic-GIS Map for Cuyahoga Valley National Park and Vicinity, Ohio is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (cuva_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (cuva_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (cuva_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cuva_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (cuva_surficial_geology_metadata_faq.pdf). Please read the cuva_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Ohio Division of Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (cuva_surficial_geology_metadata.txt or cuva_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  19. Digital Geologic-GIS Map of Glacier National Park, Montana (NPS, GRD, GRI,...

    • catalog.data.gov
    • datasets.ai
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Glacier National Park, Montana (NPS, GRD, GRI, GLAC, GLAC digital map) adapted from a U.S. Geological Survey Miscellaneous Investigations Series Map by Whipple (1992) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-glacier-national-park-montana-nps-grd-gri-glac-glac-digital-ma
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Montana
    Description

    The Digital Geologic-GIS Map of Glacier National Park, Montana is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (glac_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (glac_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (glac_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (glac_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (glac_geology_metadata_faq.pdf). Please read the glac_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (glac_geology_metadata.txt or glac_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  20. Landsat Arctic Imagery: Normalized Difference Moisture Index Colorized

    • hub.arcgis.com
    • open-data-pittsylvania.hub.arcgis.com
    Updated Jun 24, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Landsat Arctic Imagery: Normalized Difference Moisture Index Colorized [Dataset]. https://hub.arcgis.com/datasets/3ea75c75105641ea91203280b57e9521
    Explore at:
    Dataset updated
    Jun 24, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This dynamic imagery layer features Landsat 8 and Landsat GLS imagery, rendered on-the-fly as Normalized Difference Moisture Index Colorized, for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.

    To view this imagery layer, you'll want to add it to a map that is using the Polar projection of WGS_1984_EPSG_Alaska_Polar_Stereographic, for example the Arctic Ocean Basemap or the Arctic Imagery basemap. Other polar projections may be used within their useful limits. There is no imagery above 82°30’N due to the orbit of the satellite.

    Geographic CoverageArctic RegionTemporal CoverageThis layer is updated daily with new imagery.Landsat 8 revisits each point on Earth's land surface every 16 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Normalized Difference Moisture Index Colorized, calculated as (b5 - b6)/(b5 + b6) with a colormap applied. Wetlands and moist areas are blues, and dry areas in deep yellow and brown.Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Multispectral BandsThe table below lists all available multispectral OLI bands. Normalized Difference Moisture Index consumes band 5 and 6.BandDescriptionWavelength (µm)Spatial Resolution (m)1Coastal aerosol0.43 - 0.45302Blue0.45 - 0.51303Green0.53 - 0.59304Red0.64 - 0.67305Near Infrared (NIR)0.85 - 0.88306SWIR 11.57 - 1.65307SWIR 22.11 - 2.29308Cirrus (in OLI this is band 9)1.36 - 1.38309QA Band (available with Collection 1)*NA30*More about the Quality Assessment BandTIRS BandsBandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Unlocking Landsat in the Arctic app is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information on Landsat 8 images, see Landsat8.

    *The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NAPSG Foundation (2019). Place Vulnerability Analysis Solution for ArcGIS Pro (BETA) [Dataset]. https://visionzero.geohub.lacity.org/content/ee44dd7cd11c4017a67d43fcbb1cb467

Place Vulnerability Analysis Solution for ArcGIS Pro (BETA)

Explore at:
Dataset updated
Feb 12, 2019
Dataset authored and provided by
NAPSG Foundation
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Description

Purpose: This is an ArcGIS Pro template that GIS Specialists can use to identify vulnerable populations and special needs infrastructure most at risk to flooding events.How does it work?Determine and understand the Place Vulnerability (based on Cutter et al. 1997) and the Special Needs Infrastructure for an area of interest based on Special Flood Hazard Zones, Social Vulnerability Index, and the distribution of its Population and Housing units. The final product will be charts of the data distribution and a Hosted Feature Layer. See this Story Map example for a more detailed explanation.This uses the FEMA National Flood Hazard Layer as an input (although you can substitute your own flood hazard data), check availability for your County before beginning the Task: FEMA NFHL ViewerThe solution consists of several tasks that allow you to:Select an area of interest for your Place Vulnerability Analysis. Select a Hazard that may occur within your area of interest.Select the Social Vulnerability Index (SVI) features contained within your area of interest using the CDC’s Social Vulnerability Index (SVI) – 2016 overall SVI layer at the census tract level in the map.Determine and understand the Social Vulnerability Index for the hazard zones identified within you area of interest.Identify the Special Needs Infrastructure features located within the hazard zones identified within you area of interest.Share your data to ArcGIS Online as a Hosted Feature Layer.FIRST STEPS:Create a folder C:\GIS\ if you do not already have this folder created. (This is a suggested step as the ArcGIS Pro Tasks does not appear to keep relative paths)Download the ZIP file.Extract the ZIP file and save it to the C:\GIS\ location on your computer. Open the PlaceVulnerabilityAnalysis.aprx file.Once the Project file (.aprx) opens, we suggest the following setup to easily view the Tasks instructions, the Map and its Contents, and the Databases (.gdb) from the Catalog pane.The following public web map is included as a Template in the ArcGIS Pro solution file: Place Vulnerability Template Web MapNote 1:As this is a beta version, please take note of some pain points:Data input and output locations may need to be manually populated from the related workspaces (.gdb) or the tools may fail to run. Make sure to unzip/extract the file to the C:\GIS\ location on your computer to avoid issues.Switching from one step to the next may not be totally seamless yet.If you are experiencing any issues with the Flood Hazard Zones service provided, or if the data is not available for your area of interest, you can also download your Flood Hazard Zones data from the FEMA Flood Map Service Center. In the search, use the FEMA ID. Once downloaded, save the data in your project folder and use it as an input.Note 2:In this task, the default hazard being used are the National Flood Hazard Zones. If you would like to use a different hazard, you will need to add the new hazard layer to the map and update all query expressions accordingly.For questions, bug reports, or new requirements contact pdoherty@publicsafetygis.org

Search
Clear search
Close search
Google apps
Main menu