The share of projected population increase in Uttar Pradesh, India from 2011 until 2036 is expected to grow by nearly ** percent. By contrast, the estimated population increase in Uttarakhand is expected to be less than *** percent during the same time period.
Why project population?
Population projections for a country are becoming increasingly important now than ever before. They are used primarily by government policy makers and planners to better understand and gauge future demand for basic services that predominantly include water, food and energy. In addition, they also support in indicating major movements that may affect economic development and in turn, employment and labour productivity. Consequently, this leads to amending policies in order to better adapt to the needs of society and to various circumstances.
Demographic projections and health interventions Demographic figures serve the foremost purpose of improving health and health related services among the population. Some of the government interventions include antenatal and neonatal care with the aim of reducing maternal and neonatal mortality and morbidity rates. In addition, it also focuses on improving immunization coverage across the country. Further, demographic estimates help in better preempting the needs of growing populations, such as the geriatric population within a country.
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The dataset contains year-, month-, state- and gender-wise compiled data on population of India from the year 2011 to 2036. The figures of population given for different years are the projected figures, except for the census year of 2011.
In 2022, the union territory of Delhi had the highest urban population density of over ** thousand persons per square kilometer. While the rural population density was highest in union territory of Puducherry, followed by the state of Bihar.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
India's population demographics - total population, growth rate, age-wise and state-wise population, languages spoken, and religion.
This feature layers contain demographics about age, gender, education, employment, assets & amenities as reported by Office of the Registrar General & Census Commissioner, India in the Census 2011. These attributes cover topics such as male and female population counts by age, literacy, occupation, and household characteristics.Census of India counts every resident in India at village level. It is mandated by The Census Act 1948 of the Constitution and takes place every 10 years.Other demographics layers are also available:Country DemographicsDistrict DemographicsSub-district DemographicsVillage DemographicsCombined DemographicsEach layer contains the same set of demographic attributes. Each geography level has a viewing range optimal for the geography size, and the map has increasing detail as you zoom in to smaller areas.Data source: Explore Census DataAdmin boundary source (country, states, and districts): Survey of India, 2020For more information: 2011 Census Demographic ProfileFor feedback please contact: content@esri.inData Processing notes:Country, State and District boundaries are simplified representations offered from the Survey of India database.Sub-districts and village boundaries are developed based on the census provided maps.Field names and aliases are processed by Esri India as created for the ArcGIS Platform.For a list of fields and alias names, access the following excel document.Disclaimer:The boundaries may not be perfectly align with AGOL imagery. The Census PDF maps are georeferenced using Survey of India boundaries and notice alignment issues with AGOL Imagery/ Maps. 33k villages are marked as point location on Census PDFs either because of low scale maps where small villages could not have been drawn or digitization has not been completed. These villages are marked as 100m circular polygons in the data.This web layer is offered by Esri India, for ArcGIS Online subscribers. If you have any questions or comments, please let us know via content@esri.in.
The statistic displays the main states and union territories with the highest number of people living in urban areas in India in 2011. In that year, the state of Maharashtra had the highest population with over 50 million people living in urban areas. The population density in India from 2004 to 2014 can be seen here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Indian Shores population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Indian Shores across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Indian Shores was 1,192, a 0.50% decrease year-by-year from 2022. Previously, in 2022, Indian Shores population was 1,198, a decline of 0.17% compared to a population of 1,200 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Indian Shores decreased by 511. In this period, the peak population was 1,777 in the year 2004. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Indian Shores Population by Year. You can refer the same here
POPULATION PROIECTIONS FOR INDIA AND STATES 2011 – 2036 (Downscaled to District, Sub-Districts and Villages/Towns by Esri India)REPORT OF THE TECHNICAL GROUP ON POPULATION PROIECTTONSJuly, 2020The projected population figures provided by the Registrar General of India forms the basis for planning and implementation of various health interventions including RMNCH+A, which are aimed at improving the overall health outcomes by ensuring quality service provision to all the health beneficiaries. These interventions focus on antenatal, intranatal and neonatal care aimed at reducing maternal and neonatal morbidity and mortality; improving coverage and quality of health care interventions and improving coverage for immunization against vaccine preventable diseases. Further, these estimates would also enable us to tackle the special health care needs of various population age groups, thus gearing the system for necessary preventive, promotive, curative, and rehabilitative services for the growing population to this report. PREETI SUDAN, IAS SecretaryThe Cohort Component Method is the universally accepted method of making population projections because of the fact that the growth of population is determined by fertility, mortality, and migration rates. In this exercise, 20 States and two UTs have been applied the Cohort Component method. These are Andhra Pradesh, Assam, Bihar, Gujarat, Haryana, Himachal Pradesh, Karnataka, Kerala, Madhya Pradesh, Maharashtra, Odisha, Punjab, Rajasthan, Tamil Nadu, Telangana, Uttar Pradesh, West Bengal, Jharkhand, Chhattisgarh, Uttarakhand, Jammu & Kashmir (UT) and NCT of Delhi. Based on the residual of the projected population of Jammu & Kashmir (State) and Jammu & Kashmir (UT), for which Cohort Component method has applied, projection of the Ladakh UT have been made. For the projections of Jammu & Kashmir (UT), SRS fertility and mortality estimates of Jammu & Kashmir (State) are used. The projection of the seven northeastern states (excluding Assam) has also been carried out as a whole using the Cohort Component Method. Separate projections for Andhra Pradesh and Telangana were done using the re-casted populations of these states. For the projections, for the years before 2014, combined SRS estimates of Andhra Pradesh and year 2014 onwards, separate SRS estimates of fertility and mortality of Andhra Pradesh and Telangana are used. For the remaining States and Union territories, Mathematical Method has been applied. The sources of data used are 2011 Census and Sample Registration System (SRS). SRS provides time series data of fertility and mortality, which has been used for predicting their future levelsEsri India Efforts:The Population Projections Report published by MoHFW contains output summary tables from series Table 8 to Table 14. Example: TABLE – 8: Projected total population by sex as on 1st March, 2011-2036: India, States and Union territories, TABLE – 9: Projected urban population by sex as on 1st March, 2011-2036: India, States and Union territories, etc. The parameters available with these census data tables are Census Year, Projected Total Persons with Gender categorization and Projected Urban Population from 2011 to 2036.By subtracting “Projected Urban Population” from “Projected Total Population”, a new data column has been added as “Projected Rural Population”. The data is available for all Union Territory and States for 25 years.A factor has been calculated by taking projected population and the base year population (2011). Subsequently, the factor is calculated for each year using the projected values provided by census of India. Projected Population by Sex as on 1st March - 2011 - 2036: India, States and Union Territories* ('000)YearGUJARAT GUJARAT URBANGUJARAT RURALPersonsMaleFemalePersonMaleFemalePersonMaleFemale2011 60,440 (A) 31,49128,94825,74513,69412,05134,69517,79716,8972012 61,383 (B)32,00729,37626,47214,08112,39134,91117,92616,985Factor has been applied below State level- Projected Population by Sex as on 1st March - 2011 - 2036: India, States and Union Territories* ('000)YearGUJARAT GUJARAT URBANGUJARAT RURALPersonsMaleFemalePersonMaleFemalePersonMaleFemale20121.01560225 (B/A)1.0163856341.0147851321.0282384931.0282605521.0282134261.0062256811.0072484131.005208025Esri India has access to SOI admin boundaries up-to district level and developed village, town and sub-district boundaries using census maps. The calculated factors have been applied to smallest geography at villages and towns and upscaled back to sub-district, district, state, and country. The derived values have been compared with the original values provided by census at state level and no deviation is confirmed.Data Variables: Year (2011-2036)Total Population MaleFemaleTotal Population UrbanMale UrbanFemale UrbanTotal Population RuralMale RuralFemale RuralData source: https://main.mohfw.gov.in/sites/default/files/Population Projection Report 2011-2036 - upload_compressed_0.pdfOther related contents are also available:India Population Projections 2011-2036Village Population Projections for India 2011-2036Sub-district Population Projections for India 2011-2036State Population Projections for India 2011-2036Country Population Projections for India 2011-2036This web layer is offered by Esri India, for ArcGIS Online subscribers. If you have any questions or comments, please let us know via content@esri.in.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
aORGI, 2004;bSample Registration System Bulletin (SRS), Vol 43, No.1, October 2008, Registrar General, Government of India, New Delhi;cSample Registration System (SRS), Statistical Report 2007, Office of the Registrar General, Government of India, New Delhi;dSRS Abridged Life Table 2002–06, Office Registrar General of India, Ministry of Home Affairs, New Delhi;eEconomic Survey, 2008–09, Ministry of Finance, Economic Division, Government of India, New Delhi;fINR- Indian national rupee, estimates of the National Sample Survey Organization (NSSO), 2004–05;gMMR- Special Bulletin on Maternal Mortality in India-2004–06, SRS, Office of Registrar General, India, Vital Statistics Division, New Delhi;hNational Human Development Report (2002), Planning Commission, Government of India. Yojana Bhavan, Sansad Marg, New Delhi.
This dataset was created by Tirtharaj Sur
According to projections, *** percent of the population of NCT Delhi, Chandigarh and Lakshadweep in India were expected to live in urban areas by 2035. By contrast, slightly over *** percent of the population of Himachal Pradesh was expected to live in urban areas by the same year, which has the least share compared to the other states.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
his dataset contains demographic information for Indian states from the Census years 1951 to 2011. It includes total population, rural and urban population, literacy rate, and sex ratio for each state/UT across multiple decades.
The dataset can be used for:
Analyzing population trends over time
Studying urbanization and rural migration
Examining literacy growth across states
Understanding sex ratio imbalances historically
Building machine learning models for future population prediction
Columns Included:
State – Name of the State or Union Territory
Year – Census year (1951, 1961, ..., 2011)
Total_Population – Total population in that year
Rural_Population – Population in rural areas
Urban_Population – Population in urban areas
Literacy_Rate – Literacy percentage of the population
Sex_Ratio – Number of females per 1000 males
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Employment: American Indian or Alaska Native data was reported at 1,784.000 Person th in Apr 2025. This records a decrease from the previous number of 1,819.000 Person th for Mar 2025. United States Employment: American Indian or Alaska Native data is updated monthly, averaging 1,329.500 Person th from Jan 2000 (Median) to Apr 2025, with 304 observations. The data reached an all-time high of 1,980.000 Person th in Feb 2025 and a record low of 837.000 Person th in Oct 2003. United States Employment: American Indian or Alaska Native data remains active status in CEIC and is reported by U.S. Bureau of Labor Statistics. The data is categorized under Global Database’s United States – Table US.G: Current Population Survey: Employment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census: Population: Punjab data was reported at 27,743,338.000 Person in 03-01-2011. This records an increase from the previous number of 24,358,999.000 Person for 03-01-2001. Census: Population: Punjab data is updated decadal, averaging 10,367,652.500 Person from Mar 1901 (Median) to 03-01-2011, with 12 observations. The data reached an all-time high of 27,743,338.000 Person in 03-01-2011 and a record low of 6,731,510.000 Person in 03-01-1911. Census: Population: Punjab data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAB002: Census: Population: by States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Multidimensional Poverty Index (MPI) is a comprehensive measure that assesses poverty beyond income, capturing individuals’ various deprivations in areas critical to human well-being. Unlike traditional poverty metrics, which primarily focus on monetary aspects, the MPI incorporates multiple dimensions, including health, education, and living standards. Each dimension is further broken down into indicators, such as child mortality, years of schooling, access to clean water, sanitation, and adequate housing.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
india - Population Growth for India was 0.88329 % Chg. at Annual Rate in January of 2023, according to the United States Federal Reserve. Historically, india - Population Growth for India reached a record high of 0.88329 in January of 2023 and a record low of 0.79020 in January of 2022. Trading Economics provides the current actual value, an historical data chart and related indicators for india - Population Growth for India - last updated from the United States Federal Reserve on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 1951, India’s total rural population was approximately 298 million, while the urban population was only about 62 million. By 2011, these numbers grew to around 833 million and 377 million, respectively. This represents a 179% increase in rural population and a staggering 504% increase in urban population over the 60-year period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Indian Lake town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Indian Lake town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Indian Lake town was 1,363, a 0.00% decrease year-by-year from 2021. Previously, in 2021, Indian Lake town population was 1,363, an increase of 0.74% compared to a population of 1,353 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Indian Lake town decreased by 112. In this period, the peak population was 1,475 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Indian Lake town Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1: Basic Information of India. Table S1. List of Indian States and Union Territories. Figure S1. Map of Indian States and Union Territories. Figure S2. Map of Indian population density. Figure S3. Averaged annual rainfall map of India (2013-2016). The red arrows are monsoon move directions during summer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Indian Trail population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Indian Trail across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Indian Trail was 42,854, a 2.64% increase year-by-year from 2022. Previously, in 2022, Indian Trail population was 41,751, an increase of 1.63% compared to a population of 41,081 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Indian Trail increased by 29,232. In this period, the peak population was 42,854 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Indian Trail Population by Year. You can refer the same here
The share of projected population increase in Uttar Pradesh, India from 2011 until 2036 is expected to grow by nearly ** percent. By contrast, the estimated population increase in Uttarakhand is expected to be less than *** percent during the same time period.
Why project population?
Population projections for a country are becoming increasingly important now than ever before. They are used primarily by government policy makers and planners to better understand and gauge future demand for basic services that predominantly include water, food and energy. In addition, they also support in indicating major movements that may affect economic development and in turn, employment and labour productivity. Consequently, this leads to amending policies in order to better adapt to the needs of society and to various circumstances.
Demographic projections and health interventions Demographic figures serve the foremost purpose of improving health and health related services among the population. Some of the government interventions include antenatal and neonatal care with the aim of reducing maternal and neonatal mortality and morbidity rates. In addition, it also focuses on improving immunization coverage across the country. Further, demographic estimates help in better preempting the needs of growing populations, such as the geriatric population within a country.