18 datasets found
  1. Land area in India 2021, by state and union territory

    • statista.com
    Updated Aug 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Land area in India 2021, by state and union territory [Dataset]. https://www.statista.com/statistics/616241/area-by-state-and-union-territory-india/
    Explore at:
    Dataset updated
    Aug 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    India
    Description

    The north-western state of Rajasthan was the largest in terms of land area in India in 2021 with over 342 thousand square kilometers. Central Madhya Pradesh and south-western Maharashtra followed, while the union territory of Lakshadweep recorded an area of 30 square kilometers. Overall, India's geographical area amounted to about 3.3 million square kilometers.

  2. Indian states with the largest area of national parks 2016

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Indian states with the largest area of national parks 2016 [Dataset]. https://www.statista.com/statistics/701617/india-states-with-the-largest-area-of-national-parks/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The statistic displays the Indian states with the largest area of national parks in 2016. During the measured time period, the largest area of national parks belonged to the state of Uttarakhand with close to ***** square kilometers, followed by Rajasthan with approximately ***** square kilometers.

  3. Indian states with the largest area of wildlife sanctuaries 2016

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Indian states with the largest area of wildlife sanctuaries 2016 [Dataset]. https://www.statista.com/statistics/701636/india-states-with-the-largest-area-of-wildlife-sanctuaries/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The statistic displays the Indian states with the largest area of wildlife sanctuaries in 2016. During the measured time period, the largest area of wildlife sanctuaries was present in the state of Gujarat which amounted to approximately ****** square kilometers, followed by Andhra Pradesh with an area of about ****** square kilometers of sanctuaries for wildlife.

  4. f

    ARC Employment Forecasts series13

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    Updated Jun 10, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2015). ARC Employment Forecasts series13 [Dataset]. https://gisdata.fultoncountyga.gov/datasets/5b4c0185d76d497ea47758de193bbcbc
    Explore at:
    Dataset updated
    Jun 10, 2015
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission from ARC's Regional Plan Update to show employment forecasts by census tract for the Atlanta region.Attributes:GEOID10 = The entire Federal Information Processing Series (FIPS) code for this geography. FIPS codes were formerly known as Federal Information Processing Standards codes, until the National Institute of Standards and Technology (NIST) announced its decision in 2005 to remove geographic entity codes from its oversight. The Census Bureau continues to maintain and issue codes for geographic entities covered under FIPS oversight, albeit with a revised meaning for the FIPS acronym. Geographic entities covered under FIPS include states, counties, congressional districts, core based statistical areas, places, county subdivisions, subminor civil divisions, consolidated cities, and all types of American Indian, Alaska Native, and Native Hawaiian areas. FIPS codes are assigned alphabetically according to the name of the geographic entity and may change to maintain alphabetic sort when new entities are created or names change. FIPS codes for specific geographic entity types are usually unique within the next highest level of geographic entity with which a nesting relationship exists. For example, FIPS state, congressional district, and core based statistical area codes are unique within nation; FIPS county, place, county subdivision, and subminor civil division codes are unique within state. The codes for American Indian, Alaska Native, and Native Hawaiian areas also are unique within state; those areas in multiple states will have different codes for each state.NAME10 = Census tract numberPLNG_REGIO = Planning regionPercent_BA_or_Higher = Percentage of population that has a bachelor's degree or higherMedian_household_income = Median household incomeSquare_Miles = Total area in square milesTotal Jobs, 2015 = Total number of jobs forecasted for 2015Total Jobs, 2020 = Total number of jobs forecasted for 2020Total Jobs, 2030 = Total number of jobs forecasted for 2030Total Jobs, 2035 = Total number of jobs forecasted for 2035Total Jobs, 2040 = Total number of jobs forecasted for 2040Change in Jobs, 2015-2040 = Forecasted change in the total number of jobs between 2015 and 2040Change in Jobs per Square Mile, 2015-2040 = Forecasted change in the number of jobs per square mile from 2015 to 2040Population Change per square mile 2000-2010 = The actual population change per square mile from 2000 to 2010Change in Jobs per Square Mile 2015-2040 = Forecasted change in the number of jobs per square mile from 2015 to 2040Shape.STArea() = Total area in square feetSource: Atlanta Regional CommissionDate: 2015For additional information, please visit the Atlanta Regional Commission at www.atlantaregional.com

  5. Area per police station in urban India 2022, by state

    • statista.com
    • ai-chatbox.pro
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Area per police station in urban India 2022, by state [Dataset]. https://www.statista.com/statistics/1211673/india-area-per-police-station-urban-by-state/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The urban region of the Indian state of Goa had about **** square kilometers per police station as of January 2022. By contrast, rural regions of Himachal Pradesh, Assam and Sikkim had a police station less than six square kilometers.

  6. w

    Demographic Data - CENSUS_BLOCKS_TIGER2011_IN: Census Block Areas for...

    • data.wu.ac.at
    xml
    Updated Aug 19, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSGIC State | GIS Inventory (2017). Demographic Data - CENSUS_BLOCKS_TIGER2011_IN: Census Block Areas for Indiana in 2011 (United States Census Bureau, 1:100,000, Polygon Shapefile) [Dataset]. https://data.wu.ac.at/schema/data_gov/YTA0M2Q2ODktMGQzMC00Njc2LTg0NTgtYmI4YTUzMTQzNmVi
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Aug 19, 2017
    Dataset provided by
    NSGIC State | GIS Inventory
    Area covered
    United States, 2358c5470a6efb6c2b48042de4e3fdd3c2c8c6d8
    Description

    CENSUS_TRACTS_TIGER2011_IN.SHP is a polygon shapefile that contains 2011 census block boundaries for the state of Indiana. Census blocks are not legal boundaries, but are considered stable geographic units used for the presentation of decennial census data. The following is excerpted from an Adobe Acrobat PDF document named "TGRSHP2011_TECHDOC.PDF (U.S. Census Bureau): "Census Blocks are statistical areas bounded on all sides by visible features, such as streets, roads, streams, and railroad tracks, and by non-visible boundaries such as city, town, township, and county limits, and short line-of-sight extensions of streets and roads. Generally, census blocks are small in area; for example, a block in a city. Census blocks in suburban and rural areas may be large, irregular, and bounded by a variety of features, such as roads, streams, and/or transmission line rights-of-way. In remote areas census blocks may encompass hundreds of square miles. Census blocks cover all territory in the United States, Puerto Rico, and the Island areas. A block may consist of one or more faces. "Blocks never cross county or census tract boundaries (See Figures 3 and 4). They do not cross the boundaries of any entity for which the Census Bureau tabulates data, including American Indian, Alaska Native, and Native Hawaiian areas, congressional districts, county subdivisions, places, state legislative districts, urbanized areas, urban clusters, school districts, voting districts, or ZIP Code Tabulation Areas (ZCTAs) or some special administrative areas such as military installations, and national parks and monuments. "Census 2010 blocks are numbered uniquely within the 2010 boundaries of each state/county/census tract with a 4-digit census block number. The first digit of the tabulation block number identifies the block group."

  7. India's continental shelf area 2020, by state

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). India's continental shelf area 2020, by state [Dataset]. https://www.statista.com/statistics/734300/area-of-continental-shelf-by-state-india/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    India
    Description

    The Indian state of Gujarat had the highest continental shelf area, amounting to about ******* square kilometers, followed by the state of Maharashtra as of 2020. The union territory of Puducherry had the smallest continental shelf of ************ square kilometers.

  8. a

    Census 2010 Blocks Georgia

    • opendata.atlantaregional.com
    Updated Oct 30, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2014). Census 2010 Blocks Georgia [Dataset]. https://opendata.atlantaregional.com/datasets/1cdf1cb3d551419299f7d1cc319bf2d3
    Explore at:
    Dataset updated
    Oct 30, 2014
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using U.S. Census Bureau TIGER/Line files. The polygon features in Census_2010_Blocks_GA are subsets of Census_Blockgroups and Census_Tracts.Attributes:STATEFP10 = The Federal Information Processing Series (FIPS) state code. FIPS codes were formerly known as Federal Information Processing Standards codes, until the National Institute of Standards and Technology (NIST) announced its decision in 2005 to remove geographic entity codes from its oversight. The Census Bureau continues to maintain and issue codes for geographic entities covered under FIPS oversight, albeit with a revised meaning for the FIPS acronym. Geographic entities covered under FIPS include states, counties, congressional districts, core based statistical areas, places, county subdivisions, subminor civil divisions, consolidated cities, and all types of American Indian, Alaska Native, and Native Hawaiian areas. FIPS codes are assigned alphabetically according to the name of the geographic entity and may change to maintain alphabetic sort when new entities are created or names change. FIPS codes for specific geographic entity types are usually unique within the next highest level of geographic entity with which a nesting relationship exists. For example, FIPS state, congressional district, and core based statistical area codes are unique within nation; FIPS county, place, county subdivision, and subminor civil division codes are unique within state. The codes for American Indian, Alaska Native, and Native Hawaiian areas also are unique within state; those areas in multiple states will have different codes for each state.COUNTYFP10 = The Federal Information Processing Series (FIPS) county code. TRACTCE10 = Census Tract Codes and Numbers—Census tracts are identified by an up to four-digit integer number and may have an optional two-digit suffix; for example 1457.02 or 23. The census tract codes consist of six digits with an implied decimal between the fourth and fifth digit corresponding to the basic census tract number but with leading zeroes and trailing zeroes for census tracts without a suffix. The tract number examples above would have codes of 145702 and 002300, respectively.BLOCKCE10 = Census block number - Census blocks are numbered uniquely with a four-digit census block number from 0000 to 9999 within census tract, which nest within state and county. The first digit of the census block number identifies the block group. Block numbers beginning with a zero (in Block Group 0) are only associated with water-only areas.GEOID10 = A concatenation of STATEFP10, COUNTYFP10, TRACTCE10, and BLOCKCE10, which produces the entire FIPS code for this geography.NAME10 = Block nameMTFCC10 = MAF/TIGER feature class codeUR10 = Census urban/rural indicatorUACE10 = Census urbanized area codesFUNCSTAT10 = Functional statusALAND10 = Land area in square metersAWATER10 = Water area in square metersINTPTLAT10 = Latitude of the centroid (center of this geography)INTPLON10 = Longitude of the centroid (center of this geography)STFID = The entire FIPS code of this geographyCOUNTY_NM = County namePLNG_REGIO = Planning regionSUMLEV = Summary level of census geography (code)NAME = Block namePLACE = Census place codeSTATE = The state FIPS codeCOUNTY = The county FIPS codeTRACT = The tract FIPS codeBLOCK = The block FIPS codetotpop10 = Total populationoner_10 = One race populationwhite_or10 = White, one race populationbl_or10 = Black, one race populationaian_or10 = American Indian and Alaska Native, one race populationasia_or10 = Asian, one race populationnhpi_or10 = Native Hawaiian and Other Pacific Islander, one race populationsomoth_or1 = Some other, one race populationtwoplusr10 = Two-plus races populationtotpop101 = Total populationhisp_lat10 = Total Hispanic/Latino populationnonhisp10 = Total non-Hispanic/Latino populationnh_or10 = Non-Hispanic/Latino, one race populationnhw_or10 = Non-Hispanic/Latino White, one race populationnhbl_or10 = Non-Hispanic/Latino Black, one race populationnhai_or10 = Non-Hispanic/Latino American Indian and Alaskan Native, one race populationnhas_or10 = Non-Hispanic/Latino Asian, one race populationnhhp_or10 = Non-Hispanic/Latino Native Hawaiian and Other Pacific Islander, one race populationnhot_or10 = Non-Hispanic/Latino Other, one race populationnh_twor10 = Non-Hispanic/Latino, two or more races populationtothu10 = Total housing unitstotoccu_10 = Total occupied housing unitstotvach_10 = Total vacant housing unitsAcresLand = Land area in acresAcresWater = Water area in acresAcresTotal = Total area in acresSqMiLand = Land area in square milesDensPPSqMi = Density: Population per square mile of landShape.STArea() = Total area in square feetSource: U.S. Census Bureau, Atlanta Regional CommissionDate: 2010For additional information, please visit the Atlanta Regional Commission at www.atlantaregional.com

  9. a

    CENSUS 2020 PL94171 MONTANA STATE

    • ceic-mtdoc.opendata.arcgis.com
    Updated Aug 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Montana Department of Commerce (2021). CENSUS 2020 PL94171 MONTANA STATE [Dataset]. https://ceic-mtdoc.opendata.arcgis.com/items/6449216b3e1e4f2e959d1d9bc35362d1
    Explore at:
    Dataset updated
    Aug 23, 2021
    Dataset authored and provided by
    Montana Department of Commerce
    Area covered
    Description

    Population and Housing data for the State of Montana was compiled from the PL 94-171 Redistricting Summary files released by the U.S. Census Bureau for the 2020 Decennial Census. This data set was created by the Montana Department of Commerce for use by the citizens of Montana and the general public.

    TIGER shapefiles were joined to the tabular summary file data to create this data set. A subset of variables from the release were selected for this dataset. A description of each variable and calculations are provided here.

    VINTAGE - Decennial Census vintage year - Calculation

    SUMLEV - Geography summary level - Calculation

    GEOID - Geography ID - Calculation

    NAME - Geography Name - Calculation

    AREALAND - Area of land in square meters - Calculation

    AREAWATR - Area of water in square meters - Calculation

    INTPTLAT - Geography point latitude - Calculation

    INTPTLON - Geography point longitude - Calculation

    POPTOT - Population Total - Calculation P0010001

    POPPCAP - Population per square mile - Calculation P0010001 / (AREALAND / 2589988.110336)

    POPWH - Population White alone - Calculation P0010003

    POPBL - Population Black alone - Calculation P0010004

    POPAI - Population American Indian or Alaska Native alone - Calculation P0010005

    POPAS - Population Asian alone - Calculation P0010006

    POPNH - Population Native Hawaiian or Pacific Islander alone - Calculation P0010007

    POPOT - Population Some other Race alone - Calculation P0010008

    POP2MO - Population 2 or more races - Calculation P0010009

    POPWHPCT - Population White alone percent - Calculation P0010003 / P0010001 * 100

    POPBLPCT - Population Black alone percent - Calculation P0010004 / P0010001 * 100

    POPAIPCT - Population American Indian or Alaska Native alone percent - Calculation P0010005 / P0010001 * 100

    POPASPCT - Population Asian alone percent - Calculation P0010006 / P0010001 * 100

    POPNHPCT - Population Native Hawaiian or Pacific Islander alone percent - Calculation P0010007 / P0010001 * 100

    POPOTPCT - Population Some other Race alone percent - Calculation P0010008 / P0010001 * 100

    POP2MOPCT - Population 2 or more races percent - Calculation P0010009 / P0010001 * 100

    POPWHC - Population White alone or in combination - Calculation P0010003+ P00100011+ P00100012+ P00100013+ P00100014+ P00100015+ P0010027+ P0010028+ P0010029+ P00100030+ P00100031+ P00100032+ P00100033+ P00100034+ P00100035+ P00100036+ P00100048+ P00100049+ P00100050+ P00100051+ P00100052+ P00100053+ P00100054+ P00100055+ P00100056+ P00100057+ P00100064+ P00100065+ P00100066+ P00100067+ P00100068+ P00100071

    POPBLC - Population Black alone or in combination - Calculation P0010004+ P00100011+ P00100016+ P00100017+ P00100018+ P00100019+ P0010027+ P0010028+ P0010029+ P00100030+ P00100037+ P00100038+ P00100039+ P00100040+ P00100041+ P00100042+ P00100048+ P00100049+ P00100050+ P00100051+ P00100052+ P00100053+ P00100058+ P00100059+ P00100060+ P00100061+ P00100064+ P00100065+ P00100066+ P00100067+ P00100069+ P00100071

    POPAIC - Population American Indian or Alaska Native alone or in combination - Calculation P0010005+ P00100012+ P00100016+ P0010020+ P0010021+ P0010022+ P0010027+ P00100031+ P00100032+ P00100033+ P00100037+ P00100038+ P00100039+ P00100043+ P00100044+ P00100045+ P00100048+ P00100049+ P00100050+ P00100054+ P00100055+ P00100056+ P00100058+ P00100059+ P00100060+ P00100062+ P00100064+ P00100065+ P00100066+ P00100068+ P00100069+ P00100071

    POPASC - Population Asian alone or in combination - Calculation P0010006+ P00100013+ P00100017+ P0010020+ P0010023+ P0010024+ P0010028+ P00100031+ P00100034+ P00100035+ P00100037+ P00100040+ P00100041+ P00100043+ P00100044+ P00100046+ P00100048+ P00100051+ P00100052+ P00100054+ P00100055+ P00100057+ P00100058+ P00100059+ P00100061+ P00100062+ P00100064+ P00100065+ P00100067+ P00100068+ P00100069+ P00100071

    POPNHC - Population Native Hawaiian or Pacific Islander alone or in combination - Calculation P0010007+ P00100014+ P00100018+ P0010021+ P0010023+ P0010025+ P0010029+ P00100032+ P00100034+ P00100036+ P00100038+ P00100040+ P00100042+ P00100043+ P00100045+ P00100046+ P00100049+ P00100051+ P00100053+ P00100054+ P00100056+ P00100057+ P00100058+ P00100060+ P00100061+ P00100062+ P00100064+ P00100066+ P00100067+ P00100068+ P00100069+ P00100071

    POPOTC - Population Some Other Race alone or in combination - Calculation P0010008+ P00100015+ P00100019+ P0010022+ P0010024+ P0010025+ P00100030+ P00100033+ P00100035+ P00100036+ P00100039+ P00100041+ P00100042+ P00100044+ P00100045+ P00100046+ P00100050+ P00100052+ P00100053+ P00100055+ P00100056+ P00100057+ P00100059+ P00100060+ P00100061+ P00100062+ P00100065+ P00100066+ P00100067+ P00100068+ P00100069+ P00100071

    POPWHCPCT - Population White alone or in combination percent - Calculation (P0010003+ P00100011+ P00100012+ P00100013+ P00100014+ P00100015+ P0010027+ P0010028+ P0010029+ P00100030+ P00100031+ P00100032+ P00100033+ P00100034+ P00100035+ P00100036+ P00100048+ P00100049+ P00100050+ P00100051+ P00100052+ P00100053+ P00100054+ P00100055+ P00100056+ P00100057+ P00100064+ P00100065+ P00100066+ P00100067+ P00100068+ P00100071)/ P0010001 * 100

    POPBLCPCT - Population Black alone or in combination percent - Calculation (P0010004+ P00100011+ P00100016+ P00100017+ P00100018+ P00100019+ P0010027+ P0010028+ P0010029+ P00100030+ P00100037+ P00100038+ P00100039+ P00100040+ P00100041+ P00100042+ P00100048+ P00100049+ P00100050+ P00100051+ P00100052+ P00100053+ P00100058+ P00100059+ P00100060+ P00100061+ P00100064+ P00100065+ P00100066+ P00100067+ P00100069+ P00100071)/ P0010001 * 100

    POPAICPCT - Population American Indian or Alaska Native alone or in combination percent - Calculation (P0010005+ P00100012+ P00100016+ P0010020+ P0010021+ P0010022+ P0010027+ P00100031+ P00100032+ P00100033+ P00100037+ P00100038+ P00100039+ P00100043+ P00100044+ P00100045+ P00100048+ P00100049+ P00100050+ P00100054+ P00100055+ P00100056+ P00100058+ P00100059+ P00100060+ P00100062+ P00100064+ P00100065+ P00100066+ P00100068+ P00100069+ P00100071)/ P0010001 * 100

    POPASCPCT - Population Asian alone or in combination percent - Calculation (P0010006+ P00100013+ P00100017+ P0010020+ P0010023+ P0010024+ P0010028+ P00100031+ P00100034+ P00100035+ P00100037+ P00100040+ P00100041+ P00100043+ P00100044+ P00100046+ P00100048+ P00100051+ P00100052+ P00100054+ P00100055+ P00100057+ P00100058+ P00100059+ P00100061+ P00100062+ P00100064+ P00100065+ P00100067+ P00100068+ P00100069+ P00100071)/ P0010001 * 100

    POPNHCPCT - Population Native Hawaiian or Pacific Islander alone or in combination percent - Calculation (P0010007+ P00100014+ P00100018+ P0010021+ P0010023+ P0010025+ P0010029+ P00100032+ P00100034+ P00100036+ P00100038+ P00100040+ P00100042+ P00100043+ P00100045+ P00100046+ P00100049+ P00100051+ P00100053+ P00100054+ P00100056+ P00100057+ P00100058+ P00100060+ P00100061+ P00100062+ P00100064+ P00100066+ P00100067+ P00100068+ P00100069+ P00100071)/ P0010001 * 100

    POPOTCPCT - Population Some Other Race alone or in combination percent - Calculation (P0010008+ P00100015+ P00100019+ P0010022+ P0010024+ P0010025+ P00100030+ P00100033+ P00100035+ P00100036+ P00100039+ P00100041+ P00100042+ P00100044+ P00100045+ P00100046+ P00100050+ P00100052+ P00100053+ P00100055+ P00100056+ P00100057+ P00100059+ P00100060+ P00100061+ P00100062+ P00100065+ P00100066+ P00100067+ P00100068+ P00100069+ P00100071)/ P0010001 * 100

    POPHSP - Population Hispanic - Calculation P0020002

    POPNHSP - Population Non-Hispanic - Calculation P0020003

    POPHSPPCT - Population Hispanic percent - Calculation P0020002 / P0010001 * 100

    POPNHSPPCT - Population Non-Hispanic percent - Calculation P0020003 / P0010001 * 100

    POP18OV - Population 18 years and over - Calculation P0030001

    POP18OVPCT - Population 18 years and over percent - Calculation P0030001 / P0010001 * 100

    HUTOT - Housing Units Total - Calculation H0010001

    HUOCC - Housing Units Occupied - Calculation H0010002

    HUVAC - Housing Units Vacant - Calculation H0010003

    HUOCCPCT - Housing Units Occupied percent - Calculation H0010002 / H0010001 * 100

    HUVACPCT - Housing Units Vacant percent - Calculation H0010003 / H0010001 * 100

    POPGQ - Population Group Quarters - Calculation P0050001

    POPGQIN - Population Group Quarters - Institutionalized - Calculation P0050002

    POPGQNI - Population Group Quarters - Non-Institutionalized - Calculation P0050007

    POPGQPCT - Population Group Quarters percent - Calculation P0050001 / P0010001 * 100

    POPGQINPCT - Population Group Quarters - Institutionalized percent - Calculation P0050002 / P0010001 * 100

    POPGQNIPCT - Population Group Quarters - Non-Institutionalized percent - Calculation P0050007 / P0010001 * 100

    POPTOT2010 - Population Total 2010 - Calculation

    POPCHG - Population Change from 2010 to 2020 - Calculation

    POPCHGPCT - Population Percent Change from 2010 to 2020 - Calculation

  10. a

    CENSUS 2020 PL94171 MONTANA STATE SENATE DISTRICT

    • hub.arcgis.com
    Updated Aug 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Montana Department of Commerce (2021). CENSUS 2020 PL94171 MONTANA STATE SENATE DISTRICT [Dataset]. https://hub.arcgis.com/maps/mtdoc::census-2020-pl94171-montana-state-senate-district/about
    Explore at:
    Dataset updated
    Aug 23, 2021
    Dataset authored and provided by
    Montana Department of Commerce
    Area covered
    Description

    Population and Housing data for State Legislature Senate Districts within the State of Montana was compiled from the PL 94-171 Redistricting Summary files released by the U.S. Census Bureau for the 2020 Decennial Census.

    This data set was created by the Montana Department of Commerce for use by the citizens of Montana and the general public. TIGER shapefiles were joined to the tabular summary file data to create this data set. A subset of variables from the release were selected for this dataset. A description of each variable and calculations are provided here.

    VINTAGE - Decennial Census vintage year - Calculation

    SUMLEV - Geography summary level - Calculation

    GEOID - Geography ID - Calculation

    NAME - Geography Name - Calculation

    AREALAND - Area of land in square meters - Calculation

    AREAWATR - Area of water in square meters - Calculation

    INTPTLAT - Geography point latitude - Calculation

    INTPTLON - Geography point longitude - Calculation

    POPTOT - Population Total - Calculation P0010001

    POPPCAP - Population per square mile - Calculation P0010001 / (AREALAND / 2589988.110336)

    POPWH - Population White alone - Calculation P0010003

    POPBL - Population Black alone - Calculation P0010004

    POPAI - Population American Indian or Alaska Native alone - Calculation P0010005

    POPAS - Population Asian alone - Calculation P0010006

    POPNH - Population Native Hawaiian or Pacific Islander alone - Calculation P0010007

    POPOT - Population Some other Race alone - Calculation P0010008

    POP2MO - Population 2 or more races - Calculation P0010009

    POPWHPCT - Population White alone percent - Calculation P0010003 / P0010001 * 100

    POPBLPCT - Population Black alone percent - Calculation P0010004 / P0010001 * 100

    POPAIPCT - Population American Indian or Alaska Native alone percent - Calculation P0010005 / P0010001 * 100

    POPASPCT - Population Asian alone percent - Calculation P0010006 / P0010001 * 100

    POPNHPCT - Population Native Hawaiian or Pacific Islander alone percent - Calculation P0010007 / P0010001 * 100

    POPOTPCT - Population Some other Race alone percent - Calculation P0010008 / P0010001 * 100

    POP2MOPCT - Population 2 or more races percent - Calculation P0010009 / P0010001 * 100

    POPWHC - Population White alone or in combination - Calculation P0010003+ P00100011+ P00100012+ P00100013+ P00100014+ P00100015+ P0010027+ P0010028+ P0010029+ P00100030+ P00100031+ P00100032+ P00100033+ P00100034+ P00100035+ P00100036+ P00100048+ P00100049+ P00100050+ P00100051+ P00100052+ P00100053+ P00100054+ P00100055+ P00100056+ P00100057+ P00100064+ P00100065+ P00100066+ P00100067+ P00100068+ P00100071

    POPBLC - Population Black alone or in combination - Calculation P0010004+ P00100011+ P00100016+ P00100017+ P00100018+ P00100019+ P0010027+ P0010028+ P0010029+ P00100030+ P00100037+ P00100038+ P00100039+ P00100040+ P00100041+ P00100042+ P00100048+ P00100049+ P00100050+ P00100051+ P00100052+ P00100053+ P00100058+ P00100059+ P00100060+ P00100061+ P00100064+ P00100065+ P00100066+ P00100067+ P00100069+ P00100071

    POPAIC - Population American Indian or Alaska Native alone or in combination - Calculation P0010005+ P00100012+ P00100016+ P0010020+ P0010021+ P0010022+ P0010027+ P00100031+ P00100032+ P00100033+ P00100037+ P00100038+ P00100039+ P00100043+ P00100044+ P00100045+ P00100048+ P00100049+ P00100050+ P00100054+ P00100055+ P00100056+ P00100058+ P00100059+ P00100060+ P00100062+ P00100064+ P00100065+ P00100066+ P00100068+ P00100069+ P00100071

    POPASC - Population Asian alone or in combination - Calculation P0010006+ P00100013+ P00100017+ P0010020+ P0010023+ P0010024+ P0010028+ P00100031+ P00100034+ P00100035+ P00100037+ P00100040+ P00100041+ P00100043+ P00100044+ P00100046+ P00100048+ P00100051+ P00100052+ P00100054+ P00100055+ P00100057+ P00100058+ P00100059+ P00100061+ P00100062+ P00100064+ P00100065+ P00100067+ P00100068+ P00100069+ P00100071

    POPNHC - Population Native Hawaiian or Pacific Islander alone or in combination - Calculation P0010007+ P00100014+ P00100018+ P0010021+ P0010023+ P0010025+ P0010029+ P00100032+ P00100034+ P00100036+ P00100038+ P00100040+ P00100042+ P00100043+ P00100045+ P00100046+ P00100049+ P00100051+ P00100053+ P00100054+ P00100056+ P00100057+ P00100058+ P00100060+ P00100061+ P00100062+ P00100064+ P00100066+ P00100067+ P00100068+ P00100069+ P00100071

    POPOTC - Population Some Other Race alone or in combination - Calculation P0010008+ P00100015+ P00100019+ P0010022+ P0010024+ P0010025+ P00100030+ P00100033+ P00100035+ P00100036+ P00100039+ P00100041+ P00100042+ P00100044+ P00100045+ P00100046+ P00100050+ P00100052+ P00100053+ P00100055+ P00100056+ P00100057+ P00100059+ P00100060+ P00100061+ P00100062+ P00100065+ P00100066+ P00100067+ P00100068+ P00100069+ P00100071

    POPWHCPCT - Population White alone or in combination percent - Calculation (P0010003+ P00100011+ P00100012+ P00100013+ P00100014+ P00100015+ P0010027+ P0010028+ P0010029+ P00100030+ P00100031+ P00100032+ P00100033+ P00100034+ P00100035+ P00100036+ P00100048+ P00100049+ P00100050+ P00100051+ P00100052+ P00100053+ P00100054+ P00100055+ P00100056+ P00100057+ P00100064+ P00100065+ P00100066+ P00100067+ P00100068+ P00100071)/ P0010001 * 100

    POPBLCPCT - Population Black alone or in combination percent - Calculation (P0010004+ P00100011+ P00100016+ P00100017+ P00100018+ P00100019+ P0010027+ P0010028+ P0010029+ P00100030+ P00100037+ P00100038+ P00100039+ P00100040+ P00100041+ P00100042+ P00100048+ P00100049+ P00100050+ P00100051+ P00100052+ P00100053+ P00100058+ P00100059+ P00100060+ P00100061+ P00100064+ P00100065+ P00100066+ P00100067+ P00100069+ P00100071)/ P0010001 * 100

    POPAICPCT - Population American Indian or Alaska Native alone or in combination percent - Calculation (P0010005+ P00100012+ P00100016+ P0010020+ P0010021+ P0010022+ P0010027+ P00100031+ P00100032+ P00100033+ P00100037+ P00100038+ P00100039+ P00100043+ P00100044+ P00100045+ P00100048+ P00100049+ P00100050+ P00100054+ P00100055+ P00100056+ P00100058+ P00100059+ P00100060+ P00100062+ P00100064+ P00100065+ P00100066+ P00100068+ P00100069+ P00100071)/ P0010001 * 100

    POPASCPCT - Population Asian alone or in combination percent - Calculation (P0010006+ P00100013+ P00100017+ P0010020+ P0010023+ P0010024+ P0010028+ P00100031+ P00100034+ P00100035+ P00100037+ P00100040+ P00100041+ P00100043+ P00100044+ P00100046+ P00100048+ P00100051+ P00100052+ P00100054+ P00100055+ P00100057+ P00100058+ P00100059+ P00100061+ P00100062+ P00100064+ P00100065+ P00100067+ P00100068+ P00100069+ P00100071)/ P0010001 * 100

    POPNHCPCT - Population Native Hawaiian or Pacific Islander alone or in combination percent - Calculation (P0010007+ P00100014+ P00100018+ P0010021+ P0010023+ P0010025+ P0010029+ P00100032+ P00100034+ P00100036+ P00100038+ P00100040+ P00100042+ P00100043+ P00100045+ P00100046+ P00100049+ P00100051+ P00100053+ P00100054+ P00100056+ P00100057+ P00100058+ P00100060+ P00100061+ P00100062+ P00100064+ P00100066+ P00100067+ P00100068+ P00100069+ P00100071)/ P0010001 * 100

    POPOTCPCT - Population Some Other Race alone or in combination percent - Calculation (P0010008+ P00100015+ P00100019+ P0010022+ P0010024+ P0010025+ P00100030+ P00100033+ P00100035+ P00100036+ P00100039+ P00100041+ P00100042+ P00100044+ P00100045+ P00100046+ P00100050+ P00100052+ P00100053+ P00100055+ P00100056+ P00100057+ P00100059+ P00100060+ P00100061+ P00100062+ P00100065+ P00100066+ P00100067+ P00100068+ P00100069+ P00100071)/ P0010001 * 100

    POPHSP - Population Hispanic - Calculation P0020002

    POPNHSP - Population Non-Hispanic - Calculation P0020003

    POPHSPPCT - Population Hispanic percent - Calculation P0020002 / P0010001 * 100

    POPNHSPPCT - Population Non-Hispanic percent - Calculation P0020003 / P0010001 * 100

    POP18OV - Population 18 years and over - Calculation P0030001

    POP18OVPCT - Population 18 years and over percent - Calculation P0030001 / P0010001 * 100

    HUTOT - Housing Units Total - Calculation H0010001

    HUOCC - Housing Units Occupied - Calculation H0010002

    HUVAC - Housing Units Vacant - Calculation H0010003

    HUOCCPCT - Housing Units Occupied percent - Calculation H0010002 / H0010001 * 100

    HUVACPCT - Housing Units Vacant percent - Calculation H0010003 / H0010001 * 100

    POPGQ - Population Group Quarters - Calculation P0050001

    POPGQIN - Population Group Quarters - Institutionalized - Calculation P0050002

    POPGQNI - Population Group Quarters - Non-Institutionalized - Calculation P0050007

    POPGQPCT - Population Group Quarters percent - Calculation P0050001 / P0010001 * 100

    POPGQINPCT - Population Group Quarters - Institutionalized percent - Calculation P0050002 / P0010001 * 100

    POPGQNIPCT - Population Group Quarters - Non-Institutionalized percent - Calculation P0050007 / P0010001 * 100

    POPTOT2010 - Population Total 2010 - Calculation

    POPCHG - Population Change from 2010 to 2020 - Calculation

    POPCHGPCT - Population Percent Change from 2010 to 2020 - Calculation

  11. States with the largest protected forest area in India 2015

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). States with the largest protected forest area in India 2015 [Dataset]. https://www.statista.com/statistics/695050/india-states-with-the-largest-protected-forest-area/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2015
    Area covered
    India
    Description

    The statistic displays the Indian states with the largest protected forest area in 2013. During the measured time period, the protected forest area in the state of Himachal Pradesh was the largest and amounted to approximately ****** square kilometers, while Madhya Pradesh was second with about ****** square kilometers.

  12. a

    Children Under 5

    • opendata.atlantaregional.com
    Updated Jun 10, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2015). Children Under 5 [Dataset]. https://opendata.atlantaregional.com/datasets/GARC::children-under-5/about
    Explore at:
    Dataset updated
    Jun 10, 2015
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission from the United States Census Bureau's 2000 Decennial Census to show the count and percentage of children under the age of 5 by census tract within the Atlanta Region.Attributes:GEOID10 = The entire Federal Information Processing Series (FIPS) census tract code. FIPS codes were formerly known as Federal Information Processing Standards codes, until the National Institute of Standards and Technology (NIST) announced its decision in 2005 to remove geographic entity codes from its oversight. The Census Bureau continues to maintain and issue codes for geographic entities covered under FIPS oversight, albeit with a revised meaning for the FIPS acronym. Geographic entities covered under FIPS include states, counties, congressional districts, core based statistical areas, places, county subdivisions, subminor civil divisions, consolidated cities, and all types of American Indian, Alaska Native, and Native Hawaiian areas. FIPS codes are assigned alphabetically according to the name of the geographic entity and may change to maintain alphabetic sort when new entities are created or names change. FIPS codes for specific geographic entity types are usually unique within the next highest level of geographic entity with which a nesting relationship exists. For example, FIPS state, congressional district, and core based statistical area codes are unique within nation; FIPS county, place, county subdivision, and subminor civil division codes are unique within state. The codes for American Indian, Alaska Native, and Native Hawaiian areas also are unique within state; those areas in multiple states will have different codes for each state.NAME10 = Census tract numberPLNG_REGIO = Planning regionPercent_BA_or_Higher = Percentage of people who have a bachelor's degree or higherMedian_household_income = Median household incomeUnder_5_population_2010 = The population under 5 years of age in 2010Population Change per square mile 2000-2010 = Population Change per square mile 2000-2010 Percent Population under 5 in 2010 = The percentage of the population under 5 years of age in 2010Shape.STArea() = Total area in square feetSource: U.S. Census Bureau, Atlanta Regional CommissionDate: 2010For additional information, please visit the Atlanta Regional Commission at www.atlantaregional.com

  13. States with the smallest open forest area in India 2021

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). States with the smallest open forest area in India 2021 [Dataset]. https://www.statista.com/statistics/694440/india-states-with-the-smallest-open-forest-area/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    India
    Description

    The open forest area in the union territory of Chandigarh in India had the smallest open forest area of over ***** square kilometers as of 2021. Whereas, Madhya Pradesh had the largest open forest area of over ** thousand square kilometers in the country.

  14. States with the smallest reserved forest area in India 2015

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). States with the smallest reserved forest area in India 2015 [Dataset]. https://www.statista.com/statistics/695058/india-states-with-the-smallest-reserved-forest-area/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2015
    Area covered
    India
    Description

    The statistic displays the Indian states with the smallest reserved forest area in 2015. During the measured time period, the reserved forest area in the union territory of Chandigarh was the smallest and amounted to approximately ** square kilometers, followed by the state of Punjab with ** square kilometers.

  15. States with the largest scrub cover area in India 2021

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). States with the largest scrub cover area in India 2021 [Dataset]. https://www.statista.com/statistics/694449/india-states-with-the-largest-scrub-cover-area/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    India
    Description

    The south Indian state of Andhra Pradesh had the largest scrub area of over ************** square kilometers as of 2021. Madhya Pradesh followed with the second largest scrub area with over ************* square kilometers that year.

  16. States with lowest forest cover India 2021

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). States with lowest forest cover India 2021 [Dataset]. https://www.statista.com/statistics/1038373/india-states-lowest-forest-tree-cover/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    India
    Description

    Among its states, Haryana had the smallest percentage of forest cover in relation to its total geographical area in India. Punjab, another state in the northern region of India, was not far behind, with a forest cover of **** percent.

    Forest cover in India

    India, known for its diverse ecosystems, has over *** thousand square kilometers of forest cover, an integral component to its ecological balance. The classification of forest cover in India is determined by the density of the tree canopy, with moderately dense and open forests constituting the majority.

    Biodiversity conservation

    Hosting a rich diversity of life in its forests, wetlands, and marine regions, India has made considerable progress in conservation initiatives. The country has set up a range of protected zones, such as wildlife sanctuaries, national parks, and botanical gardens. These zones, crucial for preserving India’s biodiversity, implement both in-situ and ex-situ conservation strategies by providing habitat for a multitude of species.

  17. Road density in India FY 2019, by state and union territory

    • statista.com
    Updated Feb 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Road density in India FY 2019, by state and union territory [Dataset]. https://www.statista.com/statistics/1329919/india-road-density-by-state-and-union-territory/
    Explore at:
    Dataset updated
    Feb 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    As of financial year 2019, union territory Chandigarh had the highest road density in India with more than 22.6 thousand kilometers per one thousand square kilometers. Among the states, Kerala ranked first with 6.7 thousand km per one thousand square kilometers.

  18. Area of Delhi-NCR India 2011, by sub region

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Area of Delhi-NCR India 2011, by sub region [Dataset]. https://www.statista.com/statistics/1401785/india-area-delhi-ncr-by-sub-region/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    As of 2011, the total estimated area under Delhi-National Capital Region was approximately ** thousand square kilometers. The state of Haryana had the largest area within NCR whereas Delhi occupied the smallest area. NCR is an urban agglomeration centered around the national capital territory of Delhi and includes certain districts of neighboring states of Haryana, Rajasthan, and Uttar Pradesh.

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Land area in India 2021, by state and union territory [Dataset]. https://www.statista.com/statistics/616241/area-by-state-and-union-territory-india/
Organization logo

Land area in India 2021, by state and union territory

Explore at:
Dataset updated
Aug 21, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2021
Area covered
India
Description

The north-western state of Rajasthan was the largest in terms of land area in India in 2021 with over 342 thousand square kilometers. Central Madhya Pradesh and south-western Maharashtra followed, while the union territory of Lakshadweep recorded an area of 30 square kilometers. Overall, India's geographical area amounted to about 3.3 million square kilometers.

Search
Clear search
Close search
Google apps
Main menu