100+ datasets found
  1. Countries with the largest population 2025

    • statista.com
    Updated Aug 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
    Explore at:
    Dataset updated
    Aug 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    In 2025, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth.

  2. Total population of India 2029

    • statista.com
    Updated Nov 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Total population of India 2029 [Dataset]. https://www.statista.com/statistics/263766/total-population-of-india/
    Explore at:
    Dataset updated
    Nov 18, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The statistic shows the total population of India from 2019 to 2029. In 2023, the estimated total population in India amounted to approximately 1.43 billion people.

    Total population in India

    India currently has the second-largest population in the world and is projected to overtake top-ranking China within forty years. Its residents comprise more than one-seventh of the entire world’s population, and despite a slowly decreasing fertility rate (which still exceeds the replacement rate and keeps the median age of the population relatively low), an increasing life expectancy adds to an expanding population. In comparison with other countries whose populations are decreasing, such as Japan, India has a relatively small share of aged population, which indicates the probability of lower death rates and higher retention of the existing population.

    With a land mass of less than half that of the United States and a population almost four times greater, India has recognized potential problems of its growing population. Government attempts to implement family planning programs have achieved varying degrees of success. Initiatives such as sterilization programs in the 1970s have been blamed for creating general antipathy to family planning, but the combined efforts of various family planning and contraception programs have helped halve fertility rates since the 1960s. The population growth rate has correspondingly shrunk as well, but has not yet reached less than one percent growth per year.

    As home to thousands of ethnic groups, hundreds of languages, and numerous religions, a cohesive and broadly-supported effort to reduce population growth is difficult to create. Despite that, India is one country to watch in coming years. It is also a growing economic power; among other measures, its GDP per capita was expected to triple between 2003 and 2013 and was listed as the third-ranked country for its share of the global gross domestic product.

  3. World Population Statistics - 2023

    • kaggle.com
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhavik Jikadara (2024). World Population Statistics - 2023 [Dataset]. https://www.kaggle.com/datasets/bhavikjikadara/world-population-statistics-2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 9, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhavik Jikadara
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description
    • The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on Earth, which far exceeds the world population of 7.2 billion in 2015. Our estimate based on UN data shows the world's population surpassing 7.7 billion.
    • China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.
    • The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.
    • Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.
    • In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added yearly.
    • This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content

    • In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc. >Dataset Glossary (Column-Wise):
    • Rank: Rank by Population.
    • CCA3: 3 Digit Country/Territories Code.
    • Country/Territories: Name of the Country/Territories.
    • Capital: Name of the Capital.
    • Continent: Name of the Continent.
    • 2022 Population: Population of the Country/Territories in the year 2022.
    • 2020 Population: Population of the Country/Territories in the year 2020.
    • 2015 Population: Population of the Country/Territories in the year 2015.
    • 2010 Population: Population of the Country/Territories in the year 2010.
    • 2000 Population: Population of the Country/Territories in the year 2000.
    • 1990 Population: Population of the Country/Territories in the year 1990.
    • 1980 Population: Population of the Country/Territories in the year 1980.
    • 1970 Population: Population of the Country/Territories in the year 1970.
    • Area (km²): Area size of the Country/Territories in square kilometers.
    • Density (per km²): Population Density per square kilometer.
    • Growth Rate: Population Growth Rate by Country/Territories.
    • World Population Percentage: The population percentage by each Country/Territories.
  4. Global population by continent 2024

    • statista.com
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population by continent 2024 [Dataset]. https://www.statista.com/statistics/262881/global-population-by-continent/
    Explore at:
    Dataset updated
    Oct 1, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2024
    Area covered
    World
    Description

    There are approximately 8.16 billion people living in the world today, a figure that shows a dramatic increase since the beginning of the Common Era. Since the 1970s, the global population has also more than doubled in size. It is estimated that the world's population will reach and surpass 10 billion people by 2060 and plateau at around 10.3 billion in the 2080s, before it then begins to fall. Asia When it comes to number of inhabitants per continent, Asia is the most populous continent in the world by a significant margin, with roughly 60 percent of the world's population living there. Similar to other global regions, a quarter of inhabitants in Asia are under 15 years of age. The most populous nations in the world are India and China respectively; each inhabit more than three times the amount of people than the third-ranked United States. 10 of the 20 most populous countries in the world are found in Asia. Africa Interestingly, the top 20 countries with highest population growth rate are mainly countries in Africa. This is due to the present stage of Sub-Saharan Africa's demographic transition, where mortality rates are falling significantly, although fertility rates are yet to drop and match this. As much of Asia is nearing the end of its demographic transition, population growth is predicted to be much slower in this century than in the previous; in contrast, Africa's population is expected to reach almost four billion by the year 2100. Unlike demographic transitions in other continents, Africa's population development is being influenced by climate change on a scale unseen by most other global regions. Rising temperatures are exacerbating challenges such as poor sanitation, lack of infrastructure, and political instability, which have historically hindered societal progress. It remains to be seen how Africa and the world at large adapts to this crisis as it continues to cause drought, desertification, natural disasters, and climate migration across the region.

  5. Countries with the highest population 1950-2100

    • statista.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest population 1950-2100 [Dataset]. https://www.statista.com/statistics/268107/countries-with-the-highest-population/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    From now until 2100, India and China will remain the most populous countries in the world, however China's population decline has already started, and it is on course to fall by around 50 percent in the 2090s; while India's population decline is projected to begin in the 2060s. Of the 10 most populous countries in the world in 2100, five will be located in Asia, four in Africa, as well as the United States. Rapid growth in Africa Rapid population growth across Africa will see the continent's population grow from around 1.5 billion people in 2024 to 3.8 billion in 2100. Additionally, unlike China or India, population growth in many of these countries is not expected to go into decline, and instead is expected to continue well into the 2100s. Previous estimates had projected these countries' populations would be much higher by 2100 (the 2019 report estimated Nigeria's population would exceed 650 million), yet the increased threat of the climate crisis and persistent instability is delaying demographic development and extending population growth. The U.S. as an outlier Compared to the nine other largest populations in 2100, the United States stands out as it is more demographically advanced, politically stable, and economically stronger. However, while most other so-called "advanced countries" are projected to see their population decline drastically in the coming decades, the U.S. population is projected to continue growing into the 2100s. This will largely be driven by high rates of immigration into the U.S., which will drive growth despite fertility rates being around 1.6 births per woman (below the replacement level of 2.1 births per woman), and the slowing rate of life expectancy. Current projections estimate the U.S. will have a net migration rate over 1.2 million people per year for the remainder of the century.

  6. Forecast: Population in Urban Agglomerations of More Than 1 Million in India...

    • reportlinker.com
    Updated Apr 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ReportLinker (2024). Forecast: Population in Urban Agglomerations of More Than 1 Million in India 2024 - 2028 [Dataset]. https://www.reportlinker.com/dataset/0c10b7ad49dd7df67a997157159973ef52975c06
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    ReportLinker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Forecast: Population in Urban Agglomerations of More Than 1 Million in India 2024 - 2028 Discover more data with ReportLinker!

  7. T

    India - Rural Population

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jan 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). India - Rural Population [Dataset]. https://tradingeconomics.com/india/rural-population-percent-of-total-population-wb-data.html
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Jan 13, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    India
    Description

    Rural population (% of total population) in India was reported at 63.13 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Rural population - actual values, historical data, forecasts and projections were sourced from the World Bank on September of 2025.

  8. Population of India 1800-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of India 1800-2020 [Dataset]. https://www.statista.com/statistics/1066922/population-india-historical/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    In 1800, the population of the region of present-day India was approximately 169 million. The population would grow gradually throughout the 19th century, rising to over 240 million by 1900. Population growth would begin to increase in the 1920s, as a result of falling mortality rates, due to improvements in health, sanitation and infrastructure. However, the population of India would see it’s largest rate of growth in the years following the country’s independence from the British Empire in 1948, where the population would rise from 358 million to over one billion by the turn of the century, making India the second country to pass the billion person milestone. While the rate of growth has slowed somewhat as India begins a demographics shift, the country’s population has continued to grow dramatically throughout the 21st century, and in 2020, India is estimated to have a population of just under 1.4 billion, well over a billion more people than one century previously. Today, approximately 18% of the Earth’s population lives in India, and it is estimated that India will overtake China to become the most populous country in the world within the next five years.

  9. T

    India - Population In Urban Agglomerations Of More Than 1 Million

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). India - Population In Urban Agglomerations Of More Than 1 Million [Dataset]. https://tradingeconomics.com/india/population-in-urban-agglomerations-of-more-than-1-million-percent-of-total-population-wb-data.html
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    May 31, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    India
    Description

    Population in urban agglomerations of more than 1 million (% of total population) in India was reported at 16.71 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Population in urban agglomerations of more than 1 million - actual values, historical data, forecasts and projections were sourced from the World Bank on September of 2025.

  10. I

    India Proportion of People Living Below 50 Percent Of Median Income: %

    • ceicdata.com
    Updated Mar 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India Proportion of People Living Below 50 Percent Of Median Income: % [Dataset]. https://www.ceicdata.com/en/india/social-poverty-and-inequality/proportion-of-people-living-below-50-percent-of-median-income-
    Explore at:
    Dataset updated
    Mar 15, 2017
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1987 - Dec 1, 2021
    Area covered
    India
    Description

    India Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 9.800 % in 2021. This records a decrease from the previous number of 10.000 % for 2020. India Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 6.200 % from Dec 1977 (Median) to 2021, with 14 observations. The data reached an all-time high of 10.300 % in 2019 and a record low of 5.100 % in 2004. India Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  11. i

    Global Financial Inclusion (Global Findex) Database 2017 - India

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2019). Global Financial Inclusion (Global Findex) Database 2017 - India [Dataset]. https://datacatalog.ihsn.org/catalog/7921
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2017
    Area covered
    India
    Description

    Abstract

    Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.

    By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.

    Geographic coverage

    Sample excludes Northeast states and remote islands, representing less than 10% of the population.

    Analysis unit

    Individuals

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world’s population (see table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.

    Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer’s gender.

    In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    The sample size was 3000.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.

    Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank

  12. w

    National Family Health Survey 1992-1993 - India

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jun 26, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Institute for Population Sciences (IIPS) (2017). National Family Health Survey 1992-1993 - India [Dataset]. https://microdata.worldbank.org/index.php/catalog/1404
    Explore at:
    Dataset updated
    Jun 26, 2017
    Dataset authored and provided by
    International Institute for Population Sciences (IIPS)
    Time period covered
    1992 - 1993
    Area covered
    India
    Description

    Abstract

    The National Family Health Survey (NFHS) was carried out as the principal activity of a collaborative project to strengthen the research capabilities of the Population Reasearch Centres (PRCs) in India, initiated by the Ministry of Health and Family Welfare (MOHFW), Government of India, and coordinated by the International Institute for Population Sciences (IIPS), Bombay. Interviews were conducted with a nationally representative sample of 89,777 ever-married women in the age group 13-49, from 24 states and the National Capital Territoty of Delhi. The main objective of the survey was to collect reliable and up-to-date information on fertility, family planning, mortality, and maternal and child health. Data collection was carried out in three phases from April 1992 to September 1993. THe NFHS is one of the most complete surveys of its kind ever conducted in India.

    The households covered in the survey included 500,492 residents. The young age structure of the population highlights the momentum of the future population growth of the country; 38 percent of household residents are under age 15, with their reproductive years still in the future. Persons age 60 or older constitute 8 percent of the population. The population sex ratio of the de jure residents is 944 females per 1,000 males, which is slightly higher than sex ratio of 927 observed in the 1991 Census.

    The primary objective of the NFHS is to provide national-level and state-level data on fertility, nuptiality, family size preferences, knowledge and practice of family planning, the potentiel demand for contraception, the level of unwanted fertility, utilization of antenatal services, breastfeeding and food supplemation practises, child nutrition and health, immunizations, and infant and child mortality. The NFHS is also designed to explore the demographic and socioeconomic determinants of fertility, family planning, and maternal and child health. This information is intended to assist policymakers, adminitrators and researchers in assessing and evaluating population and family welfare programmes and strategies. The NFHS used uniform questionnaires and uniform methods of sampling, data collection and analysis with the primary objective of providing a source of demographic and health data for interstate comparisons. The data collected in the NFHS are also comparable with those of the Demographic and Health Surveys (DHS) conducted in many other countries.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Data collected for women 13-49, indicators calculated for women 15-49

    Universe

    The population covered by the 1992-93 DHS is defined as the universe of all women age 13-49 who were either permanent residents of the households in the NDHS sample or visitors present in the households on the night before the survey were eligible to be interviewed.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE DESIGN

    The sample design for the NFHS was discussed during a Sample Design Workshop held in Madurai in Octber, 1991. The workshop was attended by representative from the PRCs; the COs; the Office of the Registrar General, India; IIPS and the East-West Center/Macro International. A uniform sample design was adopted in all the NFHS states. The Sample design adopted in each state is a systematic, stratified sample of households, with two stages in rural areas and three stages in urban areas.

    SAMPLE SIZE AND ALLOCATION

    The sample size for each state was specified in terms of a target number of completed interviews with eligible women. The target sample size was set considering the size of the state, the time and ressources available for the survey and the need for separate estimates for urban and rural areas of the stat. The initial target sample size was 3,000 completed interviews with eligible women for states having a population of 25 million or less in 1991; 4,000 completed interviews for large states with more than 25 million population; 8,000 for Uttar Pradesh, the largest state; and 1,000 each for the six small northeastern states. In States with a substantial number of backward districts, the initial target samples were increased so as to allow separate estimates to be made for groups of backward districts.

    The urban and rural samples within states were drawn separetly and , to the extent possible, sample allocation was proportional to the size of the urban-rural populations (to facilitate the selection of a self-weighting sample for each state). In states where the urban population was not sufficiently large to provide a sample of at least 1,000 completed interviews with eligible women, the urban areas were appropriately oversampled (except in the six small northeastern states).

    THE RURAL SAMPLE: THE FRAME, STRATIFICATION AND SELECTION

    A two-stage stratified sampling was adopted for the rural areas: selection of villages followed by selection of households. Because the 1991 Census data were not available at the time of sample selection in most states, the 1981 Census list of villages served as the sampling frame in all the states with the exception of Assam, Delhi and Punjab. In these three states the 1991 Census data were used as the sampling frame.

    Villages were stratified prior to selection on the basis of a number of variables. The firts level of stratification in all the states was geographic, with districts subdivided into regions according to their geophysical characteristics. Within each of these regions, villages were further stratified using some of the following variables : village size, distance from the nearest town, proportion of nonagricultural workers, proportion of the population belonging to scheduled castes/scheduled tribes, and female literacy. However, not all variables were used in every state. Each state was examined individually and two or three variables were selected for stratification, with the aim of creating not more than 12 strata for small states and not more than 15 strata for large states. Females literacy was often used for implicit stratification (i.e., the villages were ordered prior to selection according to the proportion of females who were literate). Primary sampling Units (PSUs) were selected systematically, with probaility proportional to size (PPS). In some cases, adjacent villages with small population sizes were combined into a single PSU for the purpose of sample selection. On average, 30 households were selected for interviewing in each selected PSU.

    In every state, all the households in the selected PSUs were listed about two weeks prior to the survey. This listing provided the necessary frame for selecting households at the second sampling stage. The household listing operation consisted of preparing up-to-date notional and layout sketch maps of each selected PSU, assigning numbers to structures, recording addresses (or locations) of these structures, identifying the residential structures, and listing the names of the heads of all the households in the residentiak structures in the selected PSU. Each household listing team consisted of a lister and a mapper. The listing operation was supervised by the senior field staff of the concerned CO and the PRC in each state. Special efforts were made not to miss any household in the selected PSU during the listing operation. In PSUs with fewer than 500 households, a complete household listing was done. In PSUs with 500 or more households, segmentation of the PSU was done on the basis of existing wards in the PSU, and two segments were selected using either systematic sampling or PPS sampling. The household listing in such PSUs was carried out in the selected segments. The households to be interviewed were selected from provided with the original household listing, layout sketch map and the household sample selected for each PSU. All the selected households were approached during the data collection, and no substitution of a household was allowed under any circumstances.

    THE RURAL URBAN SAMPLE: THE FRAME, STRATIFICATION AND SELECTION

    A three-stage sample design was adopted for the urban areas in each state: selection of cities/towns, followed by urban blocks, and finally households. Cities and towns were selected using the 1991 population figures while urban blocks were selected using the 1991 list of census enumeration blocks in all the states with the exception of the firts phase states. For the first phase states, the list of urban blocks provided by the National Sample Survey Organization (NSSSO) served as the sampling frame.

    All cities and towns were subdivided into three strata: (1) self-selecting cities (i.e., cities with a population large enough to be selected with certainty), (2) towns that are district headquaters, and (3) other towns. Within each stratum, the cities/towns were arranged according to the same kind of geographic stratification used in the rural areas. In self-selecting cities, the sample was selected according to a two-stage sample design: selection of the required number of urban blocks, followed by selection of households in each of selected blocks. For district headquarters and other towns, a three stage sample design was used: selection of towns with PPS, followed by selection of two census blocks per selected town, followed by selection of households from each selected block. As in rural areas, a household listing was carried out in the selected blocks, and an average of 20 households per block was selected systematically.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the NFHS: the Household Questionnaire, the Women's Questionnaire, and the Village Questionnaire. The overall content

  13. a

    Asian Population Change 2010-2020 Wichita / Sedgwick County

    • ict-opendata-cityofwichita.hub.arcgis.com
    • data-cityofwichita.hub.arcgis.com
    Updated Mar 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Wichita GIS (2022). Asian Population Change 2010-2020 Wichita / Sedgwick County [Dataset]. https://ict-opendata-cityofwichita.hub.arcgis.com/maps/c247c80993c94eea8c46f1fcefd01b7d
    Explore at:
    Dataset updated
    Mar 18, 2022
    Dataset authored and provided by
    City of Wichita GIS
    Area covered
    Description

    The US Census Bureau defines Asian as "A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent, including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam. This includes people who reported detailed Asian responses such as: Indian, Bangladeshi, Bhutanese, Burmese, Cambodian, Chinese, Filipino, Hmong, Indonesian, Japanese, Korean, Laotian, Malaysian, Nepalese, Pakistani, Sri Lankan, Taiwanese, Thai, Vietnamese, Other Asian specified, Other Asian not specified.". 2020 Census block groups for the Wichita / Sedgwick County area, clipped to the county line. Features were extracted from the 2020 State of Kansas Census Block Group shapefile provided by the State of Kansas GIS Data Access and Support Center (https://www.kansasgis.org/index.cfm).Change in Population and Housing for the Sedgwick County area from 2010 - 2020 based upon US Census. Census Blocks from 2010 were spatially joined to Census Block Groups from 2020 to compare the population and housing figures. This is not a product of the US Census Bureau and is only available through City of Wichita GIS. Please refer to Census Block Groups for 2010 and 2020 for verification of all data Standard block groups are clusters of blocks within the same census tract that have the same first digit of their 4-character census block number. For example, blocks 3001, 3002, 3003… 3999 in census tract 1210.02 belong to Block Group 3. Due to boundary and feature changes that occur throughout the decade, current block groups do not always maintain these same block number to block group relationships. For example, block 3001 might move due to a change in the census tract boundary. Even if the block is no longer in block group 3, the block number (3001) will not change. However, the identification string (GEOID20) for that block, identifying block group 3, would remain the same in the attribute information in the TIGER/Line Shapefiles because block identification strings are always built using the decennial geographic codes.Block groups delineated for the 2020 Census generally contain between 600 and 3,000 people. Local participants delineated most block groups as part of the Census Bureau's Participant Statistical Areas Program (PSAP). The Census Bureau delineated block groups only where a local or tribal government declined to participate or where the Census Bureau could not identify a potential local participant.A block group usually covers a contiguous area. Each census tract contains at least one block group and block groups are uniquely numbered within census tract. Within the standard census geographic hierarchy, block groups never cross county or census tract boundaries, but may cross the boundaries of county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian, Alaska Native, and Native Hawaiian areas.Block groups have a valid range of 0 through 9. Block groups beginning with a zero generally are in coastal and Great Lakes water and territorial seas. Rather than extending a census tract boundary into the Great Lakes or out to the 3-mile territorial sea limit, the Census Bureau delineated some census tract boundaries along the shoreline or just offshore.

  14. w

    India - National Family Health Survey 1998-1999 - Dataset - waterdata

    • wbwaterdata.org
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). India - National Family Health Survey 1998-1999 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/india-national-family-health-survey-1998-1999
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    The second National Family Health Survey (NFHS-2), conducted in 1998-99, provides information on fertility, mortality, family planning, and important aspects of nutrition, health, and health care. The International Institute for Population Sciences (IIPS) coordinated the survey, which collected information from a nationally representative sample of more than 90,000 ever-married women age 15-49. The NFHS-2 sample covers 99 percent of India's population living in all 26 states. This report is based on the survey data for 25 of the 26 states, however, since data collection in Tripura was delayed due to local problems in the state. IIPS also coordinated the first National Family Health Survey (NFHS-1) in 1992-93. Most of the types of information collected in NFHS-2 were also collected in the earlier survey, making it possible to identify trends over the intervening period of six and one-half years. In addition, the NFHS-2 questionnaire covered a number of new or expanded topics with important policy implications, such as reproductive health, women's autonomy, domestic violence, women's nutrition, anaemia, and salt iodization. The NFHS-2 survey was carried out in two phases. Ten states were surveyed in the first phase which began in November 1998 and the remaining states (except Tripura) were surveyed in the second phase which began in March 1999. The field staff collected information from 91,196 households in these 25 states and interviewed 89,199 eligible women in these households. In addition, the survey collected information on 32,393 children born in the three years preceding the survey. One health investigator on each survey team measured the height and weight of eligible women and children and took blood samples to assess the prevalence of anaemia. SUMMARY OF FINDINGS POPULATION CHARACTERISTICS Three-quarters (73 percent) of the population lives in rural areas. The age distribution is typical of populations that have recently experienced a fertility decline, with relatively low proportions in the younger and older age groups. Thirty-six percent of the population is below age 15, and 5 percent is age 65 and above. The sex ratio is 957 females for every 1,000 males in rural areas but only 928 females for every 1,000 males in urban areas, suggesting that more men than women have migrated to urban areas. The survey provides a variety of demographic and socioeconomic background information. In the country as a whole, 82 percent of household heads are Hindu, 12 percent are Muslim, 3 percent are Christian, and 2 percent are Sikh. Muslims live disproportionately in urban areas, where they comprise 15 percent of household heads. Nineteen percent of household heads belong to scheduled castes, 9 percent belong to scheduled tribes, and 32 percent belong to other backward classes (OBCs). Two-fifths of household heads do not belong to any of these groups. Questions about housing conditions and the standard of living of households indicate some improvements since the time of NFHS-1. Sixty percent of households in India now have electricity and 39 percent have piped drinking water compared with 51 percent and 33 percent, respectively, at the time of NFHS-1. Sixty-four percent of households have no toilet facility compared with 70 percent at the time of NFHS-1. About three-fourths (75 percent) of males and half (51 percent) of females age six and above are literate, an increase of 6-8 percentage points from literacy rates at the time of NFHS-1. The percentage of illiterate males varies from 6-7 percent in Mizoram and Kerala to 37 percent in Bihar and the percentage of illiterate females varies from 11 percent in Mizoram and 15 percent in Kerala to 65 percent in Bihar. Seventy-nine percent of children age 6-14 are attending school, up from 68 percent in NFHS-1. The proportion of children attending school has increased for all ages, particularly for girls, but girls continue to lag behind boys in school attendance. Moreover, the disparity in school attendance by sex grows with increasing age of children. At age 6-10, 85 percent of boys attend school compared with 78 percent of girls. By age 15-17, 58 percent of boys attend school compared with 40 percent of girls. The percentage of girls 6-17 attending school varies from 51 percent in Bihar and 56 percent in Rajasthan to over 90 percent in Himachal Pradesh and Kerala. Women in India tend to marry at an early age. Thirty-four percent of women age 15-19 are already married including 4 percent who are married but gauna has yet to be performed. These proportions are even higher in the rural areas. Older women are more likely than younger women to have married at an early age: 39 percent of women currently age 45-49 married before age 15 compared with 14 percent of women currently age 15-19. Although this indicates that the proportion of women who marry young is declining rapidly, half the women even in the age group 20-24 have married before reaching the legal minimum age of 18 years. On average, women are five years younger than the men they marry. The median age at marriage varies from about 15 years in Madhya Pradesh, Bihar, Uttar Pradesh, Rajasthan, and Andhra Pradesh to 23 years in Goa. As part of an increasing emphasis on gender issues, NFHS-2 asked women about their participation in household decisionmaking. In India, 91 percent of women are involved in decision-making on at least one of four selected topics. A much lower proportion (52 percent), however, are involved in making decisions about their own health care. There are large variations among states in India with regard to women's involvement in household decisionmaking. More than three out of four women are involved in decisions about their own health care in Himachal Pradesh, Meghalaya, and Punjab compared with about two out of five or less in Madhya Pradesh, Orissa, and Rajasthan. Thirty-nine percent of women do work other than housework, and more than two-thirds of these women work for cash. Only 41 percent of women who earn cash can decide independently how to spend the money that they earn. Forty-three percent of working women report that their earnings constitute at least half of total family earnings, including 18 percent who report that the family is entirely dependent on their earnings. Women's work-participation rates vary from 9 percent in Punjab and 13 percent in Haryana to 60-70 percent in Manipur, Nagaland, and Arunachal Pradesh. FERTILITY AND FAMILY PLANNING Fertility continues to decline in India. At current fertility levels, women will have an average of 2.9 children each throughout their childbearing years. The total fertility rate (TFR) is down from 3.4 children per woman at the time of NFHS-1, but is still well above the replacement level of just over two children per woman. There are large variations in fertility among the states in India. Goa and Kerala have attained below replacement level fertility and Karnataka, Himachal Pradesh, Tamil Nadu, and Punjab are at or close to replacement level fertility. By contrast, fertility is 3.3 or more children per woman in Meghalaya, Uttar Pradesh, Rajasthan, Nagaland, Bihar, and Madhya Pradesh. More than one-third to less than half of all births in these latter states are fourth or higher-order births compared with 7-9 percent of births in Kerala, Goa, and Tamil Nadu. Efforts to encourage the trend towards lower fertility might usefully focus on groups within the population that have higher fertility than average. In India, rural women and women from scheduled tribes and scheduled castes have somewhat higher fertility than other women, but fertility is particularly high for illiterate women, poor women, and Muslim women. Another striking feature is the high level of childbearing among young women. More than half of women age 20-49 had their first birth before reaching age 20, and women age 15-19 account for almost one-fifth of total fertility. Studies in India and elsewhere have shown that health and mortality risks increase when women give birth at such young ages?both for the women themselves and for their children. Family planning programmes focusing on women in this age group could make a significant impact on maternal and child health and help to reduce fertility. INFANT AND CHILD MORTALITY NFHS-2 provides estimates of infant and child mortality and examines factors associated with the survival of young children. During the five years preceding the survey, the infant mortality rate was 68 deaths at age 0-11 months per 1,000 live births, substantially lower than 79 per 1,000 in the five years preceding the NFHS-1 survey. The child mortality rate, 29 deaths at age 1-4 years per 1,000 children reaching age one, also declined from the corresponding rate of 33 per 1,000 in NFHS-1. Ninety-five children out of 1,000 born do not live to age five years. Expressed differently, 1 in 15 children die in the first year of life, and 1 in 11 die before reaching age five. Child-survival programmes might usefully focus on specific groups of children with particularly high infant and child mortality rates, such as children who live in rural areas, children whose mothers are illiterate, children belonging to scheduled castes or scheduled tribes, and children from poor households. Infant mortality rates are more than two and one-half times as high for women who did not receive any of the recommended types of maternity related medical care than for mothers who did receive all recommended types of care. HEALTH, HEALTH CARE, AND NUTRITION Promotion of maternal and child health has been one of the most important components of the Family Welfare Programme of the Government of India. One goal is for each pregnant woman to receive at least three antenatal check-ups plus two tetanus toxoid injections and a full course of iron and folic acid supplementation. In India, mothers of 65 percent of the children born in the three years preceding NFHS-2 received at least one antenatal

  15. T

    India - Population In Urban Agglomerations Of More Than 1 Million

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). India - Population In Urban Agglomerations Of More Than 1 Million [Dataset]. https://tradingeconomics.com/india/population-in-urban-agglomerations-of-more-than-1-million-wb-data.html
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    India
    Description

    Population in urban agglomerations of more than 1 million in India was reported at 242467825 in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Population in urban agglomerations of more than 1 million - actual values, historical data, forecasts and projections were sourced from the World Bank on September of 2025.

  16. f

    Data_Sheet_1_Projecting wheat demand in China and India for 2030 and 2050:...

    • frontiersin.figshare.com
    docx
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khondoker Abdul Mottaleb; Gideon Kruseman; Aymen Frija; Kai Sonder; Santiago Lopez-Ridaura (2023). Data_Sheet_1_Projecting wheat demand in China and India for 2030 and 2050: Implications for food security.docx [Dataset]. http://doi.org/10.3389/fnut.2022.1077443.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    Frontiers
    Authors
    Khondoker Abdul Mottaleb; Gideon Kruseman; Aymen Frija; Kai Sonder; Santiago Lopez-Ridaura
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China, India
    Description

    IntroductionThe combined populations of China and India were 2.78 billion in 2020, representing 36% of the world population (7.75 billion). Wheat is the second most important staple grain in both China and India. In 2019, the aggregate wheat consumption in China was 96.4 million ton and in India it was 82.5 million ton, together it was more than 35% of the world's wheat that year. In China, in 2050, the projected population will be 1294–1515 million, and in India, it is projected to be 14.89–1793 million, under the low and high-fertility rate assumptions. A question arises as to, what will be aggregate demand for wheat in China and India in 2030 and 2050?MethodsApplying the Vector Error Correction model estimation process in the time series econometric estimation setting, this study projected the per capita and annual aggregate wheat consumptions of China and India during 2019-2050. In the process, this study relies on agricultural data sourced from the Food and Agriculture Organization of the United States (FAO) database (FAOSTAT), as well as the World Bank's World Development Indicators (WDI) data catalog. The presence of unit root in the data series are tested by applying the augmented Dickey-Fuller test; Philips-Perron unit root test; Kwiatkowski-Phillips-Schmidt-Shin test, and Zivot-Andrews Unit Root test allowing for a single break in intercept and/or trend. The test statistics suggest that a natural log transformation and with the first difference of the variables provides stationarity of the data series for both China and India. The Zivot-Andrews Unit Root test, however, suggested that there is a structural break in urban population share and GDP per capita. To tackle the issue, we have included a year dummy and two multiplicative dummies in our model. Furthermore, the Johansen cointegration test suggests that at least one variable in both data series were cointegrated. These tests enable us to apply Vector Error Correction (VEC) model estimation procedure. In estimation the model, the appropriate number of lags of the variables is confirmed by applying the “varsoc” command in Stata 17 software interface. The estimated yearly per capita wheat consumption in 2030 and 2050 from the VEC model, are multiplied by the projected population in 2030 and 2050 to calculate the projected aggregate wheat demand in China and India in 2030 and 2050. After projecting the yearly per capita wheat consumption (KG), we multiply with the projected population to get the expected consumption demand.ResultsThis study found that the yearly per capita wheat consumption of China will increase from 65.8 kg in 2019 to 76 kg in 2030, and 95 kg in 2050. In India, the yearly per capita wheat consumption will increase to 74 kg in 2030 and 94 kg in 2050 from 60.4 kg in 2019. Considering the projected population growth rates under low-fertility assumptions, aggregate wheat consumption of China will increase by more than 13% in 2030 and by 28% in 2050. Under the high-fertility rate assumption, however the aggregate wheat consumption of China will increase by 18% in 2030 and nearly 50% in 2050. In the case of India, under both low and high-fertility rate assumptions, aggregate wheat demand in India will increase by 32-38% in 2030 and by 70-104% in 2050 compared to 2019 level of consumption.DiscussionsOur results underline the importance of wheat in both countries, which are the world's top wheat producers and consumers, and suggest the importance of research and development investments to maintain sufficient national wheat grain production levels to meet China and India's domestic demand. This is critical both to ensure the food security of this large segment of the world populace, which also includes 23% of the total population of the world who live on less than US $1.90/day, as well as to avoid potential grain market destabilization and price hikes that arise in the event of large import demands.

  17. a

    Global Cities

    • hub.arcgis.com
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMaker (2023). Global Cities [Dataset]. https://hub.arcgis.com/maps/aa8135223a0e401bb46e11881d6df489
    Explore at:
    Dataset updated
    May 10, 2023
    Dataset authored and provided by
    MapMaker
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    It is estimated that more than 8 billion people live on Earth and the population is likely to hit more than 9 billion by 2050. Approximately 55 percent of Earth’s human population currently live in areas classified as urban. That number is expected to grow by 2050 to 68 percent, according to the United Nations (UN).The largest cities in the world include Tōkyō, Japan; New Delhi, India; Shanghai, China; México City, Mexico; and São Paulo, Brazil. Each of these cities classifies as a megacity, a city with more than 10 million people. The UN estimates the world will have 43 megacities by 2030.Most cities' populations are growing as people move in for greater economic, educational, and healthcare opportunities. But not all cities are expanding. Those cities whose populations are declining may be experiencing declining fertility rates (the number of births is lower than the number of deaths), shrinking economies, emigration, or have experienced a natural disaster that resulted in fatalities or forced people to leave the region.This Global Cities map layer contains data published in 2018 by the Population Division of the United Nations Department of Economic and Social Affairs (UN DESA). It shows urban agglomerations. The UN DESA defines an urban agglomeration as a continuous area where population is classified at urban levels (by the country in which the city resides) regardless of what local government systems manage the area. Since not all places record data the same way, some populations may be calculated using the city population as defined by its boundary and the metropolitan area. If a reliable estimate for the urban agglomeration was unable to be determined, the population of the city or metropolitan area is used.Data Citation: United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision. Statistical Papers - United Nations (ser. A), Population and Vital Statistics Report, 2019, https://doi.org/10.18356/b9e995fe-en.

  18. Internet penetration rate in India 2014-2025

    • statista.com
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Internet penetration rate in India 2014-2025 [Dataset]. https://www.statista.com/statistics/792074/india-internet-penetration-rate/
    Explore at:
    Dataset updated
    Jul 14, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The internet penetration rate in India rose over 55 percent in 2025, from about 14 percent in 2014. Although these figures seem relatively low, it meant that more than half of the population of 1.4 billion people had internet access that year. This also ranked the country second in the world in terms of active internet users. Internet availability and accessibility By 2021, the number of internet connections across the country tripled with urban areas accounting for a higher density of connections than rural regions. Despite incredibly low internet prices, internet usage in India has yet to reach its full potential. Lack of awareness and a tangible gender gap lie at the heart of the matter, with affordable mobile handsets and mobile internet connections presenting only a partial solution. Reliance Jio was the popular choice among Indian internet subscribers, offering them wider coverage at cheap rates. Digital living Home to one of the largest bases of netizens in the world, India is abuzz with internet activities being carried out every moment of every day. From information and research to shopping and entertainment to living in smart homes, Indians have welcomed digital living with open arms. Among these, social media usage was one of the most common reasons for accessing the internet.

  19. I

    India IN: Percentage of Population Exposed to More Than 35 Micrograms per...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India IN: Percentage of Population Exposed to More Than 35 Micrograms per Cub m [Dataset]. https://www.ceicdata.com/en/india/social-air-quality-and-health-non-oecd-member-annual/in-percentage-of-population-exposed-to-more-than-35-micrograms-per-cub-m
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2019
    Area covered
    India
    Description

    India IN: Percentage of Population Exposed to More Than 35 Micrograms per Cub m data was reported at 92.730 % in 2019. This records an increase from the previous number of 92.210 % for 2018. India IN: Percentage of Population Exposed to More Than 35 Micrograms per Cub m data is updated yearly, averaging 91.825 % from Dec 1990 (Median) to 2019, with 14 observations. The data reached an all-time high of 98.020 % in 2014 and a record low of 73.030 % in 1995. India IN: Percentage of Population Exposed to More Than 35 Micrograms per Cub m data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s India – Table IN.OECD.GGI: Social: Air Quality and Health: Non OECD Member: Annual.

  20. i

    World Values Survey 2001, Wave 4 - India

    • datacatalog.ihsn.org
    Updated Jan 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Sandeep Shastri - Pro Vice Chancellor (2021). World Values Survey 2001, Wave 4 - India [Dataset]. https://datacatalog.ihsn.org/catalog/8928
    Explore at:
    Dataset updated
    Jan 16, 2021
    Dataset authored and provided by
    Dr Sandeep Shastri - Pro Vice Chancellor
    Time period covered
    2001
    Area covered
    India
    Description

    Abstract

    The World Values Survey (www.worldvaluessurvey.org) is a global network of social scientists studying changing values and their impact on social and political life, led by an international team of scholars, with the WVS association and secretariat headquartered in Stockholm, Sweden. The survey, which started in 1981, seeks to use the most rigorous, high-quality research designs in each country. The WVS consists of nationally representative surveys conducted in almost 100 countries which contain almost 90 percent of the world’s population, using a common questionnaire. The WVS is the largest non-commercial, cross-national, time series investigation of human beliefs and values ever executed, currently including interviews with almost 400,000 respondents. Moreover the WVS is the only academic study covering the full range of global variations, from very poor to very rich countries, in all of the world’s major cultural zones. The WVS seeks to help scientists and policy makers understand changes in the beliefs, values and motivations of people throughout the world. Thousands of political scientists, sociologists, social psychologists, anthropologists and economists have used these data to analyze such topics as economic development, democratization, religion, gender equality, social capital, and subjective well-being. These data have also been widely used by government officials, journalists and students, and groups at the World Bank have analyzed the linkages between cultural factors and economic development.

    Geographic coverage

    India

    Analysis unit

    Household Individual

    Universe

    National Population, Both sexes,18 and more years

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample size: 2002

    As part of the India component of the World Values Survey, it was decided to conduct 2000 face-toface interviews. A rigorous scientific method was employed to generate the target sample for the study. The survey was conducted in 18 states of India, which covered nearly 97 % of the nations population.

    40 districts in the country were identified for the purpose of the survey (a little less than 1/10 of the districts in the country: 466 districts as per 1991 census). The 40 districts were spread across the 18 states, in which the survey was conducted keeping in mind the population of the states, even while ensuring that the survey was conducted in at least one district in each of the sampled states.

    Within each state, the district/s in which the survey was to be conducted was selected by circular sampling (PPS: Probability Proportion to Size). Once all the 40 districts were selected, the Lok Sabha (Lower House of the Indian Parliament)constituency that covered the district was identified. If the sampled district had more than one Lok Sabha constituency, the one, which had a larger proportion of the districts electorate, was selected.

    The next stage in the sampling process was the selection of 2 State Assembly (Lower House of the State Legislature) constituencies in each of the sampled 40 Lok Sabha constituencies. Circular Sampling (PPS: Probability Proportion to Size) was once again employed. Thus, 80 Assembly Constituencies in 40 Lok Sabha constituencies (in 40 districts) were selected. Subsequently, a polling booth area in each of the 80 sampled Assembly constituencies was selected by simple circular sampling method.

    The number of respondents to be interviewed in each state was determined on the basis of the proportion of the states share in the national population. This was equally divided among the polling booth areas that were sampled in a state. The number of respondents in the polling booth area was the same within a state, but varied from state to state. In a polling booth area, the respondents were selected from the electoral rolls (voters list) by circular sampling with a random first number.

    While drawing up the random list of respondents to be interviewed in every sampled polling booth area, the number of target respondents was increased by nearly 20 %. This was done in view of the fact that the field investigators were required to interview only those respondents whose names were included in the sample list. No replacements or alteration in the list of sampled respondents was permitted. Previous survey experience has shown that it has never been possible for the investigator to interview all those included in the list of sampled respondents. A wide range of factors is responsible for the same. The investigators were told to make every effort to interview all those included in the list of respondents. In the event of the investigator not being able to complete an interview, they were asked to record the reason for the same. Such a rigorous method of sampling was followed in order to obtain as representative a national sample as possible. The analysis of the sample profile clearly indicates that the detailed and objective criteria employed has eminently served its purpose as the sample mirrors the nations social, economic, political, cultural and religious diversity.

    Remarks about sampling: - Final numbers of clusters or sampling points: No clusters - Sample unit from office sampling: Named individual

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was translated into ten Indian languages by a specialist translator. A few modifications were undertaken in response categories for the scale answer questions. It was then back-translated to English. For each of the 10 languages the pre test was done on a sample of 5 each. There were several concepts and questions difficult to translate: more specifically v75/76/v103/v175/v208/v212/v229/. These problems were solved by developing new phrases close to the original statement or using it in the context of social reality The sample was designed to be representative of the entire adult population, i.e. 18 years and older, of your country. The lower age cut-off for the sample was 18 and there was not any upper age cut-off for the sample.

    Response rate

    The following table presents completion rate results: - Total number of starting names/addresses 2354 - Addresses which could not be traced at all 56 - Addresses established as empty, demolished or containing no private dwellings 39 - Selected respondent too sick/incapacitated to participate 29 - Selected respondent away during survey period 62 - Selected respondent had inadequate understanding of language of survey 27 - No contact at selected address 76 - No contact with selected person 31 - Refusal at selected address 34 - Full productive interviews 2002

    Sampling error estimates

    Estimated Error: 2,2

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
Organization logo

Countries with the largest population 2025

Explore at:
45 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 5, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2025
Area covered
World
Description

In 2025, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth.

Search
Clear search
Close search
Google apps
Main menu