The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.
The statistic shows the total population of India from 2019 to 2029. In 2023, the estimated total population in India amounted to approximately 1.43 billion people.
Total population in India
India currently has the second-largest population in the world and is projected to overtake top-ranking China within forty years. Its residents comprise more than one-seventh of the entire world’s population, and despite a slowly decreasing fertility rate (which still exceeds the replacement rate and keeps the median age of the population relatively low), an increasing life expectancy adds to an expanding population. In comparison with other countries whose populations are decreasing, such as Japan, India has a relatively small share of aged population, which indicates the probability of lower death rates and higher retention of the existing population.
With a land mass of less than half that of the United States and a population almost four times greater, India has recognized potential problems of its growing population. Government attempts to implement family planning programs have achieved varying degrees of success. Initiatives such as sterilization programs in the 1970s have been blamed for creating general antipathy to family planning, but the combined efforts of various family planning and contraception programs have helped halve fertility rates since the 1960s. The population growth rate has correspondingly shrunk as well, but has not yet reached less than one percent growth per year.
As home to thousands of ethnic groups, hundreds of languages, and numerous religions, a cohesive and broadly-supported effort to reduce population growth is difficult to create. Despite that, India is one country to watch in coming years. It is also a growing economic power; among other measures, its GDP per capita was expected to triple between 2003 and 2013 and was listed as the third-ranked country for its share of the global gross domestic product.
Explore World Bank Health, Nutrition and Population Statistics dataset featuring a wide range of indicators such as School enrollment, UHC service coverage index, Fertility rate, and more from countries like Bahrain, China, India, Kuwait, Oman, Qatar, and Saudi Arabia.
School enrollment, tertiary, UHC service coverage index, Wanted fertility rate, People with basic handwashing facilities, urban population, Rural population, AIDS estimated deaths, Domestic private health expenditure, Fertility rate, Domestic general government health expenditure, Age dependency ratio, Postnatal care coverage, People using safely managed drinking water services, Unemployment, Lifetime risk of maternal death, External health expenditure, Population growth, Completeness of birth registration, Urban poverty headcount ratio, Prevalence of undernourishment, People using at least basic sanitation services, Prevalence of current tobacco use, Urban poverty headcount ratio, Tuberculosis treatment success rate, Low-birthweight babies, Female headed households, Completeness of birth registration, Urban population growth, Antiretroviral therapy coverage, Labor force, and more.
Bahrain, China, India, Kuwait, Oman, Qatar, Saudi Arabia
Follow data.kapsarc.org for timely data to advance energy economics research.
The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) B2 Scenario, 1990-2100, were based on the UN 1998 Medium Long Range Projection for the years 1995 to 2100. The official version projects population for 8 regions of the world including Africa, Asia (minus India and China), India, China, Europe, Latin America, Northern America, and Oceania. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).
Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.
The third wave of the Asian Barometer survey (ABS) conducted in 2010 and the database contains nine countries and regions in East Asia - the Philippines, Taiwan, Thailand, Mongolia, Singapore, Vietnam, Indonesia, Malaysia and South Korea. The ABS is an applied research program on public opinion on political values, democracy, and governance around the region. The regional network encompasses research teams from 13 East Asian political systems and 5 South Asian countries. Together, this regional survey network covers virtually all major political systems in the region, systems that have experienced different trajectories of regime evolution and are currently at different stages of political transition.
The mission and task of each national research team are to administer survey instruments to compile the required micro-level data under a common research framework and research methodology to ensure that the data is reliable and comparable on the issues of citizens' attitudes and values toward politics, power, reform, and democracy in Asia.
The Asian Barometer Survey is headquartered in Taipei and co-hosted by the Institute of Political Science, Academia Sinica and The Institute for the Advanced Studies of Humanities and Social Sciences, National Taiwan University.
13 East Asian political systems: Japan, Mongolia, South Koreas, Taiwan, Hong Kong, China, the Philippines, Thailand, Vietnam, Cambodia, Singapore, Indonesia, and Malaysia; 5 South Asian countries: India, Pakistan, Bangladesh, Sri Lanka, and Nepal
-Individuals
Sample survey data [ssd]
Compared with surveys carried out within a single nation, cross-nation survey involves an extra layer of difficulty and complexity in terms of survey management, research design, and database modeling for the purpose of data preservation and easy analysis. To facilitate the progress of the Asian Barometer Surveys, the survey methodology and database subproject is formed as an important protocol specifically aiming at overseeing and coordinating survey research designs, database modeling, and data release.
As a network of Global Barometer Surveys, Asian Barometer Survey requires all country teams to comply with the research protocols which Global Barometer network has developed, tested, and proved practical methods for conducting comparative survey research on public attitudes.
Research Protocols:
A model Asian Barometer Survey has a sample size of 1,200 respondents, which allows a minimum confidence interval of plus or minus 3 percent at 95 percent probability.
Face-to-face [f2f]
A standard questionnaire instrument containing a core module of identical or functionally equivalent questions. Wherever possible, theoretical concepts are measured with multiple items in order to enable testing for construct validity. The wording of items is determined by balancing various criteria, including: the research themes emphasized in the survey, the comprehensibility of the item to lay respondents, and the proven effectiveness of the item when tested in previous surveys.
Survey Topics: 1.Economic Evaluations: What is the economic condition of the nation and your family: now, over the last five years, and in the next five years? 2.Trust in institutions: How trustworthy are public institutions, including government branches, the media, the military, and NGOs. 3.Social Capital: Membership in private and public groups, the frequency and degree of group participation, trust in others, and influence of guanxi. 4.Political Participatio: Voting in elections, national and local, country-specific voting patterns, and active participation in the political process as well as demonstrations and strikes. Contact with government and elected officials, political organizations, NGOs and media. 5.Electoral Mobilization: Personal connections with officials, candidates, and political parties; influence on voter choice. 6.Psychological Involvement and Partisanship: Interest in political news coverage, impact of government policies on daily life, and party allegiance. 7.Traditionalism: Importance of consensus and family, role of the elderly, face, and woman in theworkplace. 8.Democratic Legitimacy and Preference for Democracy: Democratic ranking of present and previous regime, and expected ranking in the next five years; satisfaction with how democracy works, suitability of democracy; comparisons between current and previous regimes, especially corruption; democracy and economic development, political competition, national unity, social problems, military government, and technocracy. 9.Efficacy, Citizen Empowerment, System Responsiveness: Accessibility of political system: does a political elite prevent access and reduce the ability of people to influence the government. 10.Democratic vs. Authoritarian Values: Level of education and political equality, government leadership and superiority, separation of executive and judiciary. 11.Cleavage: Ownership of state-owned enterprises, national authority over local decisions, cultural insulation, community and the individual. 12.Belief in Procedural Norms of Democracy: Respect of procedures by political leaders: compromise, tolerance of opposing and minority views. 13.Social-Economic Background Variables: Gender, age, marital status, education level, years of formal education, religion and religiosity, household, income, language and ethnicity. 14.Interview Record: Gender, age, class, and language of the interviewer, people present at the interview; did the respondent: refuse, display impatience, and cooperate; the language or dialect spoken in interview, and was an interpreter present.
Quality checks are enforced at every stage of data conversion to ensure that information from paper returns is edited, coded, and entered correctly for purposes of computer analysis. Machine readable data are generated by trained data entry operators and a minimum of 20 percent of the data is entered twice by independent teams for purposes of cross-checking. Data cleaning involves checks for illegal and logically inconsistent values.
Explore the dataset on midyear population statistics for 2015, including data on non-infectious diseases, infectious diseases, accidents, malnutrition, congenital diseases, and more. Gain insights on population health trends globally.
Non-infectious, Midyear population, Annual, Infectious disease, Accident/Trauma, Malnutrition, Congenital disease, Other (including ageing), Disease, Health, Population
China, Germany, India, Japan, Russia, United States Follow data.kapsarc.org for timely data to advance energy economics research.
This data file includes the Gini coefficient calculated for different wealth welfare aggregates constructed for all Luxembourg Wealth Study (LWS) datasets in all waves (as of March 2022). It includes Gini coefficients calculated on: • Disposable Net Worth • Value of Principal residence • Financial Assets
This project sought to renew the ESRC's invaluable financial support to LIS (formerly the Luxembourg Income Study) for a period of five more years. LIS is an independent, non-profit cross-national data archive and research institute located in Luxembourg. LIS relies on financial contributions from national science foundations, other research institutions and consortia, data-providing agencies, and supranational organisations to support data harmonisation and enable free and unlimited data access to researchers in the participating countries and to students world-wide. LIS' primary activity is to make harmonised household microdata available to researchers, thus enabling cross-national, interdisciplinary primary research into socio-economic outcomes and their determinants. Users of the Luxembourg Income Study Database and Luxembourg Wealth Study Database come from countries around the globe, including the UK. LIS has four goals: 1) to harmonise microdatasets from high- and middle-income countries that include data on income, wealth, employment, and demography; 2) to provide a secure method for researchers to query data that would otherwise be unavailable due to country-specific privacy restrictions; 3) to create and maintain a remote-execution system that sends research query results quickly back to users at off-site locations; and 4) to enable, facilitate, promote and conduct crossnational comparative research on the social and economic wellbeing of populations across countries. LIS contains the Luxembourg Income Study (LIS) Database, which includes income data, and the Luxembourg Wealth Study (LWS) Database, which focuses on wealth data. LIS currently includes microdata from 46 countries in Europe, the Americas, Africa, Asia and Australasia. LIS contains over 250 datasets, organised into eight time "waves," spanning the years 1968 to 2011. Since 2007, seventeen more countries have been added to LIS, including the BRICS countries (Brazil, Russia, India, China, South Africa), Japan, South Korea and a number of other Latin American countries. LWS contains 20 wealth datasets from 12 countries, including the UK, and covers the period 1994 to 2007. All told, LIS and LWS datasets together cover 86% of world GDP and 64% of world population. Users submit statistical queries to the microdatabases using a Java-based job submission interface or standard email. The databases are especially valuable for primary research in that they offer access to cross-national data at the micro-level - at the level of households and persons. Users are economists, sociologists, political scientists, and policy analysts, among others, and they employ a range of statistical approaches and methods. LIS also provides extensive documentation - metadata - for both LIS and LWS, concerning technical aspects of the survey data, the harmonisation process, and the social institutions of income and wealth provision in participating countries. In the next five years, for which support is sought, LIS will: - expand LIS, adding Waves IX (2013) and X (2016), and add new middle-income countries; - develop LWS, adding another wave of datasets to existing countries; acquire new wealth datasets for 14 more countries in cooperation with the European Central Bank (based on the Household Finance and Consumption Survey); - create a state-of-the-art metadata search and storage system; - maintain international standards in data security and data infrastructure systems; - provide high-quality harmonised household microdata to researchers around the world; - enable interdisciplinary cross-national social science research covering 45+ countries, including the UK; - aim to broaden its reach and impact in academic and non-academic circles through focused communications strategies and collaborations.
Purpose: The multi-country Study on Global Ageing and Adult Health (SAGE) is run by the World Health Organization's Multi-Country Studies unit in the Innovation, Information, Evidence and Research Cluster. SAGE is part of the unit's Longitudinal Study Programme which is compiling longitudinal data on the health and well-being of adult populations, and the ageing process, through primary data collection and secondary data analysis. SAGE baseline data (Wave 0, 2002/3) was collected as part of WHO's World Health Survey http://www.who.int/healthinfo/survey/en/index.html (WHS). SAGE Wave 1 (2007/10) provides a comprehensive data set on the health and well-being of adults in six low and middle-income countries: China, Ghana, India, Mexico, Russian Federation and South Africa. Objectives: To obtain reliable, valid and comparable health, health-related and well-being data over a range of key domains for adult and older adult populations in nationally representative samples To examine patterns and dynamics of age-related changes in health and well-being using longitudinal follow-up of a cohort as they age, and to investigate socio-economic consequences of these health changes To supplement and cross-validate self-reported measures of health and the anchoring vignette approach to improving comparability of self-reported measures, through measured performance tests for selected health domains To collect health examination and biomarker data that improves reliability of morbidity and risk factor data and to objectively monitor the effect of interventions
Additional Objectives: To generate large cohorts of older adult populations and comparison cohorts of younger populations for following-up intermediate outcomes, monitoring trends, examining transitions and life events, and addressing relationships between determinants and health, well-being and health-related outcomes To develop a mechanism to link survey data to demographic surveillance site data To build linkages with other national and multi-country ageing studies To improve the methodologies to enhance the reliability and validity of health outcomes and determinants data To provide a public-access information base to engage all stakeholders, including national policy makers and health systems planners, in planning and decision-making processes about the health and well-being of older adults
Methods: SAGE's first full round of data collection included both follow-up and new respondents in most participating countries. The goal of the sampling design was to obtain a nationally representative cohort of persons aged 50 years and older, with a smaller cohort of persons aged 18 to 49 for comparison purposes. In the older households, all persons aged 50+ years (for example, spouses and siblings) were invited to participate. Proxy respondents were identified for respondents who were unable to respond for themselves. Standardized SAGE survey instruments were used in all countries consisting of five main parts: 1) household questionnaire; 2) individual questionnaire; 3) proxy questionnaire; 4) verbal autopsy questionnaire; and, 5) appendices including showcards. A VAQ was completed for deaths in the household over the last 24 months. The procedures for including country-specific adaptations to the standardized questionnaire and translations into local languages from English follow those developed by and used for the World Health Survey.
Content Household questionnaire 0000 Coversheet 0100 Sampling Information 0200 Geocoding and GPS Information 0300 Recontact Information 0350 Contact Record 0400 Household Roster 0450 Kish Tables and Household Consent 0500 Housing 0600 Household and Family Support Networks and Transfers 0700 Assets and Household Income 0800 Household Expenditures 0900 Interviewer Observations
Individual questionnaire 1000 Socio-Demographic Characteristics 1500 Work History and Benefits 2000 Health State Descriptions and Vignettes 2500 Anthropometrics, Performance Tests and Biomarkers 3000 Risk Factors and Preventive Health Behaviours 4000 Chronic Conditions and Health Services Coverage 5000 Health Care Utilization 6000 Social Cohesion 7000 Subjective Well-Being and Quality of Life (WHOQoL-8 and Day Reconstruction Method) 8000 Impact of Caregiving 9000 Interviewer Assessment
National coverage
households and individuals
The household section of the survey covered all households in 19 of the 28 states in India which covers 96% of the population. Institutionalised populations are excluded. The individual section covered all persons aged 18 years and older residing within individual households.
Sample survey data [ssd]
World Health Survey Sampling India has 28 states and seven union territories. 19 of the 28 states were included in the design representing 96% of the population. India used a stratified multistage cluster sample design. Six states were selected in accordance with their geographic location and level of development. Strata were defined by the 6 states:(Assam, Karnataka, Maharashtra, Rajasthan, Uttar Pradesh and West Bengal), and locality (urban or rural). There are 12 strata in total. The 2000 Census demarcation was used as the sampling frame. Two stage and three stage sampling was adopted in rural and urban areas, respectively. In rural areas PSUs(villages) were selected probability proportional to size. The measure of size being the 2001 Census population in the village. SSUs (households) were selected using systematic sampling. TSUs (individuals) were selected using Kish tables. In urban areas, PSUs(city wards) were selected probability proportional to size. SSUs(census enumeration blocks), two were randomly selected from each PSU. TSU (households) were selected using systematic sampling. QSU (individuals) were selected as in rural areas. A sample of 379 EAs was selected as the primary sampling units(PSU).
SAGE Sampling The SAGE sample was pre-determined as all PSUs and households selected for the WHS/SAGE Wave 0 survey were included. Exceptions are three PSUs in Assam which were replaced as they were inaccessible due to flooding. And a further six PSUs were omitted for which the household roster information was not available. In each selected EA, a listing of the households was conducted to classify each household into the following mutually exclusive categories: 1)Households with a WHS/SAGE Wave 0 respondent aged 50-plus: all members aged 50-plus including the WHS/SAGE Wave 0 respondent were eligible for the individual interview. 2)Households with a WHS/SAGE Wave 0 respondent aged 47-49: all members aged 50-plus including the WHS/SAGE Wave 0 respondent aged 47-49 was eligible for the individual interview. 3)Households with a WHS/SAGE Wave 0 female respondent aged 18-46: all females members aged 18-49 including the WHS/SAGE Wave 0 female respondent aged 18-46 were eligible for the individual interview. 4)Households with a WHS/SAGE Wave 0 male respondent aged 18-46: three households were selected using systematic sampling and one male aged 18-49 was eligible for the individual interview. In the households not selected, all members aged 50-plus were eligible for the individual interview.
Stages of selection Strata: State, Locality=12 PSU: EAs=375 surveyed SSU: Households=10424 surveyed TSU: Individual=12198 surveyed
Face-to-face [f2f] PAPI
The questionnaires were based on the WHS Model Questionnaire with some modification and many new additions. A household questionnaire was administered to all households eligible for the study. A Verbal Autopsy questionnaire was administered to households that had a death in the last 24 months. An Individual questionniare was administered to eligible respondents identified from the household roster. A Proxy questionnaire was administered to individual respondents who had cognitive limitations. A Womans Questionnaire was administered to all females aged 18-49 years identified from the household roster. The questionnaires were developed in English and were piloted as part of the SAGE pretest in 2005. All documents were translated into Hindi, Assamese, Kanada and Marathi. SAGE generic questionnaires are available as external resources.
Data editing took place at a number of stages including: (1) office editing and coding (2) during data entry (3) structural checking of the CSPro files (4) range and consistency secondary edits in Stata
Household Response rate=88% Cooperation rate=92%
Individual: Response rate=68% Cooperation rate=92%
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The data shows for each state/union territory the area, population by gender and population by urban/rural.
Note: The area figures of States and U.T's do not add up to area of India because : (i) The shortfall of 7 square km. area of Madhya Pradesh and 3 square km. area of Chhattisgarh is yet to be resolved by the Survey of India. (ii) Disputed area of 13 square km. between Pondicherry and Andhra Pradesh is neither included in Pondicherry nor in Andhra Pradesh. For All India: 1) The population figures excludes population of the area under unlawful occupation of Pakistan and China where Census could not be taken. 2) Area figures includes the area under unlawful occupation of Pakistan and China. The area includes 78,114 sq.km. under illegal occupation of Pakistan, 5,180 sq. km.illegally handed over by Pakistan to China and 37,555 sq.km. under illegal occupation of China.
In 2023, India had over 1.2 billion internet users across the country. This figure was projected to grow to over 1.6 billion users by 2050, indicating a big market potential in internet services for the South Asian country. In fact, India was ranked as the second largest online market worldwide in 2022, second only to China. The number of internet users was estimated to increase in both urban as well as rural regions, indicating a dynamic growth in access to internet.
Mobile connectivity
Of the total internet users in the country, a majority of the people access the internet via their mobile phones. There were nearly the same amount of smartphone users as internet users across the country. Cheap availability of mobile data, a growing smartphone user base in the country along with the utility value of smartphones compared to desktops and tablets are some of the factors contributing to the mobile heavy internet access in India.
Growth is on the cards
Despite the large number of internet users in the country, the internet penetration levels took longer to catch up equally. At the same time, the number of women who have access to internet is much lower than men in the country, and the bias is even more evident in rural India. Similarly, internet usage is lower among older adults in the country due to internet literacy and technological know-how. By encouraging internet accessibility among marginalized groups including women, older people and rural inhabitants in the country, India’s digital footprint has significant headroom to grow.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450289https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450289
Abstract (en): The Research on Early Life and Aging Trends and Effects (RELATE) study compiles cross-national data that contain information that can be used to examine the effects of early life conditions on older adult health conditions, including heart disease, diabetes, obesity, functionality, mortality, and self-reported health. The complete cross sectional/longitudinal dataset (n=147,278) was compiled from major studies of older adults or households across the world that in most instances are representative of the older adult population either nationally, in major urban centers, or in provinces. It includes over 180 variables with information on demographic and geographic variables along with information about early life conditions and life course events for older adults in low, middle and high income countries. Selected variables were harmonized to facilitate cross national comparisons. In this first public release of the RELATE data, a subset of the data (n=88,273) is being released. The subset includes harmonized data of older adults from the following regions of the world: Africa (Ghana and South Africa), Asia (China, India), Latin America (Costa Rica, major cities in Latin America), and the United States (Puerto Rico, Wisconsin). This first release of the data collection is composed of 19 downloadable parts: Part 1 includes the harmonized cross-national RELATE dataset, which harmonizes data from parts 2 through 19. Specifically, parts 2 through 19 include data from Costa Rica (Part 2), Puerto Rico (Part 3), the United States (Wisconsin) (Part 4), Argentina (Part 5), Barbados (Part 6), Brazil (Part 7), Chile (Part 8), Cuba (Part 9), Mexico (Parts 10 and 15), Uruguay (Part 11), China (Parts 12, 18, and 19), Ghana (Part 13), India (Part 14), Russia (Part 16), and South Africa (Part 17). The Health and Retirement Study (HRS) was also used in the compilation of the larger RELATE data set (HRS) (N=12,527), and these data are now available for public release on the HRS data products page. To access the HRS data that are part of the RELATE data set, please see the collection notes below. The purpose of this study was to compile and harmonize cross-national data from both the developing and developed world to allow for the examination of how early life conditions are related to older adult health and well being. The selection of countries for this study was based on their diversity but also on the availability of comprehensive cross sectional/panel survey data for older adults born in the early to mid 20th century in low, middle and high income countries. These data were then utilized to create the harmonized cross-national RELATE data (Part 1). Specifically, data that are being released in this version of the RELATE study come from the following studies: CHNS (China Health and Nutrition Study) CLHLS (Chinese Longitudinal Healthy Longevity Survey) CRELES (Costa Rican Study of Longevity and Healthy Aging) PREHCO (Puerto Rican Elderly: Health Conditions) SABE (Study of Aging Survey on Health and Well Being of Elders) SAGE (WHO Study on Global Ageing and Adult Health) WLS (Wisconsin Longitudinal Study) Note that the countries selected represent a diverse range in national income levels: Barbados and the United States (including Puerto Rico) represent high income countries; Argentina, Cuba, Uruguay, Chile, Costa Rica, Brazil, Mexico, and Russia represent upper middle income countries; China and India represent lower middle income countries; and Ghana represents a low income country. Users should refer to the technical report that accompanies the RELATE data for more detailed information regarding the study design of the surveys used in the construction of the cross-national data. The Research on Early Life and Aging Trends and Effects (RELATE) data includes an array of variables, including basic demographic variables (age, gender, education), variables relating to early life conditions (height, knee height, rural/urban birthplace, childhood health, childhood socioeconomic status), adult socioeconomic status (income, wealth), adult lifestyle (smoking, drinking, exercising, diet), and health outcomes (self-reported health, chronic conditions, difficulty with functionality, obesity, mortality). Not all countries have the same variables. Please refer to the technical report that is part of the documentation for more detail regarding the variables available across countries. Sample weights are applicable to all countries exc...
This study provides an update on measures of educational attainment for a broad cross section of countries. In our previous work (Barro and Lee, 1993), we constructed estimates of educational attainment by sex for persons aged 25 and over. The values applied to 129 countries over a five-year intervals from 1960 to 1985.
The present study adds census information for 1985 and 1990 and updates the estimates of educational attainment to 1990. We also have been able to add a few countries, notably China, which were previously omitted because of missing data.
Dataset:
Educational attainment at various levels for the male and female population. The data set includes estimates of educational attainment for the population by age - over age 15 and over age 25 - for 126 countries in the world. (see Barro, Robert and J.W. Lee, "International Measures of Schooling Years and Schooling Quality, AER, Papers and Proceedings, 86(2), pp. 218-223 and also see "International Data on Education", manuscipt.) Data are presented quinquennially for the years 1960-1990;
Educational quality across countries. Table 1 presents data on measures of schooling inputs at five-year intervals from 1960 to 1990. Table 2 contains the data on average test scores for the students of the different age groups for the various subjects.Please see Jong-Wha Lee and Robert J. Barro, "Schooling Quality in a Cross-Section of Countries," (NBER Working Paper No.w6198, September 1997) for more detailed explanation and sources of data.
The data set cobvers the following countries: - Afghanistan - Albania - Algeria - Angola - Argentina - Australia - Austria - Bahamas, The - Bahrain - Bangladesh - Barbados - Belgium - Benin - Bolivia - Botswana - Brazil - Bulgaria - Burkina Faso - Burundi - Cameroon - Canada - Cape verde - Central African Rep. - Chad - Chile - China - Colombia - Comoros - Congo - Costa Rica - Cote d'Ivoire - Cuba - Cyprus - Czechoslovakia - Denmark - Dominica - Dominican Rep. - Ecuador - Egypt - El Salvador - Ethiopia - Fiji - Finland - France - Gabon - Gambia - Germany, East - Germany, West - Ghana - Greece - Grenada - Guatemala - Guinea - Guinea-Bissau - Guyana - Haiti - Honduras - Hong Kong - Hungary - Iceland - India - Indonesia - Iran, I.R. of - Iraq - Ireland - Israel - Italy - Jamaica - Japan - Jordan - Kenya - Korea - Kuwait - Lesotho - Liberia - Luxembourg - Madagascar - Malawi - Malaysia - Mali - Malta - Mauritania - Mauritius - Mexico - Morocco - Mozambique - Myanmar (Burma) - Nepal - Netherlands - New Zealand - Nicaragua - Niger - Nigeria - Norway - Oman - Pakistan - Panama - Papua New Guinea - Paraguay - Peru - Philippines - Poland - Portugal - Romania - Rwanda - Saudi Arabia - Senegal - Seychelles - Sierra Leone - Singapore - Solomon Islands - Somalia - South africa - Spain - Sri Lanka - St.Lucia - St.Vincent & Grens. - Sudan - Suriname - Swaziland - Sweden - Switzerland - Syria - Taiwan - Tanzania - Thailand - Togo - Tonga - Trinidad & Tobago - Tunisia - Turkey - U.S.S.R. - Uganda - United Arab Emirates - United Kingdom - United States - Uruguay - Vanuatu - Venezuela - Western Samoa - Yemen, N.Arab - Yugoslavia - Zaire - Zambia - Zimbabwe
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
The Asia and the Pacific region is comprised of 43 countries and a number of territories, and is, for the purposes of this report, divided into six sub-regions. It is endowed with a rich diversity of natural, social and economic resources. The length of its coastline is two-thirds of the global total, and it has the world's largest mountain chain. The region includes some of the poorest nations in the world, several highly advanced economies, and a number of rapidly growing ones, notably China and India. From 1987 to 2007, the population increased from almost 3 billion to almost 4 billion people, and the region is now home of 60 per cent of the world's people (GEO Data Portal, from UNPD 2007], representing a wide range of different ethnicities,cultures and languages.Available online|Extracted off GEO-4 publication. 2007.Call Number: [EL]Physical Description: 13 p.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset, released August 2017, contains the top ten birthplaces of people born in non-English speaking countries, 2016. The data comprise residents of Australia who were born overseas in one of the predominantly non-English speaking countries which are in the top ten for Australia in terms of high numbers of migrants. These are, from highest to lowest: China, India, Philippines, Vietnam, Italy, Malaysia, Sri Lanka, Germany, Republic of Korea (South), and Greece. The data is by Population Health Area (PHA) 2016 geographic boundaries based on the 2016 Australian Statistical Geography Standard (ASGS). Population Health Areas, developed by PHIDU, are comprised of a combination of whole SA2s and multiple (aggregates of) SA2s, where the SA2 is an area in the ABS structure. For more information please see the data source notes on the data. Source: Compiled by PHIDU based on the ABS Census of Population and Housing, August 2016. AURIN has spatially enabled the original data. Data that was not shown/not applicable/not published/not available for the specific area ('#', '..', '^', 'np, 'n.a.', 'n.y.a.' in original PHIDU data) was removed.It has been replaced by by Blank cells. For other keys and abbreviations refer to PHIDU Keys.
Polluted air is a major health hazard in developing countries. Improvements in pollution monitoring and statistical techniques during the last several decades have steadily enhanced the ability to measure the health effects of air pollution. Current methods can detect significant increases in the incidence of cardiopulmonary and respiratory diseases, coughing, bronchitis, and lung cancer, as well as premature deaths from these diseases resulting from elevated concentrations of ambient Particulate Matter (Holgate 1999).
Scarce public resources have limited the monitoring of atmospheric particulate matter (PM) concentrations in developing countries, despite their large potential health effects. As a result, policymakers in many developing countries remain uncertain about the exposure of their residents to PM air pollution. The Global Model of Ambient Particulates (GMAPS) is an attempt to bridge this information gap through an econometrically estimated model for predicting PM levels in world cities (Pandey et al. forthcoming).
The estimation model is based on the latest available monitored PM pollution data from the World Health Organization, supplemented by data from other reliable sources. The current model can be used to estimate PM levels in urban residential areas and non-residential pollution hotspots. The results of the model are used to project annual average ambient PM concentrations for residential and non-residential areas in 3,226 world cities with populations larger than 100,000, as well as national capitals.
The study finds wide, systematic variations in ambient PM concentrations, both across world cities and over time. PM concentrations have risen at a slower rate than total emissions. Overall emission levels have been rising, especially for poorer countries, at nearly 6 percent per year. PM concentrations have not increased by as much, due to improvements in technology and structural shifts in the world economy. Additionally, within-country variations in PM levels can diverge greatly (by a factor of 5 in some cases), because of the direct and indirect effects of geo-climatic factors.
The primary determinants of PM concentrations are the scale and composition of economic activity, population, the energy mix, the strength of local pollution regulation, and geographic and atmospheric conditions that affect pollutant dispersion in the atmosphere.
The database covers the following countries:
Afghanistan
Albania
Algeria
Andorra
Angola
Antigua and Barbuda
Argentina
Armenia
Australia
Austria
Azerbaijan
Bahamas, The
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bhutan
Bolivia
Bosnia and Herzegovina
Brazil
Brunei
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cayman Islands
Central African Republic
Chad
Chile
China
Colombia
Comoros
Congo, Dem. Rep.
Congo, Rep.
Costa Rica
Cote d'Ivoire
Croatia
Cuba
Cyprus
Czech Republic
Denmark
Dominica
Dominican Republic
Ecuador
Egypt, Arab Rep.
El Salvador
Eritrea
Estonia
Ethiopia
Faeroe Islands
Fiji
Finland
France
Gabon
Gambia, The
Georgia
Germany
Ghana
Greece
Grenada
Guatemala
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hong Kong, China
Hungary
Iceland
India
Indonesia
Iran, Islamic Rep.
Iraq
Ireland
Israel
Italy
Jamaica
Japan
Jordan
Kazakhstan
Kenya
Korea, Dem. Rep.
Korea, Rep.
Kuwait
Kyrgyz Republic
Lao PDR
Latvia
Lebanon
Lesotho
Liberia
Liechtenstein
Lithuania
Luxembourg
Macao, China
Macedonia, FYR
Madagascar
Malawi
Malaysia
Maldives
Mali
Mauritania
Mexico
Moldova
Mongolia
Morocco
Mozambique
Myanmar
Namibia
Nepal
Netherlands
Netherlands Antilles
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Norway
Oman
Pakistan
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Poland
Portugal
Puerto Rico
Qatar
Romania
Russian Federation
Rwanda
Sao Tome and Principe
Saudi Arabia
Senegal
Sierra Leone
Singapore
Slovak Republic
Slovenia
Solomon Islands
Somalia
South Africa
Spain
Sri Lanka
St. Kitts and Nevis
St. Lucia
St. Vincent and the Grenadines
Sudan
Suriname
Swaziland
Sweden
Switzerland
Syrian Arab Republic
Tajikistan
Tanzania
Thailand
Togo
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Uganda
Ukraine
United Arab Emirates
United Kingdom
United States
Uruguay
Uzbekistan
Vanuatu
Venezuela, RB
Vietnam
Virgin Islands (U.S.)
Yemen, Rep.
Yugoslavia, FR (Serbia/Montenegro)
Zambia
Zimbabwe
Observation data/ratings [obs]
Other [oth]
The statistic shows the unemployment rate in India from 1999 to 2023. In 2023, the unemployment rate in India was estimated to be 4.17 percent. India's economy in comparison to other BRIC states India possesses one of the fastest-growing economies in the world and as a result, India is recognized as one of the G-20 major economies as well as a member of the BRIC countries, an association that is made up of rapidly growing economies. As well as India, three other countries, namely Brazil, Russia and China, are BRIC members. India’s manufacturing industry plays a large part in the development of its economy; however its services industry is the most significant economical factor. The majority of the population of India works in this sector. India’s notable economic boost can be attributed to significant gains over the past decade in regards to the efficiency of the production of goods as well as maintaining relatively low debt, particularly when compared to the total amount earned from goods and services produced throughout the years. When considering individual development as a country, India progressed significantly over the years. However, in comparison to the other emerging countries in the BRIC group, India’s progress was rather minimal. While China experienced the most apparent growth, India’s efficiency and productivity remained somewhat stagnant over the course of 3 or 4 years. India also reported a rather large trade deficit over the past decade, implying that its total imports exceeded its total amount of exports, essentially forcing the country to borrow money in order to finance the nation. Most economists consider trade deficits a negative factor, especially in the long run and for developing or emerging countries.
Literacy in India has been increasing as more and more people receive a better education, but it is still far from all-encompassing. In 2022, the degree of literacy in India was about 76.32 percent, with the majority of literate Indians being men. It is estimated that the global literacy rate for people aged 15 and above is about 86 percent. How to read a literacy rateIn order to identify potential for intellectual and educational progress, the literacy rate of a country covers the level of education and skills acquired by a country’s inhabitants. Literacy is an important indicator of a country’s economic progress and the standard of living – it shows how many people have access to education. However, the standards to measure literacy cannot be universally applied. Measures to identify and define illiterate and literate inhabitants vary from country to country: In some, illiteracy is equated with no schooling at all, for example. Writings on the wallGlobally speaking, more men are able to read and write than women, and this disparity is also reflected in the literacy rate in India – with scarcity of schools and education in rural areas being one factor, and poverty another. Especially in rural areas, women and girls are often not given proper access to formal education, and even if they are, many drop out. Today, India is already being surpassed in this area by other emerging economies, like Brazil, China, and even by most other countries in the Asia-Pacific region. To catch up, India now has to offer more educational programs to its rural population, not only on how to read and write, but also on traditional gender roles and rights.
As of 2024, there were 449 data centers in China, the most of any country or territory in the Asia-Pacific region. China had the fourth-highest number of data centers worldwide as of March 2024. Data centers in China As the leading market in public cloud in the Asia-Pacific region and an aspiring global leader in artificial intelligence, China has placed considerable weight on data center infrastructure, which underlies most of the advances in internet technology. The country dominates the global data center market in terms of revenue, trailing only the United States. In addition, China accounted for 15 percent of the worldwide hyperscale data center capacity in the 2nd quarter of 2022. The data center segment revenue in China is expected to have an annual growth rate of around nine percent between 2024 and 2029. The outlook of data centers in the Asia-Pacific region The pandemic has accelerated enterprise digitalization across the Asia-Pacific region, driving a surge in demand for computational power. This trend, coupled with advancements in artificial intelligence and the region's significant population growth, points to a promising future for data centers in the region. For instance, the revenue in the data center market in India was forecast to grow further and is set to reach about 11.85 billion U.S. dollars by 2029. Meanwhile, economic growth and increasing internet penetration rates in Southeast Asian countries have been the primary drivers for data center demand growth in the subregion.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.