45 datasets found
  1. World Population by Countries (2025)

    • kaggle.com
    zip
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samith Chimminiyan (2025). World Population by Countries (2025) [Dataset]. https://www.kaggle.com/datasets/samithsachidanandan/world-population-by-countries-2025
    Explore at:
    zip(9000 bytes)Available download formats
    Dataset updated
    Jan 23, 2025
    Authors
    Samith Chimminiyan
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    World
    Description

    Description

    This Dataset contains details of World Population by country. According to the worldometer, the current population of the world is 8.2 billion people. Highest populated country is India followed by China and USA.

    Attribute Information

    • Rank : Country Rank by Population.
    • Country : Name of the Country.
    • Population(2024) : Current Population of each Country.
    • Yearly Change : Percentage Yearly Change in Population.
    • Net Change : Net change in the Population.
    • Density (P/Km²) : Population density (population per square km)
    • Land Area(Km²) : Total land area of the Country.
    • Migrants (net) : Total number of migrants.
    • Fertility Rate : Fertility rate
    • Median Age : Median age of the population
    • Urban Pop % : Percentage of urban population
    • World Share : Share to the word with population.

    Acknowledgements

    https://www.worldometers.info/world-population/population-by-country/

    Image by Gerd Altmann from Pixabay

  2. Total population of India 2030

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Total population of India 2030 [Dataset]. https://www.statista.com/statistics/263766/total-population-of-india/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The statistic shows the total population of India from 2020 to 2030. In 2024, the estimated total population in India amounted to approximately 1.44 billion people. Total population in India India currently has the second-largest population in the world and is projected to overtake top-ranking China within forty years. Its residents comprise more than one-seventh of the entire world’s population, and despite a slowly decreasing fertility rate (which still exceeds the replacement rate and keeps the median age of the population relatively low), an increasing life expectancy adds to an expanding population. In comparison with other countries whose populations are decreasing, such as Japan, India has a relatively small share of aged population, which indicates the probability of lower death rates and higher retention of the existing population. With a land mass of less than half that of the United States and a population almost four times greater, India has recognized potential problems of its growing population. Government attempts to implement family planning programs have achieved varying degrees of success. Initiatives such as sterilization programs in the 1970s have been blamed for creating general antipathy to family planning, but the combined efforts of various family planning and contraception programs have helped halve fertility rates since the 1960s. The population growth rate has correspondingly shrunk as well, but has not yet reached less than one percent growth per year. As home to thousands of ethnic groups, hundreds of languages, and numerous religions, a cohesive and broadly-supported effort to reduce population growth is difficult to create. Despite that, India is one country to watch in coming years. It is also a growing economic power; among other measures, its GDP per capita was expected to triple between 2003 and 2013 and was listed as the third-ranked country for its share of the global gross domestic product.

  3. Indian Cities by Population 👥

    • kaggle.com
    zip
    Updated Sep 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    meer atif magsi (2023). Indian Cities by Population 👥 [Dataset]. https://www.kaggle.com/datasets/meeratif/list-of-cities-in-china-by-population
    Explore at:
    zip(6556 bytes)Available download formats
    Dataset updated
    Sep 6, 2023
    Authors
    meer atif magsi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    Title: Population Data of Indian Cities (2011 and 2001)

    Description: This dataset contains population information for various cities in India, categorized by rank, city name, and population figures for the years 2011 and 2001. Additionally, it includes the corresponding state or union territory to which each city belongs. The dataset provides insights into population changes over a decade in different cities across India.

    Columns:

    Rank: This column represents the rank of each city based on its population in the year 2011. Cities are typically ranked in descending order of population, with the most populous city having the rank 1.

    City: This column contains the names of the cities for which population data is recorded.

    Population (2011): This column displays the population count of each city as of the year 2011. The population figures are likely to be recorded in thousands or millions

    Population (2001): This column provides the population count of each city as of the year 2001. Comparing this data with the 2011 population figures allows for an analysis of population growth or decline over the decade.

    State or Union Territory: This column indicates the administrative division to which each city belongs. In India, cities are typically grouped into states or union territories, and this column helps identify the geographical context of each city.

  4. N

    China, TX Population Breakdown by Race

    • neilsberg.com
    csv, json
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). China, TX Population Breakdown by Race [Dataset]. https://www.neilsberg.com/research/datasets/68b3650c-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China, Texas
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of China by race. It includes the population of China across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of China across relevant racial categories.

    Key observations

    The percent distribution of China population by race (across all racial categories recognized by the U.S. Census Bureau): 68.99% are white, 24.15% are Black or African American, 0.39% are Asian, 1.06% are some other race and 5.41% are multiracial.

    https://i.neilsberg.com/ch/china-tx-population-by-race.jpeg" alt="China population by race">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the China
    • Population: The population of the racial category (excluding ethnicity) in the China is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of China total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China Population by Race & Ethnicity. You can refer the same here

  5. N

    China, Maine Population Breakdown by Race

    • neilsberg.com
    csv, json
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). China, Maine Population Breakdown by Race [Dataset]. https://www.neilsberg.com/research/datasets/68b35efe-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Maine, China
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of China town by race. It includes the population of China town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of China town across relevant racial categories.

    Key observations

    The percent distribution of China town population by race (across all racial categories recognized by the U.S. Census Bureau): 98.16% are white, 0.80% are Black or African American, 0.52% are Asian and 0.52% are multiracial.

    https://i.neilsberg.com/ch/china-me-population-by-race.jpeg" alt="China town population by race">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the China town
    • Population: The population of the racial category (excluding ethnicity) in the China town is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of China town total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China town Population by Race & Ethnicity. You can refer the same here

  6. world_population

    • kaggle.com
    zip
    Updated Feb 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    farzam ajili (2023). world_population [Dataset]. https://www.kaggle.com/datasets/farzamajili/world-population
    Explore at:
    zip(16061 bytes)Available download formats
    Dataset updated
    Feb 8, 2023
    Authors
    farzam ajili
    Area covered
    World
    Description

    Context The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion in 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growing more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.

  7. f

    Forecasting Results of the population structures for China, India, and...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Apr 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wang, Zhichao; Li, Yan; Wang, Huiwen; Jiang, Zhenyu; Wei, Yigang (2019). Forecasting Results of the population structures for China, India, and Vietnam (Unit: %). [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000141522
    Explore at:
    Dataset updated
    Apr 11, 2019
    Authors
    Wang, Zhichao; Li, Yan; Wang, Huiwen; Jiang, Zhenyu; Wei, Yigang
    Area covered
    India, China, Vietnam
    Description

    Forecasting Results of the population structures for China, India, and Vietnam (Unit: %).

  8. World data population

    • kaggle.com
    zip
    Updated Jan 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanishq dublish (2024). World data population [Dataset]. https://www.kaggle.com/datasets/tanishqdublish/world-data-population
    Explore at:
    zip(14672 bytes)Available download formats
    Dataset updated
    Jan 12, 2024
    Authors
    Tanishq dublish
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    World
    Description

    Context The world's population has undergone remarkable growth, exceeding 7.5 billion by mid-2019 and continuing to surge beyond previous estimates. Notably, China and India stand as the two most populous countries, with China's population potentially facing a decline while India's trajectory hints at surpassing it by 2030. This significant demographic shift is just one facet of a global landscape where countries like the United States, Indonesia, Brazil, Nigeria, and others, each with populations surpassing 100 million, play pivotal roles.

    The steady decrease in growth rates, though, is reshaping projections. While the world's population is expected to exceed 8 billion by 2030, growth will notably decelerate compared to previous decades. Specific countries like India, Nigeria, and several African nations will notably contribute to this growth, potentially doubling their populations before rates plateau.

    Content This dataset provides comprehensive historical population data for countries and territories globally, offering insights into various parameters such as area size, continent, population growth rates, rankings, and world population percentages. Spanning from 1970 to 2023, it includes population figures for different years, enabling a detailed examination of demographic trends and changes over time.

    Dataset Structured with meticulous detail, this dataset offers a wide array of information in a format conducive to analysis and exploration. Featuring parameters like population by year, country rankings, geographical details, and growth rates, it serves as a valuable resource for researchers, policymakers, and analysts. Additionally, the inclusion of growth rates and world population percentages provides a nuanced understanding of how countries contribute to global demographic shifts.

    This dataset is invaluable for those interested in understanding historical population trends, predicting future demographic patterns, and conducting in-depth analyses to inform policies across various sectors such as economics, urban planning, public health, and more.

  9. Population development of China 0-2100

    • statista.com
    Updated Jul 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Population development of China 0-2100 [Dataset]. https://www.statista.com/statistics/1304081/china-population-development-historical/
    Explore at:
    Dataset updated
    Jul 11, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.

  10. k

    Health Nutrition and Population Statistics

    • datasource.kapsarc.org
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Health Nutrition and Population Statistics [Dataset]. https://datasource.kapsarc.org/explore/dataset/worldbank-health-nutrition-and-population-statistics/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Description

    Explore World Bank Health, Nutrition and Population Statistics dataset featuring a wide range of indicators such as School enrollment, UHC service coverage index, Fertility rate, and more from countries like Bahrain, China, India, Kuwait, Oman, Qatar, and Saudi Arabia.

    School enrollment, tertiary, UHC service coverage index, Wanted fertility rate, People with basic handwashing facilities, urban population, Rural population, AIDS estimated deaths, Domestic private health expenditure, Fertility rate, Domestic general government health expenditure, Age dependency ratio, Postnatal care coverage, People using safely managed drinking water services, Unemployment, Lifetime risk of maternal death, External health expenditure, Population growth, Completeness of birth registration, Urban poverty headcount ratio, Prevalence of undernourishment, People using at least basic sanitation services, Prevalence of current tobacco use, Urban poverty headcount ratio, Tuberculosis treatment success rate, Low-birthweight babies, Female headed households, Completeness of birth registration, Urban population growth, Antiretroviral therapy coverage, Labor force, and more.

    Bahrain, China, India, Kuwait, Oman, Qatar, Saudi Arabia

    Follow data.kapsarc.org for timely data to advance energy economics research.

  11. d

    Data from: Country-Level Population and Downscaled Projections Based on the...

    • catalog.data.gov
    • dataverse.harvard.edu
    • +4more
    Updated Sep 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Country-Level Population and Downscaled Projections Based on the SRES B2 Scenario, 1990-2100 [Dataset]. https://catalog.data.gov/dataset/country-level-population-and-downscaled-projections-based-on-the-sres-b2-scenario-1990-210
    Explore at:
    Dataset updated
    Sep 19, 2025
    Dataset provided by
    SEDAC
    Description

    The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) B2 Scenario, 1990-2100, were based on the UN 1998 Medium Long Range Projection for the years 1995 to 2100. The official version projects population for 8 regions of the world including Africa, Asia (minus India and China), India, China, Europe, Latin America, Northern America, and Oceania. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  12. indian-population_history

    • kaggle.com
    zip
    Updated Dec 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rahul Jangam (2022). indian-population_history [Dataset]. https://www.kaggle.com/datasets/rahuljangam/indian-population-history-1955-2020
    Explore at:
    zip(1183 bytes)Available download formats
    Dataset updated
    Dec 1, 2022
    Authors
    Rahul Jangam
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    Context

    In case of population, the India become the Second largest Country in the world, after China. The UN World Population Prospects (WPP), 2022, forecasts India becoming the most populous country by 2023, surpassing China, with a 140 crore population. India currently has 17.5% of the world’s population. so, in this data set will gives you a insights of Indian Population and how this is evolved over period of time From 1955-2020, what would be the future Projection will gives you by analyzing the data. lastly According to the Experts Indian population will be decline at the end of this decade.

    Data Description

    Year : Years(1955-2020) Population : In Millions Yearly % Change : Yearly Change from Previous year(in %) Yearly Change :Yearly Change from Previous year(in Number) Migrants (net) : (+) number means more people entering into the country & (-) vice versa Median Age : The median is the middle age in a sorted, ascending or descending list of age Fertility Rate : Total number of children that would be born to each woman in a Year Density (P/Km²) : How many People live in the 1Km Area Urban Pop % : % of Population lived in Urban Area Urban Population : Number of People lived in Urban Area Country's Share of World Pop : in % World Population : Total World Population(in Millions) India Global Rank : Position of country

    Indian Population | Worldometer

  13. k

    International Macroeconomic Dataset (2015 Base)

    • datasource.kapsarc.org
    Updated Oct 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). International Macroeconomic Dataset (2015 Base) [Dataset]. https://datasource.kapsarc.org/explore/dataset/international-macroeconomic-data-set-2015/
    Explore at:
    Dataset updated
    Oct 26, 2025
    Description

    TThe ERS International Macroeconomic Data Set provides historical and projected data for 181 countries that account for more than 99 percent of the world economy. These data and projections are assembled explicitly to serve as underlying assumptions for the annual USDA agricultural supply and demand projections, which provide a 10-year outlook on U.S. and global agriculture. The macroeconomic projections describe the long-term, 10-year scenario that is used as a benchmark for analyzing the impacts of alternative scenarios and macroeconomic shocks.

    Explore the International Macroeconomic Data Set 2015 for annual growth rates, consumer price indices, real GDP per capita, exchange rates, and more. Get detailed projections and forecasts for countries worldwide.

    Annual growth rates, Consumer price indices (CPI), Real GDP per capita, Real exchange rates, Population, GDP deflator, Real gross domestic product (GDP), Real GDP shares, GDP, projections, Forecast, Real Estate, Per capita, Deflator, share, Exchange Rates, CPI

    Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Congo, Costa Rica, Croatia, Cuba, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Libya, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, South Africa, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe, WORLD Follow data.kapsarc.org for timely data to advance energy economics research. Notes:

    Developed countries/1 Australia, New Zealand, Japan, Other Western Europe, European Union 27, North America

    Developed countries less USA/2 Australia, New Zealand, Japan, Other Western Europe, European Union 27, Canada

    Developing countries/3 Africa, Middle East, Other Oceania, Asia less Japan, Latin America;

    Low-income developing countries/4 Haiti, Afghanistan, Nepal, Benin, Burkina Faso, Burundi, Central African Republic, Chad, Democratic Republic of Congo, Eritrea, Ethiopia, Gambia, Guinea, Guinea-Bissau, Liberia, Madagascar, Malawi, Mali, Mozambique, Niger, Rwanda, Senegal, Sierra Leone, Somalia, Tanzania, Togo, Uganda, Zimbabwe;

    Emerging markets/5 Mexico, Brazil, Chile, Czech Republic, Hungary, Poland, Slovakia, Russia, China, India, Korea, Taiwan, Indonesia, Malaysia, Philippines, Thailand, Vietnam, Singapore

    BRIICs/5 Brazil, Russia, India, Indonesia, China; Former Centrally Planned Economies

    Former centrally planned economies/7 Cyprus, Malta, Recently acceded countries, Other Central Europe, Former Soviet Union

    USMCA/8 Canada, Mexico, United States

    Europe and Central Asia/9 Europe, Former Soviet Union

    Middle East and North Africa/10 Middle East and North Africa

    Other Southeast Asia outlook/11 Malaysia, Philippines, Thailand, Vietnam

    Other South America outlook/12 Chile, Colombia, Peru, Bolivia, Paraguay, Uruguay

    Indicator Source

    Real gross domestic product (GDP) World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service all converted to a 2015 base year.

    Real GDP per capita U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table and Population table.

    GDP deflator World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.

    Real GDP shares U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table.

    Real exchange rates U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, CPI table, and Nominal XR and Trade Weights tables developed by the Economic Research Service.

    Consumer price indices (CPI) International Financial Statistics International Monetary Fund, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.

    Population Department of Commerce, Bureau of the Census, U.S. Department of Agriculture, Economic Research Service, International Data Base.

  14. Country-Level Population and Downscaled Projections Based on the SRES B2...

    • data.nasa.gov
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Country-Level Population and Downscaled Projections Based on the SRES B2 Scenario, 1990-2100 - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/country-level-population-and-downscaled-projections-based-on-the-sres-b2-scenario-1990-210
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) B2 Scenario, 1990-2100, were based on the UN 1998 Medium Long Range Projection for the years 1995 to 2100. The official version projects population for 8 regions of the world including Africa, Asia (minus India and China), India, China, Europe, Latin America, Northern America, and Oceania. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  15. d

    Year and State wise Density of Population

    • dataful.in
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Year and State wise Density of Population [Dataset]. https://dataful.in/datasets/21433
    Explore at:
    csv, xlsx, application/x-parquetAvailable download formats
    Dataset updated
    Nov 20, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    States of India
    Variables measured
    Population Density
    Description

    The dataset contains Year and State wise Density of Population

    Note: 1. The 1981 Census could not be held in Assam. Total Population for 1981 has been worked out by Interpolation. 2. Includes estimated population of Paomata, Mao Maram and Purul sub-divisions of Senapati District of Manipur for 2001. 3. For working out the density of India and Jammu & Kashmir for 1991,2001, the entire area and population of those portions of Jammu & Kashmir which are under illegal occupation of Pakistan and China have not been taken into account.

  16. N

    China, Maine Non-Hispanic Population Breakdown By Race Dataset: Non-Hispanic...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). China, Maine Non-Hispanic Population Breakdown By Race Dataset: Non-Hispanic Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/99d547a2-ef82-11ef-9e71-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Maine, China
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of China town by race. It includes the distribution of the Non-Hispanic population of China town across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of China town across relevant racial categories.

    Key observations

    Of the Non-Hispanic population in China town, the largest racial group is White alone with a population of 4,231 (96.75% of the total Non-Hispanic population).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the China town
    • Population: The population of the racial category (for Non-Hispanic) in the China town is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of China town total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China town Population by Race & Ethnicity. You can refer the same here

  17. N

    China, TX Non-Hispanic Population Breakdown By Race Dataset: Non-Hispanic...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). China, TX Non-Hispanic Population Breakdown By Race Dataset: Non-Hispanic Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/99d548a6-ef82-11ef-9e71-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China, Texas
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of China by race. It includes the distribution of the Non-Hispanic population of China across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of China across relevant racial categories.

    Key observations

    Of the Non-Hispanic population in China, the largest racial group is White alone with a population of 487 (70.78% of the total Non-Hispanic population).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the China
    • Population: The population of the racial category (for Non-Hispanic) in the China is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of China total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China Population by Race & Ethnicity. You can refer the same here

  18. White noise tests for error series of three age periods for China, India and...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yigang Wei; Zhichao Wang; Huiwen Wang; Yan Li; Zhenyu Jiang (2023). White noise tests for error series of three age periods for China, India and Vietnam. [Dataset]. http://doi.org/10.1371/journal.pone.0212772.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yigang Wei; Zhichao Wang; Huiwen Wang; Yan Li; Zhenyu Jiang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Vietnam, India, China
    Description

    White noise tests for error series of three age periods for China, India and Vietnam.

  19. d

    Loudoun County 2020 Census Population Patterns by Race and Hispanic or...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Nov 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loudoun County GIS (2025). Loudoun County 2020 Census Population Patterns by Race and Hispanic or Latino Ethnicity [Dataset]. https://catalog.data.gov/dataset/loudoun-county-2020-census-population-patterns-by-race-and-hispanic-or-latino-ethnicity
    Explore at:
    Dataset updated
    Nov 15, 2025
    Dataset provided by
    Loudoun County GIS
    Area covered
    Loudoun County
    Description

    Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.

  20. Socioeconomic Factors and All Cause and Cause-Specific Mortality among Older...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    doc
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cleusa P. Ferri; Daisy Acosta; Mariella Guerra; Yueqin Huang; Juan J. Llibre-Rodriguez; Aquiles Salas; Ana Luisa Sosa; Joseph D. Williams; Ciro Gaona; Zhaorui Liu; Lisseth Noriega-Fernandez; A. T. Jotheeswaran; Martin J. Prince (2023). Socioeconomic Factors and All Cause and Cause-Specific Mortality among Older People in Latin America, India, and China: A Population-Based Cohort Study [Dataset]. http://doi.org/10.1371/journal.pmed.1001179
    Explore at:
    docAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Cleusa P. Ferri; Daisy Acosta; Mariella Guerra; Yueqin Huang; Juan J. Llibre-Rodriguez; Aquiles Salas; Ana Luisa Sosa; Joseph D. Williams; Ciro Gaona; Zhaorui Liu; Lisseth Noriega-Fernandez; A. T. Jotheeswaran; Martin J. Prince
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Latin America, India, China
    Description

    BackgroundEven in low and middle income countries most deaths occur in older adults. In Europe, the effects of better education and home ownership upon mortality seem to persist into old age, but these effects may not generalise to LMICs. Reliable data on causes and determinants of mortality are lacking. Methods and FindingsThe vital status of 12,373 people aged 65 y and over was determined 3–5 y after baseline survey in sites in Latin America, India, and China. We report crude and standardised mortality rates, standardized mortality ratios comparing mortality experience with that in the United States, and estimated associations with socioeconomic factors using Cox's proportional hazards regression. Cause-specific mortality fractions were estimated using the InterVA algorithm. Crude mortality rates varied from 27.3 to 70.0 per 1,000 person-years, a 3-fold variation persisting after standardisation for demographic and economic factors. Compared with the US, mortality was much higher in urban India and rural China, much lower in Peru, Venezuela, and urban Mexico, and similar in other sites. Mortality rates were higher among men, and increased with age. Adjusting for these effects, it was found that education, occupational attainment, assets, and pension receipt were all inversely associated with mortality, and food insecurity positively associated. Mutually adjusted, only education remained protective (pooled hazard ratio 0.93, 95% CI 0.89–0.98). Most deaths occurred at home, but, except in India, most individuals received medical attention during their final illness. Chronic diseases were the main causes of death, together with tuberculosis and liver disease, with stroke the leading cause in nearly all sites. ConclusionsEducation seems to have an important latent effect on mortality into late life. However, compositional differences in socioeconomic position do not explain differences in mortality between sites. Social protection for older people, and the effectiveness of health systems in preventing and treating chronic disease, may be as important as economic and human development. Please see later in the article for the Editors' Summary

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Samith Chimminiyan (2025). World Population by Countries (2025) [Dataset]. https://www.kaggle.com/datasets/samithsachidanandan/world-population-by-countries-2025
Organization logo

World Population by Countries (2025)

Countries List Based on the Population

Explore at:
zip(9000 bytes)Available download formats
Dataset updated
Jan 23, 2025
Authors
Samith Chimminiyan
License

http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

Area covered
World
Description

Description

This Dataset contains details of World Population by country. According to the worldometer, the current population of the world is 8.2 billion people. Highest populated country is India followed by China and USA.

Attribute Information

  • Rank : Country Rank by Population.
  • Country : Name of the Country.
  • Population(2024) : Current Population of each Country.
  • Yearly Change : Percentage Yearly Change in Population.
  • Net Change : Net change in the Population.
  • Density (P/Km²) : Population density (population per square km)
  • Land Area(Km²) : Total land area of the Country.
  • Migrants (net) : Total number of migrants.
  • Fertility Rate : Fertility rate
  • Median Age : Median age of the population
  • Urban Pop % : Percentage of urban population
  • World Share : Share to the word with population.

Acknowledgements

https://www.worldometers.info/world-population/population-by-country/

Image by Gerd Altmann from Pixabay

Search
Clear search
Close search
Google apps
Main menu